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For the S= 2, X7 model of a quantum lattice fluid or a ferromagnet the conventional order
parameter does not commute with the Hamiltonian. As a result, the mean-square fluctuation
of the order parameter and the isothermal susceptibility are not related in the usual way the
general fluctuation theorem. For the above model, arguments are here presented to support
the idea that as T -Tc the quantum effect due to the noncommutation becomes masked and the
two quantities have the same critical behavior. This work is consistent with the exact results
of Falk and Bruch who defined a certain moment of the spectral density and used inequalities
to establish that if the moment —0 as T T~, then the susceptibility-fluctuation ratio becomes
unity thus ensuring coinciding critical behavior. The latter result applies to a large class of
models including the one considered here.

I. INTRODUCTION

The three-dimensional 8 = ~, XF model defined
in Sec. D is one of the simplest quantmm mechan-
ical cooperative models. This model. is thought to
be useful as an approximation for certain physical
systems such as liquid helium near the X transi-
tion. ' A few of the static properties of this model
near the critical point have now been calculated
and their simil. arity to those of other cooperative
models has been observed.

One unique feature of the XF model. , which par-
ticularl. y emphasizes its quantum nature, is that
its order parameter M" (or M") does not commute
with the Hamiltonian (the order parameter for the
Heisenberg ferromagnet commutes with its Ham-
iltonian). s The noncommuting gives rise to two

interesting related consequences. (i) The order
parameter has a time-dependent behavior at all
wavelengths including zero wavelength, and the
system thus can relax. The dynamical behavior of
this system has proved to be quite interesting and
will be treated in a later paper. (ii) One can de-
fine the mean-square fluctuation of the order pa-
rameter F and the zero-field static isothermal
susceptibility y which are not connected in the
usual way by the general "fluctuation" theorem (we
shall refer to T and y simply as the fluctuation and
susceptibility, respectively). This paper is con-
cerned with the nature of the distinction between
the fluctuation and susceptibility whose origin is
thus quantum mechanical.

While the distinction between the fluctuation and
susceptibility is valid generalLy, one suspects that
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in certain physical regions such as in the critical
region the dominant behavior of the susceptibility
may be the same as that of the fluctuation. In par-
ticular the widely heM notion of universality in
critical behavior argues that both the fluctuation
and susceptibility have the same critical behavior
since the quantum effect of this kind is believed to
be unimportant in the critical region. In this con-
nection there is an interesting work due to Falk
and Bruch~ who have obtained the upper and lower
bounds for the xatio of the susceptibility and fluctu-
ation for rather general systems. They show that
the two bounds merge provided that a certain mo-
ment of a spectral density vanishes. In their paper
it is pointed out that if the moment vanishes as
T- T„ then the merging of the two bounds implies
that the fluctuation and susceptibility have the same
critical behavior; hence, the same critical expo-
nents.

The XF model. represents a nontrivial case where
the above ideas can be studied to gain insight into
the question of how the quantum effect of the non-
commutativity of M" and Xo manages to become
suppressed with the onset of critical fluctuations.
This very interesting question is related to the
question of whether the critical. exponents depend
on the quantum number S. Consider, for example,
the XF model of classical spins. Here the fluctu-
ation and susceptibility are always identical since
[~",&01=0. Thus, in the transition from 8= —,

' to
8= ~ the effect of 8 on the critical. exponent, say,
p(8), must in some ways be very similar to the
effect of the commutator [!if', 3'01 has on the dif-
ference between the fluctuation and susceptibility.

Betts et al. 3 and Ditzian' have obtained a finite
number of series expansion coefficients for the
ftuctuation and susceptibility, respectively. Their
results show a trend which indicates that both
quantities (F and }!)have the same critical be-
havior. The numex ical work, however, sheds
little light on the presumed disappearance of the
quantum effect.

In this paper we shall assume the general validity
of series expansions and obtain an expression for
an grbitxg~y order expansion coefficient for the
susceptibility. By comparing this expression with
that for the fluctuation we shall study the effect of
the commutator [M*, $C ~] in the asymptotic limit.
From the point of series expansions for the XF
model, our result stands as an interpretation of
the work of Falk and Bruch. Also, our formalism
developed here will be found useful in obtaining the
dynamic behavior of the XF model.

This paper is divided into three main sections.
In Sec. II the basic formalism is given. Here an
expression for an arbitrary order coefficient of
expansion for the susceptibility is obtained via a
perturbative method. This perturbative method is

further described in Appendix A. In Sec. III, a
numerical study is made to compare the critical
behavior of the fluctuation and susceptibility and
also to test the accuracy of our perturbative meth-
od. In See. IV the susceptibility is obtained from
the closed expression for an arbitrary order ex-
pansion coefficient given in Sec. II, and contact is
then made with the results of Ref. 4.

H. SUSCEPTIBILITY AND FLUCTUATION

The Xg model of N interacting spin-& particles
in an external field H"=-H is defined by the inter-
action Hamilton%an

&= —2J Q Sq S~ + 8fSf —H 5~ 8(
(4g )

N

F=P (SgS,*)= —+ P a„K", (2)

where K=X/ksT and the angular brackets denote
an ensemble average in zero field. It has been
shown that

where the trace is taken over terms linear in N
only. The zero-field static isothermal suscepti-
bility is given by

(4)

Noting that P and Q do not commute we write
«yf

b(r )Btr &

x=0

where

It follows directly from the definition (4} that
if n is even and f„=-,'(n —1) otherwise; and

5'"= 2/(n + 1}=N~—
for all values of r except for one value r= f„=~ n
(n even), for which

y(+ /)

Observe that if P and Q commute, 8„"'= 8„'~' and
thus a„=a„.

Let the commutation relation between P and Q
be denoted by

From (1) and the commutation relations of spin- —,

operators, it is easy to show that

y= —2f Q 8;8$,
fj

where the first sum is over nearest-neighbor pairs
on)y. For 7& 7„ the fluctuation is given by
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where we shall define

C(r) Tr~n qPnm (12)

Using the relation (ll) recursively we then obtain

r-1
B(n& B(0&

r -"0
(is)

Observe that since 8„' ' =nf g, the effect of the
commutator (9) on B„'"' is contained entirely in the
second term.

Now the commutation rel.ation between P and y
can be obtained from (1) and (10), which we shall
write as

[P, yt=q(&&+ /+8, (14)

where q is the coordination number, and g and 9
are operators given in Appendix A.

Thus, from (12) and (14) we get
~(r ) p (r-1 ) g(t -1) g (r-1)
~n ~n ~ n-1 "n-1

A„'"'= Tr(g+ 8)P'QP"

Using (15) recursively as before, we find that

P C("'=rC(0,&-g (r-r'-I)(qB("')+&(("))
0 r'=0

(IV)
It will be assumed here that !(„("0&is small compared
with qB„'"0' and can thus be ignored (we shall call
this step zeroth-order approximation). This ap-
proximation is numerically justified in Sec. III and
further discussed in Appendix A.

Thus substituting (17) into (1S) and by recursion,
we obtain -in @erotic order

where now the nearest-neighbor sum includes both
i &j and i &j. Vfith aid of the above commutator we
can write

g(r ) g(r-1) C(r-1)
n n n 1

Z q"'[(0'„.)B„"0,.—(,„;.,)c„"„'~, ) .
r'=0

(21)

The double sum in (21) can be reduced to a single
sum by carryiI)g out the sum over r first and then
by regrouping resulting terms in powers of q. %'e

obtain that

n

!q„n!a„=Q q'(s0(",&B(0~& —s~("&, C(0~&,), (22)
p=0

where s('&"'= (~"), and p„=—', [—,'(n —1)j &f 0 (n —1) is
even and p„=-,' —,'(n —S) otherwise (given that n is
an odd number). Using (S) and (6), we then find
for the leading behavior of B„,

a =a„——(1 —n ) —C(0)
2 2! "'

(n —1)!
('il' q(1 —Sn ')

(2S)+12 I

k )
where the difference, g„—g ~ can be considered as
a "quantum" correction arising from the nonzero
commutation relation between P and Q.

To what extent do these correction terms con-
tribute to g„'? For n finite, we have provided a
numerical answer in Sec. IG. In the remainder of
this section we shall study the behavior of the cor-
rection terms in the asymptotic limit (n -~). It
was shown in Ref. 5 that B( ' terms consist of, in
the language of graph theory, open chainl. ike
graphs, whereas C 0' terms consist of closed
graphs. The largest graphs in the leading term of
(2S), B„'0', for example, have lattice constants of
the order (q —I)" for q»2, while the largest graphs
in the second term C„' 1 have lattice constants of
the order (q-1)"~ . Hence, in the large n limit
(or T- 7,) we can completely ignore C'0' terms
and thus write for the leading behavior of g™„as

i ' q(1-Sn-')
lim g„=g„+ —

( g„~
(I

rr
B!"'=& q"'[(0: ».'-'0, - (0,""1)C"0"-(t

r'=0 j. —1On '
~ ~

5.
(24)

where ("„,) is the binomial factor and l„= 0 r if r is
even and I„=—,(r- 1) otherwise. The leading term
of B(") shows the following behavior:

B&r) B(0) rC(D&+ ) r(r+ 1)qB(0)

In Appendix 8 it is proved that

C(0) ) TrPn+1 Tr P SnSnPn
fj

(19)

(20)

Hence, within Eeroth order, we have now reduced
8„'"' to quantities which do not explicitly depend on
the commutation relation (9). For simplicity let
n be an odd number. Then, using (18)

Nn-1

fq„n!a„= P B'„"'

limr„=K, '[I+ (y-1)n '+ 0(n 0)),
n

(25)

where K, is the critical point. Using (24) we can
obtain an expression for the ratio r„=a„/a„( for

Observe that fox a given but lax ge n our "quantum"
correction contributes (in a quantitative sense) to
critical fluctuations in the form of a decreasing
order of coefficients (a„0, a„0, a„0, and so on).
Is this quantum correction manifested in the crit-
ical behavior '?

%e shall assume that near the critical point both
F and X obey a power law with exponents y and y,
respectively. Then, the ratio r„=a„/a„, for the
fluctuation satisfies the well-known relation
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TABLE I. Expansion coefficients for the fluctuation
F from Ref. 2; exact coefficients for the susceptibility
X from Ref. 5; and coefficients for the zeroth-order
susceptibility X calculated from Eq. (22).

2

3
16.5
82

397.875
1914.8125
9141.270833

43 322. 59747
204 151.3VVV

957 V86. 7005

3
16
80. 75

396.15
1911.962
9131.062

43283. 731

2X

1

3
16
80. 75

398.625
1926.7625
9241.315477

43 820. 45862
207 016.1153
971655.1863

The meamng of (2V) can be readily seen from (25).
That both F and y have the same critical tempera-
ture needs no further comment as it is intuitively
obvious. The absence of a term linear in n ' in
(2V) clearly implies that y= y. Our result suggests
that while the quantum correction persists in all
temperatures, as 7- T, it becomes masked and
does not influence critical fluctuations. Gur re-
sult further suggests that critical exponents are
independent of the spin quantum number 8 (as is
generally believed) in a manner analogous to our
situation here regarding the susceptibility and
fluctuation.

While our result (27) is valid strictly for zeroth
order, we show in Appendix A that the same con-
clusion still holds in higher orders.

HI. NUMERICAL RESULTS

Although our result (27) is asymptotically exact
in zeroth order (strictly speaking, the series ex-
pansion has a meamng only asymptotically}, it
would nevertheless be interesting to see whether
one could predict j= y from a finite number of ex-
pansion coefficients. It is also desirable to see
the accuracy of our zeroth-order approximation.

Betts et al. have obtained the first nine coef-
ficients of the fluctuation series F [see Eq. (2}]for
cubic lattices. In the second column of Table I
the coefficients a„ for the fcc lattice are listed. In
the third column of Table I we list the coefficients

the susceptibility

limi"„/~„
5~ +'

1+ /san [n(n —l)g~g ] g„g/g„+ ' ' '

1+ qs'," "[(n-1)(n -2)s'," "] 'a„,/a„, + ~ ~ ~

(25)
The ratios such as a„~/a„can be further replaced
by using (25) and we obtain

limr„/z„= 1+ O(n I) .
It was shown in Sec. II that in z eroth order the

leading "quantum" correction to the susceptibility
coefficient g„are those of lower order fluctuation
coefficients a„~, a„„a„~,etc. We have con-
cluded that the weight of these lower order terms
is not large .enough (compared with that of the prin-
cipal term g„) to be manifested in the critical be-
havior.

It is desirable here to relate our result to the
work of Falk and Bruch. In obtaining our asymp-
totic expression (27) we have argued that the con-
tribution from C' ' is negligible compared with that
of B '. We have shown in Appendix 8 that the
second moment of the spectral density vz is given
by

TABLE II. Reduced coefficients B~~+ and the second
moment coefficients C „0~ obtained from Refs. 2 and 11.

2a"„~yt 2C„'",/( —1)!

3
16.5
83

39V. 875
1914.8125
9141.270833

43 322. 59747
204 151,3777
957 786. 7005

3
7.5

12.75
22.25
62. 775

208. 135
730.77264

2645. 2201

a„of the susceptibility series obtained by Ditzian'
from (5}using a technique developed by Betts ef gf.
The coefficients a„of the zeroth-order suscepti-
bility series, which we shall denote as g'o', can
be directly obtained by (22) using the values for
B~o' and C~o~. These are listed in the fourth column
of Table I.

As may be seen by comparing the last two
columns of Table I, the coefficients of g' ' look to
be a reasonably good approximation for the coef-
ficients of y, differing at most about 1%. The
validity of the zeroth-order appxoximation and the
procedure of introducing higher approximations
are further discussed in Appendix A.

In Table II we have compared the values of B„'
and C„' &. Prom the table it is clear that even for
n finite the C'0' terms contribute only negligibly.
With an increasing n, the contribution of C~ ' terms
becomes less and less important.

In Fig. 1 we have shown a familiar ratio plot of
ratios of coefficients for F and g'o' (ratios of co-
efficients for y are not shown here since these
values fall very near those of y'+). As may be
observed from the figure, one would conclude that
within an acceptable error limit y= y.

IV. DISCUSSION
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ond moment is nondivergent (vs»&T "~), whereas
the fluctuation as we know is strongly singular
(F-AT "}.~~ The best present estimates available
for the exponents for cubic lattices are @=0 and

2

If we proceed beyond Eeroth order, we obtain
essentially the same form fox g as for X' ' except
that now the two functions f and g are replaced by
more complicated functions which are nevertheless
still analytic at T= T, (see Appendix A}. Thus our
conclusion of zeroth order still. holds.
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APPENDIX A: HIGHERWRDER CORRECTION

FIG. 1. Ratios of coefficients for the fluctuation and
the Eeroth-order susceptibility (both on the fcc lattice).

(Al)

The commutation relation between P and y was
denoted in the form [see (14)]

[P,y]= qQ+ /+ 8 .

;/-~=&[q, [P, q]]) =-2Z K C„o/! .
(28)

Using (1) and (10) we identify

4dRQ ge gs gx —p(1)q
2 ~3 (A2)

Now using (4) and (22) we can obtain the suscepti-
bility in terms of reduced quantities [those not
explicitly depending on the commutator (9)]

f= sinhv qK/WqK,

g= (1 —coshWqK)/2( qK}

(81}

(S2)

The above result can be more directly obtained by
another method. " Now observe that if Y» v2 as
T T„ then X' ' and Y have a similar critical be-
havior since f(T) and g(T) are analytic at T= Tc.
This is consistent with the general result of Falk
and Bruch.

As T- T„Y»v2 follows from our earlier argu-
ment that their coefficients of expansion satisfy
~&o&»C&o) as n-~. %e shall al.so show in a sub-
sequent paper" that in the critical region the sec-

x=P a„K"
n=o

hatt

~n

n=0 nn p=o

(29}
For n Ieven, the above expression requires a slight
modification. ' %e observe that, for a given P, the
sum over n for each B'

2 produces a term propor-
tional to Y and similarly for each C'o+', , a term pro-
portional to v2. Hence, first enumerating the p
sum in (29}, we obtain after some rearrangement
with (2) and (28)

x' '=f&+~, (So)

8=4''Z S„",(S„",g", -S,",S„*,), (AS)

where the lattice sum is now restricted to that of
a linear chain of two units of the nearest-neighbor
distance in the sequence r, rzr~. Equations (1S)
and (15) then provide the recursion relation

$+ ~2
O'"' = B'O' —W'0'+ P (r- r'- 1)(qB'" '+ g" ')

t'=o
(A4)

where X~"' is defined by (16). The zeroth ordex-
approximation results if we neglect the last term
in (A4) by assuming that qB+3' »)„"~'. Inclusion
of the last term leads to the following recursion
relation:

tn ns t& g
2

(A5)

where the first term in (A5) represents our zeroth-
order result (18) and ra=r.

Now X„'"' may be evaluated as follows. Consid-
er, first, the leading term (x=0),

X'„O'= Tr($+ 8)QP" .
From the definition of 8 we see that as n becomes
large, the small difference between the two terms
arising from the restricted sum becomes less and
less important. In fact, it may be seen that as
n-~, Tr8QP"-0. [Also note that if the restric-
tion on the sum vl in (AS) is relaxed, Tr&QP" =0
for all n. ] As our first-order approximation, we
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r 1
(r) (0) Y' i (r') (r')

~n(1) ~n(t) ~ (q(Cn-1 + Kn-1(1&)
0

(AQ)

Tr(U(l)y)Pw qPn n- (A10)

Similarly the commutation relation between P
and U'"y can be defined as

[P, U' 'y]=qlU' q+ U q+0(e), (All)

where qa denotes the free end sum of a linear chain
of three units (see Ref. 15), and

U"&q = (4z')' Z s)'. g' s„;s,' s,", , (A12

where the lattice sum is restricted to that of a
linear chain of four units in the sequence from x1
to x, . Hence, by recursion,

K„(1)= Kn(1) —F~ (qRXn-1(1) + ~n-l(R)) p

(r) (0) (r') (r*)
r -"0

&(«& —Tr(U(0)q)Pn qPn n

Using (AQ) and (AIS) we can eliminate K'„(',
&

entirely
and obtain the following expression:

r 0) (0) (0)
~n(1) ~n(1) 'Vl~n-1 +~n-1(l)

r-1
+ Q (r r'- l)[q()q, B„'",'-

r'=0

+ (ql+ qa})(~0I)&+CaI0)] ~

This procedure may be further continued to give
a complete hierarchy of recursion relations in
terms of reduced quantities. One can however
considerably simplify the procedure by using the
method of a continued-fraction representation of
Mori le In a subsequent paper we will apply the
method of Mori to our perturbation approach and
obtain in a much more simple form the hierarchy
of recursion relations.

The numerical work shown in See. III provides
a measure of accuracy of our zeroth-order ap-

shall therefore ignore the contribution of Tr8QP"
in (A6) and write, with (A2),

~("„&,= Tr(U('&q)P" qP" "+O(e) .
It is now straightforward to develop a recursion

relation for &+"» ~ First, we obtain the commuta-
tion relation between P and U '"Q in first order,

[P, U' q]= qly+U'"y+ O(e), (A8)

where gl = g0 —jy with g0 =gq and U p is defined
analogously to U("q,

U(1) P TrSn Sn Sn Sn (Aga)rl r8 3 "4'
where the lattice sum is restricted to that of a lin-
ear chain of three units in the above numerical se-
(Iuence. Witll aM of {A8) we ge't from (AV) in fll'st
order

proximation. Now for our principal result (2V} to
be valid beyond Eeroth order, it is only necessary
that, for a given B+), the first-order correction
X'"abc of the order equal to, or less than, the
zeroth-order correction qB('z' [see (A4)1.
follows since qB(0z), while not negligible compared
with 8(0), was shown nevertheless not to influence
the critical behavior which is solely determined
by the leading term 8(0). We shall briefly sketch
here a proof that X„'" is of the order less than
qB„'"'. A more detailed proof is found in the second
paper of our series together with other related
proofs.

For our purpose it is sufficient to compare A~)

and qB(0& for large n. Using (A2) we have (setting
M= 1)

)((0) p Trsn gn Sn Sn Pn (A16)

where the lattice sum is over ()",&'0'), which are
constrained to be a linear chain, and r& which is
unrestricted. It is convenient to divide (A16) into
two partsy

&(n' '=(-,'q0) Q Trsns„'. P"+Q Trs„'Sns;g P",
(AIV}

where by the prime we mean r&+rl. The first
term in (A1V), which is proportional to C(0), can
therefore be neglected for large s (see Sec. II and
Appendix 8). Now in terms of the raising and
lowering operators 8' = 8"+ iS~, we ean rewrite
(A1V) in the following form:

)((0)=-.'Q' TrS„'S„',[S„',S-„,+ S; S'„, ](S',S;,)

x{S;S,, )(S„S„-.)" . (A18)

where, in addition to the restricted lattice sum, a
sum ovex nearest-neighbor pairs pp', qq', rr', ...
is implied. Now since 8 is itself a traceless op-
erator, the above expression vanishes identically
unless x~ and z3 ar e both degenerate with some x
in (S„'). Then, by using the well-known relation

(A19)

8' operators ean be replaced by their eigenvalues,
leaving behind only the lattice restriction. Now
if rz or rs= r&, we only get a term proportional to
C(0). Thus, the largest contribution from (A18)
arises when the lattice restriction on r~ and xs
coincides with some particular configuration of a
nonzero combination of $S„'j (then the restriction
on r0 and r, becomes redundant). Consider the
first term in (A18). Let r, be singly degenerate:
r) ——p (an arbitrary choice}. Then by our argument
we must have ra =p. For rs, it has two possibili-
ties rs=q or q', each of which however cancels out
the other exactly by (A19}. The same applies to
the second term in (A18). One can obtain nonzero
combinations only when xl is at least triply degen-
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crate, e.g. , ~&=P'=q=r'. An elaboration of this
kind of argument leads to the conclusion that

max[Tr(U'"Q)QP"]- TrQsP '=B s,' . (A20)

Now since Bi ' & B„' f, where B+' - (q —1)", we ar-
rive at the desired conclusion that

x ~ y we obtain

vs/- J'=-Z &S)Sq+S~)S~q)+2 5, &Ss;Sf)

=-&P)+2K &S;S;) .
ig

(B2)

If we expand (BS) in powers of temperature, we get
~g(0) & I

y~o)l (A21)
v, /- J=-Z (K"/n!) TrP"'

In view of (A20) and (A21) we now understand the
extreme accuracy of our zeroth-order approxima-
tion indicated in Sec. III. It is also evident that
since X +' produces terms of C„' ' and B„',', a first-
order correction to the susceptibility (30) can bring
about a change only in the analytic functions f and g.

APPENDIX B: SECOND MOMENT

The second moment of a spectral density func-
tion is defined by

v, /- ~= &[Q, [P, Q] I)

= —2i Q Q &[Sf„S~(S~~]),
k fj

where the second line follows from (1), (9), and
(10). Hence,

+ 2 g (K"/n! ) Tr P S (SjP" . (B4)

Now we have defined (12),

= 2 TrP '-5 TrS;SfP" .
if

(B5)

C+' = TryQP" = —2i P P TrS&S)SfP", (B5)
k

where the second line follows from (1) and (10).
It can be seen that since the aagular-momentum
operators s = (S", S', S') are all traceless, the
only nonzero terms result whenk=i and k=j.
Hence,

C(c) P Tr(SIST SCSE)PII
if

vs/ —J= —2 P &S (S~)+ 2 Q &S(S~) .
ij

(B2)

Now observing that (B2) is invariant under rotation

Comparing it with (B4) we see that

v,/- Z= —2 P (K"/n!)C„"& . (BV)
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