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The contribution of the electron-phonon interaction to the anomalous Hall effect in ferro-
magnetic metals is calculated, utilizing Holstein s transport theory of the electron-phonon
gas. Specifically, the transverse dc conductivity o» is calculated using Kubo s formalism
and the temperature diagrammatic technique. Results based on the (ferromagnetically} po-
larized itinerant-electron model are consistent with the Luttinger s theory of the anomalous
Hall effect for impurity scattering. This leads to the non-Boltzmann (so-called "anomalous-
velocity"} contribution as well as the skew-scattering contribution of the type first obtained
by Smit. However, it is in disagreement with the result of Leribaux based on the same
model. A principal feature of the treatment is the explicit representation in terms of charge-
carrier motion between different %'annier cells as first suggested by Smit. However, in con-
trast to the latter author, who took the velocity operator of this intercell motion to be the
ordinary Bloch velocity, it is found that there is an additional velocity component of inter-
cell motion arising from the electron scattering mechanism (either electron-phonon inter-
action, as in this case, or electron-impurity interaction as in the previous treatments of Smit
or Luttinger}. This additional component gives rise, in turn, to the above-mentioned ano-
malous-velocity correction to cr», and hence, to the Hall coefficient.

I. INTRODUCTION

The experimental results ' for the anomalous
Hall effect in ferromagnetic metals and alloys
can generally be described by the following for-
mula:

ps= Ex/Jy=Ro Bg+4&RsMs&

where pH, E„, B„M„and J~ are, respectively,
the Hall resistivity, Hall field, magnetic field,
magnetization, and the electrical current in the
directions indicated by the subscripts in the pres-
ence of an external electric field E„. The first
term represents the ordinary Hall effect and is
caused by the magnetic Lorentz force. Ro is de-
fined as the normal Hall coefficient. The second
term has a strong dependence on the temperature
and represents the anomalous Hall effect with R,
defined as anomalous Hall coefficient. R, is
usually much larger than Ro except at low tempera-
ture. It is found experimentally ' that R,~ p" for
varying temperature or impurity concentration
with n ranging from 1.2 to 2 (p is the resistivity}.

The first theoretical attempt to explain the ori-
gin of the anomalous Hall effect was made by Kar-
plus md Luttinger. According to theix model,
the anomalous Hall current is caused by mag-
netically polarized conduction electrons (responsi-
ble for the ferromagnetism) which gain a trans-
verse component of velocity through spin-orbit
scattering, as they are driven by an external field
in a periodic lattice potential. However, this
theory has been criticized by Smit on the grounds
that under a perfect periodic potential, such as

spin-orbit interaction, electrons are in stationary
Bloch states and no acceleration (or scattering)
can result. He further argued that the system will
not even be in a stationary state in the absence of
the scattering mechanism which can destroy the
periodicity of the system and that if one intro-
duces a scattering mechanism such as impurity
or phonon scattering, those terms found by Kar-
plus and Luttinger will be canceled out. Instead
Smit proposed, as a main cause for the anomalous
Hall current, a "skew-scattering" mechanism
whereby a conduction electron is more favorably
scattered in the vicinity of an impurity into a
direction given by kxs $ is the momentum and
s is the spin of the electron}, resulting in a net
transverse cux'rent for polarized spina. He fur-
ther showed that the Born approximation of the
scattering process does not include the spin-orbit
interaction to the first order and that only the
higher Born ox'ders are responsible for the skew
scattering. However, Luttinger, in subsequent
work, improved the original Karylus-Luttinger
theory by explicitly treating impurity scattering
(instead of using the usual phenomenological re-
laxation time Ansutz) and applying a rigorous elec-
tron quantum-transport theory develoyed by Kohn
and Luttiager. ~ His results show, indeed, the
cancellation of the terms of Karplus and Luttinger
as well as theappearanceof skew-scattering con-
tributions entering through the higher-Born-order
corrections to the collision matrix in the Boltz-
mann equation. However, contrary to Smit's
claim, there are also some other important terms
[(3.26) of I uttinger ] which cannot be explained

1185



1186 SUNG-KWUN L YO

classically according to the Boltzmann equation.
Different types of models based entirely on the

skew'-scattering mechanism have been considered
by Kondo and Maranzana. In their models the
main scattering responsible for the ordinary re-
sistivity is provided by the s-d interaction be-
tween the unpolarized itinerant s electrons and the
polarized local d (or f) electrons. The skew scat-
tering arises from the spin-orbit interaction of the
d electrons within the magnetic ions in the case
of Kondo and from the d-spin other (s-}orbit inter-
action in the case of Maranzana. The theories of
these authors claim reasonably correct tempera-
ture dependence of the Hall resistivity. However,
as pointed out by Maranzana, the effect predicted
by these theories is two orders of magnitude too
small. These models are beyond the scope of this
work and will not be considered any further.

This paper applies the same basic idea proposed
by Luttinger~ to a system of "ferromagnetically"
polarized conduction electrons interacting with
Phonons (instead of impurities). The extension
of the Kohn-Luttinger (KL) transport theory to
this system is rather difficult. The field-the-
)retie many-body approach based on Kubo's for-
malism and Holstein's transport theory of elec-
tron-phonon gas is used. The obtained results
are completely consistent with Luttinger's theory
as is to be expected in view of the basic similarity
of the two problems. It is also found, by separat-
ing the cordinate operator into nonlocal and local
parts [corresponding to r = g+(r —g), g is a lattice
vector], that (a} only the motion of the electron
between different Wannier cells contributes to the
transverse current, and (b) the velocity associated
with this intercell motion consists not only of the
usual Bloch velocity but also of a contribution
arising from the electron scattering mechanism
(in our case, electron phonon; in Luttinger's case,
electron impurity). This last term was omitted
by Smit.

In Sec. II some basic formulations are developed
and in Sec. III the quantities such as conductivity
tensors, correlation functions, established in Sec.
II, are evaluated by an extensive use of Holstein's
theory. In Sec. IV a brief discussion is given on
the relations between the results of this work and

other theories.
II. BASIC FORMULATION

The first term annihilates and then creates an
electron of wave vector k and band index n with
a Bloch energy &~. The Bloch state Ikn} includes
the effect of the periodic spin-orbit interaction
averaged over electron spins:

0„=Z, , —x V, U(r;) p„M
(2. 2)

4m C Mp

where M, M2, U(r&), I, and p, are magnetiza-
tion, saturation magnetization of the sample,
periodic lattice potential, electron mass, and
electron momentum for the ith electron, respec-
tively. The second term of (2. 1) annihilates and
then creates a phonon of wave vector q and "bare"
frequency (d,' '. Finally, the third term describes
the "bare" interaction (as indicated by a super-
script zero on the matrix element) between the
electron and phonon. The arrows for vectors are
suppressed.

In order to relate the anomalous Hall coefficient
R, to the conductivity tensor, the anomalous part
of (1.1) is separated out:

E /J~ = 4vR, Mg, (2. 3)

e', . p (a&+io) -s„(io)
0 =.

&
lim
@~p (d

(2. 6)

where 0 is the volume of the crystal and 0 is
interpreted as an infinitesimally small positive
quantity. 6:~ (Rr +io) is the analytic continuation
of the velocity-velocity correlation function

e
P~(%o„)= (1/p) f, du2 f, du, e""~'"2 "&'r~ (u2, ug),

(2. 6)
where

P =1/KT, &o„= 2vir/KP (r is the integer) (2. 7)

where E„"'is an anomalous Hall field. Using
E„"'=p J'„"'=pe~'E, and J,= (1/p)E„, it follows
that

R,= (1/42M g) p o~ . (2.4)

In the above expression the superscript s of Q'zy'

stands for the linear component in the spin-orbit
coupling parameter in the Taylor expansion of

g„„in powers of this parameter. The superscript
s will have the same meaning for other quantities
later throughout this work. For the conductivity
tensor z~, a specific form given by Holstein and
Friedman is used:

As a starting point for this investigation, the
Frohlich Hamiltonian for the electron-phonon sys-
tem is adopted, i.e. ,

H=2 ~~a',„a +Pm(o,"'f,'h,

F (u2, u~) = (Te"2"v„e "2"e"~"v,e "~")
A

=(1/Za)Tr(Te ""e"2 v e "2 e"-v e "1 )
(2. 6)

Here ( ), Zo, T, p,, and N are the thermo-
dynamic average, grand partition function, Dy;
son's time-ordering operator, chemical potential,
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and particle-number operator, respectively, and

~ [r„H] [r, H] (2. 9)

At this point it is convenient to divide the elec-
tron coordinate operator into two parts

tion of the nonlocal intercell motion of an electron,
and the periodic regular (bounded)" part r;" de-
scribes the local electric polarization effect with-
in the gth Wannier ceQ. According to the above
scheme the conductivity tensor is separated into
four parts:

r=rI+r"=g [r,'+r,"], (2. 10)
I I I II II I II II

OXy=o'Xy +O'X3f +OXy +&Xy

where, for A=I, II, I3=I, II,

(2. 12)

where r' and r" are, respectively, given in Bloch
representation by ' e' . 6:.", (h(B+i0) —6:" (i0)

Z ~ 0 CO

(2. 13)

&kn~ r(~k'n'&=i = 6„- „-,6„„.,

(knlrl(lk'n'& = I J""'(k)6..' .
(2. 11)

The velocity-velocity correlation function
6" (h&B,) is given from (2.6) and (2. 8) by

6AB(h ) Q ()(E N ) (n lv,"Im& (m Iv„ In)

where

J"" (k) = u~(r() ~ u~, (r()d r( .
An f 8

Here uB„(r() is the periodic part of the Bloch func-
tion. In the Wannier representation one has

with

(n Iv, Im) (m I v,"In) y

E„—E —R(a)„) '

&gn~r(~g'n'&=g6;, ; 6... ,

(gn ~r("~ g'n'&= f (t)„*(r+g' —g)r (t)„.(r) dr,

where (r Ign&=—(f)„(r-g) is a Wannier function cor-
responding to the nth orbital and centered at a lat-
tice site g. Physically, the singular (unbounded)
intraband component r; represents the position of
the gth Wannier cell appropriate for the descrip-

[r",Hl
iS

(2. iS)

where the basis kets are taken to be eigenstates
of the field-free Hamiltonian (H In) =E„ln&,
N In) =N„ In)). It will turn out that the last three
terms of (2. 12) will cancel themselves. The last
term of (2. 12) can be reduced to a simple form by
using (2. 13)-(2.15) and noting that r" has no
singular matrix element':

2
II II -e, . 1 ~~ -B(&n-f Nn)

&~Z C ay» 0 ttm

x (n[ '
/m& (m[

'
[n&iS iS

&nI["' "] (m&&m[[y" ](n&
iS iS

e2 A

Tr ( -()(H-E )[»II y ]]iS'AZc

2

=,gq
&[»" y"l& (2. 16)

(E„—E +K(a)+i0)+(nl '
I)m& (ml . '

In& (E E -g(() -i0)If y ", H] ) )
[»",H]

zS sS

II II
E„—E +i0)+(n~ y. '

~m&(m~
'

~n& (E„-E -10)
(iS iS' ]

where the second equality is achieved by directly
subtracting the third (fourth) term from the first
(second) term and then evaluating the commutators
by observing the cancellations in the numerators
and the denominators. An alternative more rigor-
ous proaf of (2. 16) and the following (2. 17) is given
in Appendix A. The second and third terms af
(2. 12) can also be reduced to

2

(2. 17)
() = lim 6: (R(d +i0),

co~ 0

where the velocity-coordinate correlation functions
are defined by

ZC nm

Hx g '
yn m y" n E„-E~+@(d„

zS

»' H+(n/E" /I)(
$

.'
$

) (E. E-E,)), -
(2. 18a)

fj111(g ) Q e-()(EE ENE)

Zc
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xl,&slz"l~&&~l ','g ls& (E.-E.+a,&

I
+&"I '

~
(2. 18b)

Therefore, one is left with evaluating (2. 1V) and

J,45 ~f88f

yY
kn k

. v.

e', . 0:.'„'Of~+f0) —0„"(fo)
(d

(2. 19)
'f.

+

At this point me introduce, for a future purpose,
a formula which results from (2. 11) on integrat-
ing by part,

&Anl [»', p] lit'n') =iD„p~,„.„., (2. 20a)

Rnd especially for the diagonal part,

&~l[z', p]lu &=i
' p„„, (2. 20b)

where p is arbitrary and D =8/8k +8/8k' . lt
then follows that

x(b, +bi,) 5„...)s „si,„., (2, !!1)

where u~= (1/K)(8/Bk} s~.
With these basic formulations established, one

proceeds to Sec. ID to evaluate the correlation
functions and the conductivity tensors.

IH. HALL CONDUCTIVITY

ik
+ ——-i +

FIG. 1. Contribution of the ladder diagrams to the
velocity correlation functt. on.

In this section the correlation functions and the
conductivity tensors are evaluated to the lowest
order (i ~ e. , zeroth order) in electron-phonon in-
teraction and first order in Spin-orbit coupling,
using diagrammatic many-body theory. The pre-
scription to the diagrammatic xule is detailed in
the work of Holstein'; it will be used without re-
peating it here.

In Sec. IIIA, 0" is evaluated to the first order
in spin-orbit interaction. In Sec. III8 we show to
the lowest order in electron-phonon interaction

FIG. 2. Diagrammatic definition of the EF vertex.

that the contribution to the conductivity tensor from
thepolarization part vanishes, i.e. , a~=o~"-
+o~ +0~ =0. This is R consequence of R mole
general transport property; in dc limit, a arises
solely from the intracell motion (i.e. , g ~ d &z'i&/

dt) and vanishes to all orders of interactions for
arbitrary interaction mechanisms. ' '" One can
also show that a~ represents the contribution from
the "dipole driving" term (i.e. , the term propor-
tional to r" ~ E in the total Hamiltonian). These
problems will be treated elsewhere. ' ' ' Finally,
in Sec. III C we study the temperature dependence
of the Hall effect in high- and low-temperature
regimes.

A. Evaluatton of 0 It(')

It is well known' that the most important con-
tribution to the velocity correlation function
S~ (Rp„) [represented by P~ (@g„}hereafter] arises
from the series of ladder diagrams shown in Pig.
j., where the solid lines represent the full electron
propagators and the dotted lines indicate the full
phonon propagators. The external field lines are
shown by wiggly lines. Each member of the ladder
series shown in the figure is equally important
due to the occurrence of two overlapping reso-
nances Of the electron propagators introduced in
pairs by an addition of each rung, the contribution
of each extra rung turns out to be of zeroth order
in electron-phonon interaction. Therefore, a
summation of the series is necessary. However,
as will be shown, this ladder series contribution
which is af lowest order (i.e. , af order V ~ in elec-
tron-phonon interaction) does nct include the spin-
orbit interaction to the first order, so that one has
to go to the next-higher-order (i.e. , zeroth-order)
terms.

For this purpose it is useful, following Holstein,
to carxy out the correction of the external-field
(EF) vertex. This quantity, independent of the spin-
orbit interaction parameter to the first order,
leads to the Holstein-Boltzmann equation (3.13) and
mill be a fundamental tool for the investigation.
As schematically shown in Fig. 2, the EF vertex
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S»«I) = I/[1&- »» -G».@I)], (3.4)

[r', H] (- 1= ~
i
iI» 6f.» 4,"+

g ~ (D I'».»" }e

where G»(fI) represents the self-energy. (iv) EF
frequency parameter &o, is given by (2. 7). At this
point, the EF vertex part of (2. 21) should be re-
normalized as

FIG. 3. Diagrams representing the dominant contribu-
tions to (a) the electron self-energy part and Q) the pho-
non self-energy part.

is given by an integral equation, for vanishing EF
momentum,

A»(1I &I+ff&d.)=&»+ & II'»".». I &»»
1
p

X(EI —i;Ii) S»i„.(0&i) S» (ii; Ie+ jl(O„)

XA».„i(/le, gI. +R&d„). (3.1)

Definitions of the symbols are as follows: (i)
V~.„.~ is a renormalized'~ electron-phonon inter-
action given by V»,„.» = (&d».» /&g». &) ]"».„.», where{0) mr{0)

u&».»=sr' '(Ik'-kI), and &o».»=&a(lk'-~l) is a re-
normalized phonon frequency. (ii) D»», (f, —t'I. ) is
the renormalized phonon propagator with the pho-
non self-energy part taken to the lowest order in
electron-phonon interaction

x' (5,+ (i',') ((;;.;) a' a,.„.. (8. 5)

The dominant contribution to the electron and pho-
non self-energy comes from the diagrams shown
in Fig. 3. The following analytic properties of
the fermion propagator and the self-energy part
will be used:

S»(f) is analytic everywhere on the complex
f plane except for a branch cut on Imp= 0 axis;

S»(g) goes to zero as I/i: for an infinitely large
value of lfl;

(3.6)

G»(x+iO) =M» (x) ail'»(z) for real variable z,
where M»(z) and I'»(x) are real functions of
X 4

The summation on I' in (3. 1) can be replaced by
integration introducing a factor + (p/21(i) [f '"(t')

iV+»] in conjunction with an integration contour
I" shown in Fig. 4, with f'"(t'} and N». given by

f&+)(t() I/(e»8&2'-)4&+I) (3. l)
2IQ)~ 2

»»' «I 1 I')
(ff )2 (t. t. )2 I /(e 2» (i)»»' I) (3.6)

(3. 2)

where ) Insane sunlllllllg oil bo'tll slglls and

t'I = i&+[(2l+ I)/P] I(i (I is the integer). (3.3)

(iii) S»(fI) is a full electron propagator given by

Noting that the residue of thephonon poles van-
ishes, one can deform the integral path X' into I'0
by using the analytic properties (3.6) and by as-
suming that A»(L, 15+&d) is analytic everywhere
except for the branch cuts along Imp = 0 and
Im(t'+ g(d„}= 0 axes as can be proved a posteriori
Thus (3.1) can be rewritten

2vi, ,„,, j „[ff~„,+(C, -t')][1' ~„„, G, „,(C')]-[t'+. a~, ~,.„, G„„.(L'+-e „)]
(3.9)

The result of this integration (followed by analytic continuation to the real axis in the g plane) taken to the
lowest order in the smallness parameter I'/E~ = I/2rZ» = X/I (E~ is the Fermi energy, I is the relaxation
time, X is the de Broglie wavelength, l is the mean free path) is given for real values of z by Holstein' as

I V».„.» I A».„.(e,.„.—iO, e».„.+h&0+iO)

»"" if~ - IM»" ~ «." +g~) ™»"(&» "}]+i[I'»" «»" }+I'»" «»" ~ +I~)l

" a' ~ &f (i;;) f(a,; +Iria)]+Sr'(((z —a, „.*-Rid .) " " +N„).{v} {v) f '"(~,.„.)+f & "(e».„.+K&d)

Z 6 P»tf» 6 Q)~ 2

(3.10)
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I V,.„.,~ I'A, .„.(a,.„—fO, z„„.+ Ko+iO)
Ag (z+zgO, z+I(d +zgO) ='Q~+

,„,, S&g —[M .„.(a .„.+k&u) —M„.„.(f„.„.)]+i[I'.„.(a .„.)+I'.„.(E .„.+K&o)]

x(a' —i»rli(z —r', s»v ))[f'"(a ...) f'"(e'-, +bio)],
Z E» n'+ ~&»»'

(3.11)

where ]=+ I and 5(z) is Dirac s 5 function. a indicates the principal part. Once the quantity A~„(z —i0,
z+@g+f0) is found, this can be put into (3. 11) for the evaluation of A~„(z+f0, z+g&o+i']0) .R is tobe noted
that when S(d - 0, A~ are of zeroth order in electron-phonon interaction, because M»„, I ~ are of order
V . By setting

iKA (&~-i0, e~+R&o+i0)
I& —[M„(&„+ff&) -M,„(~„)]+[r„(~„)+r„(~„+ff~))

and by evaluating the self-energy part to the order given in Fig. 3, one transforms (3.10) into

(3.12)

2 f'"(.")+f"'( '. +g )-(~o (~)=~' +
» ' l»... , l

[o.. (ro)-o (ro)] '(~, -~.. *Isa&..)
'" '" +&..)»'n'a

(3.13)
z 1

+ 6' [f & "(e,.„.+K(o) —f ("(e,.„.)],
&»n &» n ++ac'

known as the Holstein-Boltzmann transport equation, which contains all the information on the transport
properties. This equation will be the basic tool for subsequent work.

One is now ready to embark on the evaluation of the correlation function. As already discussed, the
most important contribution comes from the diagram of Fig. 5(a), which is written

&, &( )
—1 g g,*„A,„(f,, f, +K(o„)

a.&
[f&-&„-G"«&)]If&+g~, -&„-G„«&+g~,)l

' (3.14)

The I summation can be performed by introducing a factor (Pj2vi) f ' )(t) in connection with an integration
along the contour I' in Fig. 4 on the g plane. As before, the contour I' is then deformed into I'0. The
final result neglecting the terms of order I'/Ez or higher (shown in Ref. 12) is given by

Ko —[M (e +5(q) —M „(a )]+i[I' (e „)+I' (e „+I(o)]
"1—5'(z —c )[A (z-iD, z+»~ —io)f' '(z+w)»+A (z+io, z+fio+iO)f' '(z)]).2 (3.15)

(Va'n', kn)* = 5n 5n'Va'n', an »

(Vain', an)*= 5n5n'Van, ~)
(3.16)

where 5„=+ 1, depending on the band, and V».„.~
and V»'„'. ~ are zeroth and first order in spin-or-
bit coupling, respectively. Therefore, as long
as one restricts the self-energy part to the order
shown in Fig. 3, the EF vertex h~ and the cor-
relation function in (3.15) do not contain spin-
orbit interaction to the first order. Thus one can
conclude that the diagram of Fig. 6(a) is not re-

where the prime on the 5 function indicates taking
a derivative with respect to the argument. It is
shown by Karplus and Luttinger that &~ does not
include the spin-orbit interaction to the first order.
This is also true for I V».„.~ I and, therefore,
for M~ and F~, as can be shown, ' by using the
following conjugation properties ~ of the matrix
elements derived by Luttinger, assuming inver-
sion symmetry,

I

II
4

& ~ (
I
I

I ~,'

(2C+()c++ p

Tel
I I

I
~o&
I
I
I
) ~ &

rqI'~

I ~ )[»
I

) ~ I

im(g+f, ) =O

FIG. 4. Integration contours for I' and 1 ().

sponsible for the anomalous Hall effect. Especial-
ly, there is no contribution of order V ~ Dis-
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cussion of the effect of the higher-order self-en-
ergy correction will come later.

Proceeding to the next-higher-order diagrams

(b) and (c) exhibited in Fig. 5, one seeks the
zeroth-order contributions. Using (3.5), one com-
putes

~(»(-; 1 ~ V».a n &.Va" ~, » V»n knD Vkn anP~ IKO~) — 2 +
KP anaini(( n Ig(a S aini Gain (fi(i) 1'(i +K(dn &ain ~ Gaini(t'(I +K(()n)

A»(&( &(+K(d.)
[&(-&» -G»(&()l [&(+K~,-~» - Gan(&(+K~.)] [K~» + (&( —&( )]

1 + P
" „,+[f("(g')+N..,]

2KP»a „.„2nri „r K(d». + (t', —f')

Van, a.„.D„V»,n, , An Va.„.,an D„VA,».n. Ag (t;(, 4, +K(d,)
t,

" —aa.„.—G .„a.(L') t'+K(()„—Ea.„. Ga.„-.(f'+K(d, ) [i;, —Ea„—G»(f, )] [L, +K(d„E»-—G»(L, +K(d,)]

J' „,[f'"(L')+N„], [f '"(L' -K(d) N+„.]= n .n + d~ o= i. I.i Van, a' n' n a'n'Ian+ ~ ~ ~ ti a'n' an n Vania'n'
knk'n'ta ~-~ 4 nQ kk'+ g + &kk'+ ~&+&+r

~ ~

~

~

1 1 J)»(&( &(+~.)
faini Gain ~ (f $0) 1' tain ~ Gain i(f +i0) [1( tan G (afn)] (f t'(+K(d& f an Gan(f (+K(d&)]

(S.17)
In the second equality of (S.17) use has been made of the fact that the factor [f("(P')+Naa ] vanishes at the
poles, 1' = t', +Krona. , of the phonon propagators (as in Ref. 12). For (3.17) one performs the k' summation
first instead of attempting 5 integration. Then, owing to the slowly varying nature of the quantity in the
large square brackets as a function of k', one can approximate, to the lowest order in the electron-phonon
interaction,

Hence

1 1
t —ca.„.—Ga.„.(t —iO) t —g.„.—Ga.„.(t + iO)

= 2vi5(g' —aa,„.). (3. ie)

(a)( )
1 g ff '"(~a. )+N»1A»(&(, &(+K(d,)

Kp»a" Ã(-~»-GM«l)][&(+K~, -~a. -G»(&(+K~,)]

X
kn ak'n' x k'n "An Va n', anon Van. a n

yK(d», +f, -a .a, n+Koaa +1'( K +(d&rn

1 g P " [f'"(a „.)+N .1 A „(0 1'+K „)
KP»an. , 2mi „ro [5 -a» —Gan(f)][k+Ka)„-ea, —G»(t'+K(d„)]

an. a' n' x a' n' an a'ni(ln n on(a' n' ~( )( ~ )a S(O kk + L —& k „+~ kk + 0 ) + ~ —~k ~ )

X(A „(t' -iO, t'+K(0„) V,„, .„.D,V, .„.,
[& —&an Gon(0 —iO)] [sK(daa. + t —iO —ca,„,]

(;o .*o))

I f '"(&a" )+Naa 1f (&)Va ",a.D*V»,a" ~

+
2wi (naana & a, [f+ K(dn E Gaann(k +K(()n)] [6K(daat + t +K(dn a aina]
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If'"(&a. )+N»]f' '(&) 1'a..a" D*l'a" .~+
2)(i ~ F F ] [f —}((d —as) —Gan(g —g(d )] [y j2(()aac+ g —t((d —tacnc]

~F(a OO

0 (( —I)rc„(—(0)
(

.
0

.
0))l' - e ~ —Ga„(l' iO-)

I

"d& [f'"(aa. )+Naa]f' '(&),
2mi ~a.„. [K —Rv, - ~(n -G)n(0-k&o )]

~F a OOg'

A~(L I~—„& io—) ~a n «.D..l'~ a"~.

[l -e~-Ga„(t' -i0)] [+}f(d» +t —i0 —ea.„.]
—(-i0-+i0) I,

)
(3.19)

where the relationf ' )(t —~„)=f ' )(t') has been used for the third and fourth terms. Therefore,

[f("(&„„,)+N„,][f ' '(f)-f' '(g+ff(d)]ha„(f —i0, L+R(d+iO)
2)(i ~a.„.. [f -e)n —G)N(f —iO)] [l' h+(o —e)n —G)n(1+K(d+i0))

V~,.„.D V,.„
+ @QPyyt + f tp EI8tg &

V, i„.f D~V~, .„.+
pg~&&&+ )+1]t~ +tp —6&.„.

h (n 00

&k'tt '
[f("(E )a+N»]f ' '(k, ) ha„(L+iO, i;+I(d +i0}

[& —e~ —G~(L+ iO)] [t'+8&@ —&a„—G (aLn&+v i+O)]

X
V~g. D.Van ~

~ + Van ~D V~& n

, + (+tp —g~,„, +S(gp~~. + )+I(gp +tp —E~.„.

[f(0)(qa,„,)+N„,]f' )(f+R(d) A~(l'-i0, g+k(d —iO)

2)(i a„a „~ [5—&an
—' Gan(~ —iO)] [g+/(I) aan Gan (f+h(d iO)]

ao

X
~ ~ ~

V~an DxVan ~ +
Vk'n'ge x Ink 'n'

y Scg ~ + & —tO —E ~ ~ +I(dye + &+I —tp &a n'
(3.20)

To the lowest order, one has '

1

[f —Ea„—Gan(f + iO)] [f +K(g) —En, —Ga„(t'+%I) +iO)] 8$ 1 —En, 8$

ancl

1

[f —E~ —G~(f —i0}][K+ff(d —Ea„—Ga„()+I'(o+iO)1

(3.21)

2~is(k —~ ) 8 1
})(I)—[M (l' K(+) —dM (((;)]+ z' [I' (g) + I' (f + k(g) )] 8 k

(3.22)

from which it is clear that the first term of (3.22) is of the lowest order. Therefore, maintaining only this
term, one obtains to the first order in +,

IF'"(Icc ~ (0)= ) . c ff' '(c „) F' '(c +nc)](f"'(c .„.)+IF—„]0'„' '"'" ' '"'" .. +c.c))Ines'n' +Ah' & k'n'

(3.23}
where PI

' —= @a„(0) [see (3.12)). The superscript is to indicate the order in electron-phonon interaction
strength. Therefore, from (2. 19), one obtains

2
o(1(a) g f (-)'(g ) [f(n)(q )+N ] ~(-2) an. a'n' x a' n'. w +c

p'n'

(3.24)
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Pl R 2
O&&(I4N) Qf( &r(» ) N p( 2)

AN

where we define the anomalous velocity as
2 ~ Lf'"(»a" )+&~ ]

A'N'a

(3.as}

(a) (b) (c) x Im(V~ ~.„.D V~.„.(„}6(»„,—»i „+S&ogg.)
(3. 26)

FIG. 5. Important diagrams contributing to the cor-
relation function. The EF vertex 4" has the same struc-
ture as A with the external field vertex replaced by ~ ~~.

and the transport function p~( ' is defined by

0=&~+ ~
I

V~.„.~i (y„'.„'—P~ ')

where the prime on the fermion occupation function
means differentiation with respect to the argu-
ment. As already mentioned»~ and P~ ' are in-
dependent of the spin-orbit interaction to the first
order, so that the effect of the spin-orbit coupling
is contained only in VA„A.„.D„VA.„.~. More ex-
plicitly, it can be shownze using (3.16) that
IV~ ~,„.D,Vi,„~}"'is purely imaginary. R fol-
lows then from (3.24) that

x[f'"(»,.„,)+No, , ] 6(»» »„-„.+g(d(» ) (. ~ )

R is understood that the quantities such as E~,
iV„„.~ I, and P~(

' are taken to the zeroth order
in spin-orbit interaction without introducing new
symbols for these. The above equations (3.25)-
(3.27) determine the zeroth-order contribution of
the diagrams given in Fig. 5(b).

We proceed next to the evaluation of the dia-
grams given in Fig. 5(c). This contribution can
be written

where we define

(,)( )
—1 g g*,„Ag„(t', , f, +K(d )
P („( [5(-»~ —G|N((L(}][0, +}I(d„—»~ —G~(L, +S(d„)]

(3.as)

A~(&(i &(+ff(0.)=&~(&( &(+I(0.)

1 IV,.„..~I A (k... f,.+K(o.}
p a" ( [)f~aa +(&( —&()]I&( -»a" -Ga" (&( )][&( +~.-»a" ~ -Ga" (&( +&~,)]

(3.29)

Va N a.DwV~a. V~& N D~Va" .~
I

'U~ &s &r++~, = +
p (r N ( ~ K(d(rg + (L( fr(r) g(»grrr ~ Gyr r(t' (rr) rrt'r( ~ +K(d&»ir& ~ G( Nr(g( ~ +r)I(d )

(3.30)
The diagrammatic relations leading to (3.26)-(3.30) are shown schematicaliy in Fig. 6. One can immediate-
ly evaluate (3.28) and (3.29) to the lowest order in the smallness parameter r/E~" utilising the analogy be
tween these and (3. 1) and (3.14). It then follows that

~(,)(~ .
0) g, ,( A (» i,O,»„K+-di+)0[f '((»,„)-f' '(»~+K(g)]„"ip -[M„(„+n }-M„(,„)]+ [r„(„)r„(„a )]

—6 (z -»e, ) [A~(z —iO, z+K(o —iO}f' '(z+R(d)+A~(z+iO, z+R(o+i0)f ( '(z)]dz
i

(3.31)
"1 I () - ()

]
and

A~(z —iO, z+K(d+iO} =MN~(z -iO, z+Say +iO)

+ i Virrr ~ ~ i ANrrr (grrr »~ $0r»grrr ~ +1(g +(0}2

,„, K(g —[M,,„,(» ,.„.+K(0 ) —M, ,„,(» ,,„.)]+i [I', ,„,(» ,.„.+K(d ) + I' .„.(» ,„,)]

x s' — [f (»,.„.) f (»;„.+l(—o)]+avi6(z -»,,„,~K(d~.}i

(v) (v) 'f ("'(»,.„,)+f("(»„„.+I(d) rNS aA'N' a (dAA 2
(3.32)
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The latter can be put into a transport equation analogous to (3.13):

—i(de~((d) =g,„((~-i 0, e~ +g(d+ 20)+ —Z
I
v, .„.~I [e,.„.((d) —)ls„(o&)]

k'n'

, (('f ("(e,.„.)+f "&(e„.„.+I(d)
X g g kff q k2n' +@+kk'jI + kk'

+ —'a [f'"(~„.„.+ff(o) —f '"(~,.„)],
&W —&k n +@+kk

(3.33)

where

iIA~(e~ —i0, &~+8&(& +i0)
8 —[M (e +K(d ) -M,„(e )) + i [I' (~,„)+ I' (o,„+go&)]

(3.34)

One evaluates (3.30) directly obtaining

+ [f' "(&') +&ss ]V~(L„t, +K(d„)= Z
2

. dL~ (] ]')'

( V» nesnDxVsns tn e Vlnsin 2 DxV&)an rsn

l,
(' -e,,„,—c,,„,((') (+(xo, -'e, .„.— c((+,.„(os. ,))

(I

dg( ff (x&(g() +~ ]( s'n'sn x sns'n' + sns'n' x 2'n'sn

277$ k 2ff 2 &+@kk'+ ~& ~ + ~&kk'+ ~i+I+F

( 1 1
((' -cy. —cq" (( -(Ol (' —e,., —c,...(('+(0) )

which yields in view of (3.19)

p
—1 ~ &+~ &

( Vk „'~D„Vkyfk „+ Vkfik'n' DvVk'n'kn
~c' (c —(o, a,„+x(a+(0)=—L [f (a„,„.)+x„&),+ ).

k'n'

(3.aS)

(3. 36)

Finally, using (2. 19), (3.31)-(3.35), and 'Ux~(a ~
—i0, e „2i+0)=&@ 2[defi ndein (3.26)], one obtains

2
&l l(c& Q~ I&x f (-&'(& )yx(s&

l

This is the total anomalous velocity contribution
to the lowest order. It can be shown that (3.39)
is independent of the phase of the Bloch states.

where gx~(" =——)12„(0)satisfies a transport equation

jjf&O) )

Note that u~ and thus g""are first order in spin-
orbit coupling and gx~" & is zeroth order in electron-
phonon interaction. Therefore, the anomalous
part of the conductivity tensor is given by

A (g g+f&Q-

2
IZ(c, s& Q~+x f (-&'(& )qx(s&

g k& kfi kfe
Aft

(3.38)

Thus, the zeroth-order contribution from the dia-
grams in Fig. 5(c) is determined from (3.37) and
(3.38). Finally, combining (3. 25) and (3.38),

e2
&& l(s& Q f (-&'(& ) [+x yn(s& &x ~(-2&]

sn (3 39)

(i"((4 (i,) = ~
FIG. 6. Diagrammatic illustrations for the evaluation

of the diagrams in Fig. 5(c).
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lf I (,

l

FIG. 7. Diagrams responsible for the skew scattering
contribution to the anomalous Hall effect.

There are still other important diagrams to be
considered such as exhibited in Fig. 7. These

diagrams will lead to the corrections to the col-
lision matrix of second order in electron-phonon
interaction (relative to the prihcipal one) in the
Boltzmann equation; in the presence of the time-
reversal-breaking mechanism provided by spin-
orbit interaction, these diagrams give rise to the
skew-scattering contribution to the transverse cur-
rent. One evaluates these diagrams in a way il-
lustrated in Fig. 8, retaining only those parts
which are first order in spin-orbit coupling. One
thereby obtains the following set of integral equa-
tions:

~nn)(s)(~ )
—1 g &~h~'"(&) &)+&~.)
p rn [t) —ek —Gk„(t;))][&)+I(d,—a~ —Gk„(t;)+Pi(d„)]

(3.40)

1 [ V,.„. [ h»(.„")(l').. (,. +K(()„) (3.41)+
k'n') [)f(dkk'+ (&r &)')] Rr' ek.n. —Gk. n. (f).)] [t), +K(d„—ek.n. —Gk.n. (t'). +K(dr)]

T(r, .)(t t, s )
& g &. . (ti, &1 +«.)I+

)urn'~~&r~j ['&'+@(dr ~arnr Gf)rn'~~r'+@(dr~I

U»x{Van.r'"n'''Vr'''n'''. r'n'Vr'n'. r "n''Vn "n".an&n+»'. h''+k'''( &\+I'. I "il"'x
[t, —r, „„—G,„„„(t,„)][&,„,+hd, —(,",„„,—G,...„„,(t, .„+«„)](«„+(-1)"(t„,—Eg" )][«rn +(-1.)..'(t, —k, ...)]

, ~ ~,"r
)=0, l, tt=0, 1

[(S)r.
Vt)t). f)mr Vfkrn ~ err mrs r Vyr rrnr r ~ fkr n r V~r n ~ ktl 6g+ jr sr )rr+g'' j' & I+I sr r. I'+I r'

[&i"-&r"."(&i")I[t)"-&r"""-(:r"""(&)")1[«~ +(-&)'(&r-&) )ll«r»" +(-&)"(&~-ti")]

{ &(s)
Van fkr mr r err mr r fkr ~ rn ~ r r Vyr ~ mr sr frrn r Vfkrnr cult+)tr r r its++ r& 61+ I ~ r r .I r+I r r

[&I"+@&r ~f)"nr ' GIk"n" (&Ir r +~+r~l t ~ Ir "+@+r Ef)r "n" ' Gf)"rn" r(&f r" +1(dr~j (~&f)pr + ~ ~~ ~~ I &I r~l ~@'&ppr '+ ~ ~j"~&I &I "8
(3.42)

A~"', Y~2'" being second order in electron-phonon
interaction and first order in spin-orbit coupling.
The superscript col stands for the contribution
from the correction of the collison matrix. One
easily recognizes that (3.40) and (3.41) have the
same formal structure as (3.28) and (3. 29) ~ There-
fore, following a similar procedure leading to
(3.38), one obtains

I

and

0 =
T kn' '(& kn

—k0, e kn + r0)

x 8(»kn —&»n. ~ K~kk, ). (3.45)

) )no)(s) n f (-)'(& ) y(0, s)
2

+ay g ~ An Jg Aft

An

where

(o, ) KA» '"(e»n —iO, e+iO»)

(3. 43)

(3.44)

It is shown in Appendix B that

Tkn ( kn k i &kn+ )= ~ ~»»I»'n' ek n'
A' n' (3.48)

where (t)k(„' are given by (3.27) and the fourth-or-
der collision matrix R~( ~'„. is given by

Aft At '—fl ( 1) Im(V»n kn ~ in ~k ~ Vkrik en ~ ~ k n Vk n ~ ) tentsV»k ~ nt kn) ()j k k k ~

At tgt tAt t tgt t t
tn0, 1,u*Ot 1
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X 5(ts +tt & ~ Ctnrnn ~ ~ t& ~ ~ ~
rn

~ ~ ~ ) 5[( 1) Rtittr ~ +t~ tyrant ~ r]

xd' 1
( 1) fit) ttnr ~ +'E~ ttr raga ~ ~

t 5 1x5[t~+(- I) EE(o„".—t,",„„,] 5[(-1) Eftitt„+t,.„„".—t, .„.](P f pg +E,
g tyf I gpt tff I ~ q pt I tgt ~ I

+ 1m(V~ tr+rVtr+ ~ t ~ ~ r&a ~ nVtr ~ r&r ~ n tr ~
nn

~ rVtaa+aa ~) 51 jr ~ ~ fanon ~

&~t&t II I ~
theft I I f~t yftt +N &I tttyftt I

X5(t~+ttr ~ rnn ~ ~ ~ ttr+ ~ 'tin ~ r& ~ r) 5[( 1) Eitittr ~ +tsn ttrr& ~ r]

1
[f (ttrrr& ~ r ~ )+Nttr] {f [&t ~ r+r~ ~ ~ ( 1) EEQi~rJ +Nttr r) 5 [%sr + ( 1) PE(dttr terna ~ JI&ta +ts tt"'

1
X5[( 1) ktiat" +tt.„,—tt" "~]5'

6~ + '6pt I tg I I I 6pt yf
I 'E pt I~ I I j~

+ Im(Vt& ta&a Vtr+ ~ ta ~ r+ ~ a nVtr ~ r+ ~ ~ n tan+ ~ n Vga ann~ ~) 5)+jr ~ ~ jr+tr ~

X [f (f trna ~ ) +Ns a] [f (ttra& ~ ~ )+Nttrr] 5 [( 1) R(gtta+t~ tt nn ]rr
1

X'5[( 1) EE titular+~ ttt rnr ~ r] r(P
E~ + CI I I

theft

t I . E ~theft

(3.47)

where

1
Ntt. =

[(-1)EPEE ] —1
= N(( —1) fkott—.).

exp —,—
(

Using the additional property

col
Pay W'~r)~

I

1+mmmm+

(3.49)

shown at the end af Appendix B, one finally obtains
(t,5+tnt}= ':, ga»':

I L

%&%me

:::::".!::J!aa

where

~Wrk'ann(%karma %in )y
(2) (0,g) (0,4f) (3.50)

n

I.S.

x 5(t~ —tt.„.t /hist. ) (8. 51).

As discussed in Sec. I, as well as in the text be-
tween Eqs. (3.89) and (3.40), Eq. (3. 50) con-
stitutes a correction to the collision kernel of the
Boltzmann equation (3.27) of second order in the
electron-phonon interaction. Thus the skew-scat-
tering effect manifests itself in the third Born
order (i.e. , fourth order in electron-phonon in-
teraction) af the collision matrix, whereas for the
impurity-scattering problem, the skew-scattering

k,5„,k,5+%&A

k,5~

I(t5

k'g "l(t+hen

(o)

k~5( ko5+%4sr

't

, t
~arernrr m e +

II

k', 5+4cu

(b)

)I )
I k ~5+flOI~
I i r

0%+1
k 5+~~r'I f

k;5 ~

(c)

FIG. 8. Diagrammatic illustrations for the evaluation
of the diagrams in Fig. 7. I. S. stands for the fourth-
order irreducible scattering part.
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term begins to appear in the second Born order
(i.e. , third order in impurity potential} as noted
by Luttinger. It should, however, be stated that
in the next order, Luttinger obtains corrections
explicitly analogous to those expressed by our equa-
tions (S.50} and (S. 51). These constitute the skew-

I

scattering contribution of interactions of the elec-
tron with two impurity-scattering centers.

At this point one has to extend the self-energy
of the electron propagator to the fourth order in
electron-phonon interaction as schematically
shown in Fig. 9. This quantity is given by

L(s)
G»(n)(t. )— (I Dnik'n'I kzn ~ k' "n'" ~k' "n' "is''n' '+k "n' 'i5n zzk«k' ~ ~ .k'«lz" I

[+, + (- I) '
(L - & )] [g „"+ (- I)"(e, - f,"))[& "-,"."-G, -." (&," )]

, ,r"s~. ,
g"-O, i,g 0, 1

~ I4 I ~ ' ~ s 1'~ I ~ ~ (3.52)
[& ~

— ." Gk-' (&5 )l [&5~ ~ &k-"~~ Gk-"~(&5 ~ )]
'

where the superscript s indicates that we are in-
terested only in the part which is linear in spin-
orbit interaction. The right-hand side of (3.52)
follows from the fact that only the electron-phonon
interaction matrices contain the spin-orbit inter-
action linearly for the reason already discussed in
the text between Eqs. (3. 15) and (3.16). The quan-
tity on the right-hand side of (3. 52) is readily seen
to vanish, by noting that, under the interchange of
the singly primed dummy indices with the doubly
primed ones, the summand remains invariant ex-
cept that ( ~ j"' changes to its complex conjugate.
However, ( ~ Pn) is purely imaginary in view of
(S.16). Therefore, the right-hand side of (3.52)
is equal to its negative value, meaning that

&„'""(C,) = 0 (3. 53)

Therefore, there is no contribution from this

fourth-order self-energy part. Bearing in mind
that the self-energy part represents the total scat-
tering out rate, (3. 53) is consistent with (3.49)
which states that the total scattering in rate also
vanishes.

9 Eyglga~on Of gxuyI(s) +&d gxlya(s)

The lowest-order (i. e. , zeroth-order) contribu-
tion to o and o' comes, respectively, from the
diagrams of Figs. 10(a) and 10(b). The diagrams
are the same as that given in Fig. 5(a), except for
the upper and lower vertices being replaced by
J","(k) and J„(k), respectively. In this case, how-
ever, we are interested in that part of the correla-
tion function which is of zeroth order in + rather
than the term of first order in &o. Using (3.14) and
(3. 15), one obtains

-~~ ~( )
—1 P iJn"(k)Ak„(g)z g, +%d)

ff k.l [tr-zk. -ak. (4)][Pl+)Ipp, -zk. -Gk.(4+~ .}] '

tnt )I 0 ~ Jnn k [f (&k ) f (&kn+ (5)}l~kn(&kn &kn+ (d+
K(5) —[k/k„(zk„+ tf(d) —Mk„(zk„)]+i[1'k„(e „)+I' „(& „+%5))]

(3. 54)

)n pO

—5'(z —z,„)[zz,„(z —iD, z ~ Kii —ID)f' '(z+5«)+«(z ~ iD, z ~ nz ~ ID)f"(z)]dz). (5. 55)

The first term in the curly bracket of (3.55) van-
ishes in the limit (p -0. Noting from (3. 11) that
Iim„p Ak (z aiO, z+)I(5)+iO) ='Uk„, one simplifies
(3. 55) as

Therefore, from (2. 17),
2

(3. 57)

lim 6:"~ (5(5)+iO) = —Q iJnn(k)g"
co &Q kn

«I

x
~

di6'(I z, )f - (t)

=-Zi&. (k)&k„f' ' (zk„)=Zf' '(zg )ig p J. (k)

(3. 56)

One also obtains, in a similar way,
2

Z x
(3. 58)

As shown by Karplus and Luttinger, the quantity
J""(k) is proportional to the spin-orbit interaction
(to the first order in this parameter). Therefore,
o',„'

' and a„'„~' ostensibly give contributions to the
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and the scattering is very important (at least, for
the case of slowly varying impurity potential), be
cause it is recognized to enhance the free-electron
value of the Hall current by a large factor (-10'
for the impurity-scattering case) when the band ef-
fect is introduced. "'~

f /

f( (P & I FIG. S. Fourth-order
electron self-energy part

ll

= V...[6„,„,+ (k —k ') J"'"(k ')], (3.61)

vrhere VA. A is a Fourier component of the potential
and a function of k'- k. One substitutes this in
(3.26) and fihds

C. Temperature Dependence of Hall Effect

At low temperature (7«en, en is the Debye
temperature) one employs a small-angle-scattering
approximation

Va.„.,a„=V~ca[6„,„.+ {k-k ) ~ J" "{k)]

&An=
ff

~ [~ (&a'n)+l aa'll lpga'I 5(&an &a'n+Ia'aa')

anomalous Hall current. The tluantity o~"+o„„
can be shown to give the result obtained by Karplus
and Luttinger [their (2. 14)]. It will now be shown,
however, that this is exactly canceled by g,'„". To
show this, one evaluates (2. 16) to the zeroth order
in electron-phonon interaction; introducing the
identity'

(nnI[x" y "]I}t'n')

gnn' k
8 gnn* k 3 59

xI k J"(l)-R', J""(k')I, (3.62)
fm 4

where use has been made of the fa"t that J""(it) is
purely imaginary. Therefore, from (3.SV},

P"'= - fk —J™(k).An (3.63)

To evaluate the second term of (3.39), it is con-
venient to put (3.39) in a more symmetric form.
This can be achieved by evaluating the diagrams in
Fig. 5(b) upside down and following the same pro-
cedure as in the evaluation of the diagrams in Fig.
5(c}. The result is given by

which can be obtained by using integration by part
and closure property, one obtains

(S.39')
where gg" satisfies the same type of transport
equation as (3.SV) with &ca~„replaced by u&~. Hence

(3.60)
This cancels (3. 5V) and (3.58) exactly. This means
that only the nonlocal intercell-motion discussed in
Sec. IH A contributes to the transverse -current.
As already mentioned, one can prove generally
that the contribution to the polarization part of the
conductivity arises solely from the intracell motion
and vanishes to all orders in electron-phonon in-
teraction in dc limit [i.e. , (d/df)@") ~o~~—=o'"
+ o" '+ o""= 0]. '~ One can also show that o ~„
represents the contribution from the dipole driving
part (r" ~ E) of the external field. 'a Therefore,
the effect of the polarization caused by the intracell
motion does not play any direct role in producing a
transverse current. However, it should be men-
tioned that the combined effect of the polarization

&
J""(k)

lX,
zy

tJ (k)

(b)
FIG. 10. hnportant diagrams contributing to (a) 0~

aod e)) 0'".
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kn

(3.64)
This is identical with the result obtained by Lut-
tinger for the case of small-angle impurity scatter-
ing. Finally, from (2. 4) one concludes for the
anomalous velocity contribution at low temperature
that R, ()o p . At high temperature (T» 8v) one
notes from (3.26), (3.27), and (3.37) that the quan-

tity in (3.39) becomes independent of temperature.
Therefore, in view of (2. 4) one obtains R, ~ pI.

So far we have discussed only the anomalous
velocity contribution. For the skew-scattering
contribution one can estimate the temperature de-
pendence only for the high-temperature regime
(T»8v), where one finds from (3.43) and (3.51)
that Ru«pI+ap (a is a constant).

IV. CONCLUSION

The central result is given by (3.39) and (3.43),
which arises solely from the intercell motion of
the electron. These contributions correspond, re-
spectively, to (3.36) and (3.32) of Luttinger. ~ As

already discussed, (3.39}is an anomalous velocity
contribution and (3.43) is a skew-scattering con-
tribution.

The result of this work disagrees with that of
Leribaux I based on the same model. He uses
Kubo's formalism and Fujita and Abe's 8 diagram-
matic technique. His result corresponds to (3.59)
of this work. He does not consider the anomalous
velocity contribution (3.39), which is nonetheless
important. It appears that the rest of the discrep-
ancy is due to other diagrams left out in his treat-
ment.
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APPENDIX A

In this Appendix a proof of (2. 16) and (2. 17) is
given. One begins with rewriting (2.6) as

(%d, )= f due '"(Te""v,e "v„)

(A1)

for an arbitrary value of & given by 0 «& P. The
first equality is due to the fact that 6:~(uz, u, ) is a
function of uz —u, only [i.e. , 6:,„(uz, u, )=—P„„(uz
—u, )], and the second equality follows from the
periodicity of the correlation function 6',„(u) with
the period P. Define

r(u) = e""re "",
then

+uH+ + uH +sH L ~ 3+ uH4 a~
iS

1 d 1—x(u) -=——. x'(u)
iS du iS

and similarly

v = .' =-—. y'(0).[y, a]
iS iS

Using these and defining a step f unction 8 (u) such that

8(u) =1, u ~0

8(Q)=0, Q&0

one can rewrite (Al) as
() o

Pu„(ff(o„)= ——g,
I

du e" '"(8(u)x'(u)y'(0)
~I

+ 8(- u)y '(0)x'(u)) . (A2)

To prove (2. 16}one computes 6II II()f(d„) by inte-
grating by parts:

„&I
u""(uu)= — u

(

due"'" e(u) —e"(u)e"'(o)+e(-u)e"(o)—e"(u))
8&

= ——I [e""~(Tx"(u)y" (0))] + —~ e ""(Tx"(u)y" (0))du

g8-e

du e"" (u(u5)x(u) y"'(0) —5(u)y"'(0) x"(u) ) . (A3)

The first term vanishes due to the periodicity.
Using Tr(e4B) = Tr(BA), one rewrites (A3) as

pB 6

9""(I(d )= I ~ due ""(Tx"(0)e" y" (0) e"")
a I

~(a6

+ ~g(x"(0)y" (o)-y"'(o)x"(o)) . (A4)

Noting that

e-uHyII'(P) cull e uH[B yII(P)]cull

= ——y ( —u),
dQ

one obtains
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&""(i,)=-
k (

i ""(&( )*"(O)~ )'"(- )+~(- )i—)"'(- ) "(O))+ i (I*"(O),)"'(O)D. (»)

Integrating by parts and using the periodic property, one finds
»~

8:""(gg(o ) = — r [e""~&re"(0)y"(-u)&]' + ra(u„l due"" "&rx"(0)y"( u)&

du e""~&6(u)x"(0)y"(-u) - 6(u)y "(-u)x" (o)&+ ~k
([x"(o), y" (o)I)

Sw

""""&V' "( )y"(o)&+
A

&[ "(0),y"(o)])+~N &[ "(o),y" (o)]&
~( eQ

The first integral does not diverge for &o „i-O .Therefore one obtains, using (2. 13},
on "=(e'/i)ta) ([x",y" ]& .

which proves (2. 16) (QED).
One can prove (2. iV) in a similar way. From (A2) one computes

8'" '(@g„)=, l du e""~(8(u)x"'(u)y' (0)+ 8(- u)y'(0)x" (u)) = —
~k

[e""""&Fx"(u)y' (0))]„

1
+ ~+ ~, due""'"&»"(u)y'(0)&+~

ll
due ~ &6(u)x (u)y (o)- 6(u)y (o) (u))

i ~I Os'

B~

du ek"~&Tx"(u)y'(0) ) +
~k

([x"(0), y'(0)]) .

(A6)

(AV)

(A8)

Hence

where

2

(Ti,"= ——lim f" '(ko+iO),
co ~0

(AQ)

8"'(K&o ) = .
l

du e""i"&Tx"(u)y'(0))

This is identical to (2. 18b). The proof for o'J' is also similar and will be omitted.

APPENDIX B

(A10)

In this appendix we evaluate (3.42) to the second order in electron-phonon interaction as illustrated dia-
grammatically in Fig. 8 and we derive (3.4V}. Define

( ' ' '&a 1 I'kn k'"k'" "k"'k"' k' n' ~k'k' k"k" lk"k" kk %+0 k"+k"' J

( ~ ~ ~ W (~) f IT IT IT IT R L(S)-X km' n "g n k n "g n ",1 n "k n kn k+4",k+k

, ~, %&&) f IT IT IT IT a X(S)' '&() l. "kn k"k" "k"n ' k"'N"' "k" k"' k'k' "k'rt kk6k+k" k'+k" f

where the subscripts a, 5, and c refer to the irreducible scattering parts denoted as a, b, c in Fig. 8. Then
one has

y(2is)(g g g ) Q Ak'n'(~t' k ~t'+ ()k)r)

P k nil [~t' &k'n' k n'(~t')][~t' + ~+r &k'n' k'n (~t' + ~r)]

ki ~ ni il ~ ~ ~

t "t~ ~ ' u 0 ~ 1

( ' ' '/a l+l it' +l

[&I ~ i gkk ~ ~ ~ Qkkk ~ i (fg ~ ~ ))[fgkk ~ + @g)r —fkkk ~ ni ~ i Gkiiin ~ i ~ (ggk ~ ~ + 5(k) )][K&kkk ~ + ( 1 ) (fg fg
kk ][SCt)kk ~ k ~ +( 1 ) {fg )tiki)]

X(s) r.
/k \Jt»g ~ ~ k gk»g ~ i

+
g[fg

~ i gk ~ ~ i ~ Gk ~ i k ~ (ggii )][fg~ ~ ski ~ i ~ i Gkkkk k ~ ~ (ggk ~ ~ )][SCt)kk~ + ( 1 ) (gg gg ~ )][nfl)kkki + ( 1 ) (gg gg ~ ~ )]

/c ~t»t"' ~ l'+t"y s)~ ~ ~

8't "+~+r &k"n" ~k"n" (&I"+ +r)] [&I"'+~r &k"'n"' ~k'"k "(&I'"+~r)]f+&kk" +( ~) (fg 4l')) f~kk ~ '+( ~ )"(Cg &I")]

(»)
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Dne performs the l ' summation by introducing a factor (p/2mi)[ f ( )(p') -f' )(se.',„.„)]and then integrating
around the contour I' shown in Fig. 4. One then obtains

,a„( )
1 p p ( )„„P,[f' '(L'} f-' "(~ „)]A „'(f, f +Ed )

p' „„„..„,„,„„,,„... 2~.(, [t'-~,.„, C-,,„.(g')][g' a „e-,.„, C,-.„.g"+)J,)]
u*0, 1

(...}(e&

[gg, . —',„„..][(-1) %o„e,. +(gg —gg„}][(-I) Ru)~", +(gg„- g }][g -gg + gg —'e...„„,+ g(g„]

( ~ ~ ~ )e"'
[fgr ~ —E '

er rrr][( —1) k(deer ~ +(fg fg ~ r)][( 1) %deer+(fg ' )][) +fg ~ ~ Lg ter ~ ~ ~ ~ ~ r]

(...}(tg

[g,- ~ rim, —r,-„..]I(-((&~„- (gg, )—)( ,.() r~-'(g„+g (,K—g 'g; '
~—g, ~.t, —r,-.-.)) ' (B3)

where the unimportant self-energy parts G», .„,. and Ge„,„.„are neglected, maintaining only Gz,„,(P') and
Ge,„,(g'+ Ko„}. Noting that the residues of the fermion poles (related with the energy c")vanish, one can
deform the contour I' of (B3}into I'0 of Fig. 4, taking the contributions from the phonon poles. Changing
the variable f'+R~„f' for the part of the contour I'0 along Im(g'+k&g„) =0, one obtains, using (3.49)

1
Y,"."(~g, ~g+l»y) =,

7fg grnrg etnergtrtse ~ r

teO, i, sa0, 1

aO

( g)""
~~

d-&'(f' '(~') f' '(;"-„".)J
«00

A~r„.(&' —g0, f'+l(d„)
f&'-«a n -Ga, (&'-J0)lf&'+l~y -«g -Gg (0'+l»„)] j

{,~ .)(s)

[)ger —«~re„rt]f( 1) S»year ~ +(&g Cg ~ t)][( 1) f4P~~rer+()~re —g)][fg 9-g —)get+i(d„—«~reenter]

{.t t)(s)
b

[Cgte —«)r ~ ggrt][( 1) lMg~re+(fg &get)][( 1) l(d)gr+(gg & )][& +&I~ ~
—&g «gg ~ ~ ~ ggr ~ r]

{e t )(S)
+

[gg +l(d„—«P „„][(-1)"S(d„„+(gg-gg„)][(-1)gl(d~, +(gg -(')][g'+fg —fg+l(d„—«» ~ „»,]

[f l(A)y «g ne Ggrnr(g'- l(d„)][g' —«~tee —G~r„r(f' —g0)] j
{~ ~ ~ )(s)

a

[gg„-«„,„„][(-1)"l(dg,),„+(gg —g„,)][(-1)gl(d„„,+ gg ~ ~ + l»„- g']fgg —gg„+ g' —«gg, ~ .„,~ ~ ]

[/ger —«~er„rr][(- 1)"l(d„t~ + (gg )ger)]f( 1) S(d,yr + f J + lo)y f ][) l(dy+ fg ~ ~ g J fyt ~ enr ~ r]

{~, ~ )(s)

[~ger + l(dy «y»n»lf( 1) l(dydee ~ + &I &I»][( 1) l(dydee+ 0 J + l(dy 0 ]fC + Cger Cg «ge ~ 'n't ~ ]
+- Z Z (-1)'

P grsrgernrrg r ~ ~ ggee ~ g~i
Je ~ sa+1

{ ~ )s [N)seer+f («ar ~ enter)]Agent[( 1) l(d~ger +)gee& (—1) l(d~r ~ ~ +fg ~ ~ +l(dy][age ~ «ggeeege ~ ] [(—1) S(d~er+t;J fg ~ ~ ]
I 1) l(doge ~ t + fgt ~ «)mr G)est[( 1)~l(d)pete+ (I~re] ) ((—1) l(dgggtree+ gg ~ ~ + l(dy —

«ggrgge G)grggef( 1) l(dyer ~ ~ + &gee+ l(dy]]'[gg + S(dy+ ( 1)~l(d~~e ~ ~ «gr ~ rnrrt]

{re )J, [Ny~e+f («)trente ~ )]Agrse[( 1) 5(daar+fge ( 1) l(d~e+fg+l(dy][)g ~ ~ «yetggr ~ ] f( —1) l»~e ~ +fg )get ]
{(—1) S(d~r+ gg «~est —G~e„ef( 1) l(d~~t+ gg ])(( 1) l(d~~r + fg + S(dy «gent G)est[( 1) K(dydee+ gg+ l(dy] }'[( 1) l(d~~r + fg ~ ~ «~rersrer]

{ ~ ~ )~ [N~~t+f («arrt„rtr)]A~r„ef(-1) S(daat+fge (-1) l(d~e+fg tl(dy][)get+i(dy «ggr ~ eg ~ t] [( 1) l(der ~ +gg —)ger] (B4)$(-1)'l(d, ~r + fg —«„„,—Ggr„r[(-1)'l(d~~r+ g J]](( 1) S(dggr +fg+ l(d —« ~ ~
—G ~ .[(-1)gl(d~r +4'g+l(dy]]f(-1)'l(d~r + Kg»+ l(dy - «) ~ ~ r„r ~ r]

The second term in the first large parentheses and the first term in the third large parentheses can be
dropped in the limit &o„-io in view of (3.21) and (3.22). Taking the limits (d,-i0, ",g

-ee„-i0, fg+K"„-E~„+i0 whenever there is no ambiguity, approximating

1 v5(L' —',.„.}
[J,

" ~,.„, C, ,„.(J,
" -ip)][-g'-e, .„,-c,,„,(t,"+ip)] r„„,(e,.„,)

and replacing gg" ( fg" ~ ~ ~ ) by (P/2') frdL" [f' )(f")+Ne(e'. ]( .P" ~ ~ ~ ), one obtains

1&(2 s)«g, &J+l(d„)= —. ( 1) (t)g,;~,[f -
(«~est) f -

(«)terner )) df ff - (f )+N~~r'e)
3 P Jt„e)tr„rr)rrr„rtr t p1 egg Jr

s PI1

{,~ ~ )(s) 1
[$"-«,»„»][(-1)"l(dga"+&I —5 ] f(-1)'S(d~"r+ &" -«grege] fgg+K(dy- t +«p. egr -«gr ~ reg ~ rr)
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1 (. . . )(s)

t(-1)'~'d«« ~ ~ +&"+~&.-»«»n][&g —t +«k»n -»«"" "] [& -»k "][(-1)"~(d~"+&I -&"]

(
1 1

[( 1) ~'&kk»+&I «k'n'] [&" &I+««mr ««"'n" r] [( 1) ~«k»+~g+Ig(dr ««'n'][»«'n' «k"'n'"+~" &I ~& ]

(. .. )&s) 1

[g +S&r»kr mr »] [( 1) Ig(kgk«r r + f g g ] [( 1) SQ)gk» + f g»«mr] [g gg +AQgr +'» «»n» ««» ~ »nr»»]

1 1 ~ P (- 1)' P dg" [ ' '(f") +Nk«"1

[( ) ~(dkkr + kg+If(dr k'n'] f«k'n' «'"n'"+ & &I] 0 kin»«»mr»«i»in»»i f 0 I 27gf „ I (- 1)"~kkr, + gg —g"
u 0, 1

)"'[N"'"+f' '(»." ")lhs [(-»'~~" +& "r (- »'+~kk "+& '++&,][~ —»k"~ ] '
((- 1)'Ig&kk" r + P" —»k.n. -Gk.„.[(-1) Ig(dk«" »+ f"])((-1)S(k)«kr r. + $" +I(dr -«k, n. —Gk.n.[(-1) ~kkr" + f"+Ig(dr])[f I+8'&r+(-1) S~kkr»r -«krrr rrr]

f«in» (~ ' ~ )«2gg g [(—1) K(kg««r +««««mr t [Nsfr +f (««»»in» ~ r)] ftg«rr»r (' ' )c 27l'Q [( 1) Ig(d««r + «kn ««rnrt [N««r +f (««rr mr»»)]

I[) —«grin»»] [(-1) If(»)k«r + k ««r ~ mr»»] @[f +Cur»krrn»] [(-1) Ig(dkkr + g +lfkpr —««»»in»»i]
B5

where (3[)k„'=KAk„(ek„—f0, ek„+fO)/3I"k„(k~) as defined in Sec. III. Introducing the same kind of appraKima-
tions as were employed in proceeding from (B4) to (B5) and using ( ~ ~ )',"= —(. ~ ~ ),"', one finds, after some
lengthy algebra,

Yk'„'"(k k„—i0, ek„+i0)= — P Q (-1)'"(g),(;k),
k'n'k" n "k' "n' " t=0, 1

tg 0, 1

(. . . (» If ' '(&'. ) -f ' '(~""." )] I f"(~k".")+N(~k. —~k ".")]&(~..+~k . -~k"."—»k" ." )
[(- I)"k(dkk„+ ak",„...—ak.„.—i0] [(-1) 8(dkk. ..+ &k.i„"—rk, „,+f0)

[f' '(f, „)+N'"][f ' ' [t,,„—(- ()'r, ]+A';,"' ][(()-1) If „,~ (-()'lie, „~f —a,„,]]
[ &k„+f0+(- I)'«(dkkeii —t kris„iii] [(-1) g(dk». .., + &kr.„or —&k.„r +j0]

+ Sr'l ( )r [f (Skid& ) +Nkka ] [f (6k rr) f (Ekr ~ g& ~ g ~ )] 5 [( 1) K(dkkg ~ +fkr kkr ~ &er]

X Q —1 l~kk. +6kn —Ek.n' 6t 1

~kn + ~k" 'n" ' ~ k'n' ~k' 'n"
1

+ 5(f [i(+4k' ~r k' ~ ~ kk'r' Ek»n«) s' I
&) ~kk'+~kn ~k'n'

—» (( )."' [r,",l+y' '(a, ...„...)]()[(—()'r „.+a,„—a, ,„.](l)[(—()"kd -+a,„—a,»„-]

&&[f' '«k ")+Nkk']"'
( 1) gg(dkke + ski ~ ()a ~ f kin ~ &e ~ ~

—5 [(-1)"R(d~" +(-1)»k(dk, , +kk„—ak. ..„„,]

X{f ['Eke ~ era a ~ ( 1) gg(dkkr] +Nkkr r]»y ~ (B6)
@+kk' k''k" ~k"'n"'

Using the detailed balance condition f ' ](ck,)f"(ek ) =N(tk, —ck ) [f ' '(&k ) f' ](rk )],-one can shaw that
numerators in the first large parentheses are symmetric under the interchange of the indices; k n

k'"n'" and t u. Also, because ( ~ ~ ),"' is pure imaginary due to (3.16), one has (. ~ ~ ),'" —( ~ ~ ),"'
under the interchange af k"n" k'"n"'. Using these properties, one can simplify (B6) to a final form
given by (3.47). We have used the fact that ( ~ ~ ),'", ( ~ ~ )k"', ( ~ ~ ),"' are pure imaginary in replacing
( ~ ~ ),"by elm(V~ k".„...Vk".„." k.„.Vk.„.k..„..Vk"„" »)» etc. Also (3.49) follows from the properties
( ~ ~ ),"' ( ~ ~ ),"' under the interchange af k'n' —k' 'n"' and ( ~ ~ ),"'——( ~ ~ ),"' under k'n' —k"n' .
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For the S= 2, X7 model of a quantum lattice fluid or a ferromagnet the conventional order
parameter does not commute with the Hamiltonian. As a result, the mean-square fluctuation
of the order parameter and the isothermal susceptibility are not related in the usual way the
general fluctuation theorem. For the above model, arguments are here presented to support
the idea that as T -Tc the quantum effect due to the noncommutation becomes masked and the
two quantities have the same critical behavior. This work is consistent with the exact results
of Falk and Bruch who defined a certain moment of the spectral density and used inequalities
to establish that if the moment —0 as T T~, then the susceptibility-fluctuation ratio becomes
unity thus ensuring coinciding critical behavior. The latter result applies to a large class of
models including the one considered here.

I. INTRODUCTION

The three-dimensional 8 = ~, XF model defined
in Sec. D is one of the simplest quantmm mechan-
ical cooperative models. This model. is thought to
be useful as an approximation for certain physical
systems such as liquid helium near the X transi-
tion. ' A few of the static properties of this model
near the critical point have now been calculated
and their simil. arity to those of other cooperative
models has been observed.

One unique feature of the XF model. , which par-
ticularl. y emphasizes its quantum nature, is that
its order parameter M" (or M") does not commute
with the Hamiltonian (the order parameter for the
Heisenberg ferromagnet commutes with its Ham-
iltonian). s The noncommuting gives rise to two

interesting related consequences. (i) The order
parameter has a time-dependent behavior at all
wavelengths including zero wavelength, and the
system thus can relax. The dynamical behavior of
this system has proved to be quite interesting and
will be treated in a later paper. (ii) One can de-
fine the mean-square fluctuation of the order pa-
rameter F and the zero-field static isothermal
susceptibility y which are not connected in the
usual way by the general "fluctuation" theorem (we
shall refer to T and y simply as the fluctuation and
susceptibility, respectively). This paper is con-
cerned with the nature of the distinction between
the fluctuation and susceptibility whose origin is
thus quantum mechanical.

While the distinction between the fluctuation and
susceptibility is valid generalLy, one suspects that


