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We make the scaling hypothesis at a space of critical points of arbitrary order, using the geometric
classification of critical points by order proposed in a preceding paper, part I. It follows from the
definition of order that there are regions in which several scaling hypotheses are simultaneously valid,

one at each space of critical points of order 6-2 which is connected to the point of highest order.
The successive hypotheses are conveniently framed in terms of invariants of the groups of
transformations about the points of higher order. This procedure facilitates the formation of
multiple-power scaling functions. We suggest that the regions of validity of later hypotheses are
bounded by hypersurfaces which scale and which are therefore most easily visualized in the spaces of
invariants. A general critical point of order 4 is treated as a preliminary example. We then apply the

hypothesis in detail to the critical point of order 4 in a specific example: the Ising model with variable

interplanar interaction, This is done in two ways: the first shows specifically the relationship to the

case of a metamagnet and to scaling with a parameter for change of lattice dimension; the second

explicitly demonstrates that the connectivity between the various surfaces of ordinary (6=2) critical

points is the same as for the edges of a tetrahedron. As a consequence of this scaling hypothesis, we

can make predictions about the shapes of the coexistence and critical surfaces meeting at the critical

point of order 4.

I. INTRODUCTION

In a preceding paper' (hereafter referred to as I)
we introduced the geometric concept of order for
a space of critical points (CRS) and also a conven-
ient notation 8& and ~X„ for critical and coexistence
spaces in complex phase diagrams. Well-known ex-
amples of tricritical points, and other critical
points of order 3 were discussed, and critical
spaces of order 4 were shown to exist in certain
model systems involving four field or fieldlike
variables. The purpose of this paper is to show
how to formulate a scaling hypothesis at a space
of critical points of arbitrary ordex; to derive
multiple-power scaling functions at such points;
and to explicitly analyze the critical point of order 2

4 in the three-dimensional Ising model with
variable interplanax interaction in terms of in-
variants.

To formulate a scaling hypothesis at a critical
point of arbitrary order, it is first necessary to
select special directions at the point analogous to
the strong and weak directions described in I. As
discussed in Sec. IV of I, the problem of finding the
principal directions of scaling at a critical point of
arbitrary order is exactly the same as that for a
tricritical point (or Bo). Once the principal direc-
tions at a space of points of order 6 have been
found, we can take the limiting orientation of the
principal directions at a point of order 8 + 1, as it
is approached along a line of points of order 6.
The problem of uniqueness of this coordinate sys-
tem is the same for a point of order 6 = 3 and its

solution may be obtained by the same principles as
treated in Sec. IV of I.

It is therefore possible to induce a set of coordi-
nate systems for a thermodynamic system showing
critical spaces of order 4 or more, staxting
at a 8„2 and proceeding by induction up to the
68 6. As each higher order is reached, another
principal direction is defined; at an R~6, 6 direc-
tions out of the R 6 have been defined. They will.
be denoted b'jj (Keg~ Yea~ ... , Sej'. The geollletrlc
possibiiities are too complex (even for e =4) to
warrant the case by case analysis done earlier for
a Bg however, it is clear that the consistency ar-
guments demonstrated in I will apply equally well
for any order .

The outline of this paper is as follows. In Sec.
II, we form the scaling hypothesis and show how to
make it at each R& of successively smaller order.
We thexeby obtain a total group of scaling trans-
formations which is the direct product of several
subgroups.

In Sec. III we treat a general ~0, considering a
particular R~ and Ra. We schematically plot the
cx"ossover surfaces and show how they may be ex-
yected to be expressible as functional relations
between invariants of the groups of scaling trans-
f0rQlations.

In Sec. IV we treat in detail the Bo in the thx ee-
dimensional Ising model with variable interplanar
interaction. This is done in two ways. Firstly we
scale with respect to the interaction parameter and
thus reduce the model to the familiar metamagnet.
Secondly we scale with respect to the variaMe
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TABLE I. Steps in the formation of a scaling hypothesis

ia terms of invariants.

Quantity

Variables transformed by a group go
Invariants of the group ge
Quantities parametrizing a

critical space of order P («e)

Rotation matrix to obtain principal variables
of scaling at critical space of order P («n}

Notation

Equation connecting the above quantities: x~& = A&&(y~&- he&)

Step &. Hypothesize that the Gibbs potential is given by
an invariant equation under the direct-product
group g~ ——go Q (P «0,) in terms of the prin-
cipal directions (or variables) of scaling in the
invariant space of the group g~ vrhich is a direct
product of a subset of the groups g„(8~p —0.).

Step S. Form absolute invariants of the group gs from
the principal variables of scaling in the invariant
space of BI by scaling each variable vrith respect
to one of the variables.

Step 3. Find the neer principal directions of scaling in
the invariant space of g& by forming linear com-
binations of a basis set of absolute invariants of
the group g~&.

where F60=-6, a0=1, and g&&
—0 for g&g

SteP 2. Re-express the variames xe„ye~, ...,
xo„as absolute invariants y~& of the group geby
scaling with respect to a suitable variable. In
this section we assume it to be see.'

yea =-xegx~ "«, (2. 2a)

ye I =xeI/xee e& ee
q I = lq 2. . . q 6 —1

(2. 2b)

(2.2c)0 &-1 Xo)y ) 6+1) 6+2& e ~ ~ 5

U 1

xe I, ,=~ R,I(yeI neI), -~ 6

%e also define

i=1, 2, ..., g-l.
(2. 2)

But theorem 2 of I assures us that yeo ean be
expressed as a function of the invariants
(ye» yeas ~ ~ ~ ty e,n-l).

Stej 3. Near the critical space of order , the
equations of the critical spaces of order 6 —1 are
given by points (ke» Pea, ..., ke, I) in the space of
invariants (yel, yes, .. . , y,„ I). The principaldi-
rections of scaling at the Rs are determined by
the geometry as linear combinations of the vari-
ables (ye» yeas ~ ~ ~ s yeso I)'

+0 1,0=3 g 0

pe) j l 6
~

6+ ly ~ ~ ~ y
+ 1e

(2. sa)

I =- T- T, (IR =0) which is tangent to the lines of tri-
critical points, and thus demonstrate that the con-
nectivity between the various Ra is the same as for
the edges of a tetrahedron, a result that has been
previously obtained by quite different arguments.

II. FORMATION OF SCALING HYPOTHESIS

The selection of principal directions proceeds
step-by-step starting at a critical point of lowest
order-a B„~. In contrast the scaling hypothesis
starts at the critical point of highest order, and
states the scaling hypothesis for critical spaces of
lower order in terms of "invariants" of groups of
transformations about spaces of higher order. The
complete system of sealing equations that are valid
at a particular yoint can be set up in the following
series of steps.

Step 0. Determine principal directions of scal-
ing x,&» xoa, . . . , Xee (as outlined above), by choos-
ing an ordered set of critical subspaces 'R

& of
allordersi «6 such that "8 ~~'R &~~8 z for all
j «i«~6.

SteP 1. Make the hypothesis that at the critical
space of order 6 the Gibbs potential C is given by
an eIluauon G = P (xoI, xes, . .. , xee,' xe, e, I, . . . ,
xe„) which is invariant under the one-parameter
continuous group of transformations ge . .

SteP 3+1. Now make the scaling hypothesis at
the 6 'R~ in exactly the same fashion as in step 1,
introducing a group of transformations 96 & which
t1'allsfol'IIIS the xe I, I as ill Etl. (2 1). One caII
then proceed to steps 2 and 3 as before. In gen-
eral a repetition of a cycle of steps 1, 2, and 3 is
needed for the scaling hypothesis at each order of
CRS. The steps are summarized in Table I.

%hen a R~a is reached, and the last of the
(tI —1) scaling hypotheses has been made, an in-
variance is achieved under an (& —1) parameter
continuous group of transformations:

g ge g ~ee ~ 8 g (2. 4)

The validity of such a large group of transforma-
tions will be limited to a fairly small region close
to all the appropriate '8„&.

However, we have not exhausted all the possibil-
ities near a B ~ because in general it is possible
to pass directly from the 6R~6 to an 8 6. with
(tI -!6') e 1 and to remain outside the range of valid-
ity of the groups ge „..., Be „. This indicates
that there may be regions where any particular
subgroup (and only that subgroup) of the total
group ggog 18 VBllde

III EXAMPLE: A GENERAL 4R0

g: x«=x'elx«(i=0, 1, ... , n) . (2. 1)
To give a little feeling for what is involved when

6 & 3, we offer in Fig. 1 a schematic representation
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Single-power scaling

4Ro
Double-power scaling

bining the scaling hypothesis for change of lattice
dimension when 6' & 0, with that for 8& 0 leads to a
general hyyothesis for the critical point of order
4 of the form

G(X «H$, X'e4R, X &H, X ~ 1.)=XG(H$, 0t, H, v), (4. 1)

i.e. , G =E(H$,1R, H, v) is an invariant e1luation under
the group of scaling transformations g &.

aling
O'= XG, H'=Z'aH, g&=y'~g,

FIG. 1. Part of the region around a Bo on a three-
dimensional subspace of the total space. Only one B~
and one 2+ are depicted. Boundaries of regions where
various scaling laws are valM are indicated by surfaces.

of a three-dimensional projection of the four-di-
mensional field space in the vicinity of a B$.
There are several different regions where different
groups of transformations are valid.

Region I. Only the group 84 is valid and the
singular part of Gibbs potential C is an invariant
equation under 8&.

Region II. The singular part of the Gibbs poten-
tial is an invariant equation under the two-param-
eter group 9, 83 since this region is close to both
the Ro and to a critical line R&. Region II is
bounded by a crossover surface defined by an equa-
tion connecting the invariants of the group 9~:

f (341' 3'4$& 34$)
II (s. 1)

IV. ANALYSIS OF ISING MODEL WITH VARIABLE
INTERPLANAR INTERACTION

A. The Scaling Hypothesis at the ~RO

In Sec. II of I, it was demonstrated that the
3d Ising model with variable interplanar inter-
action [Hamiitonian given by E41. (2.2) of I] pro-
vides ari excellent example of a critical point of
order 4. This aspect of the model has also been
treated by Harbus etaI;, who showed that com-

Region II'. The singular part of the Gibbs po-
tential is an invariant equation under the two-pa-
rameter continuous group of transformations g4(3}g&.
Region II is bounded by another crossover surface
defined 'by a different relation between the invar-
iants of 8&8.'

f (3 44 3 4$x y4$) 0 ~ (s.2)

Region III. The singular part of the Gibbs poten-
tial is an invariant equation under the three-param-
eter continuous group of transformations
g & 93 9&. The boundary surface of this region
is partly the surface defined by f in E41. (S.1)
and also a surface defined by an equation connecting
the invariants under the group g:4' gz..

f (3'$1& 3'$$) 0 ~ (s. s)

H'= X'~H,

(4. 2)

where H and H have equal scaling power and a,
& c@&uz for reasons given in Ref. 2. Equation
(4. 1) is precisely of the form predicted for a criti-
cal point of order 4 with the principal directions
of scaling given by

Kgb Hpp g 43 Ry x$3 Hp (4. s)

B. Analysis in the Space of Invariants of g~ Formed by Scalinl
with Respect to (B

We form invariants by scaling with respect to S,

y~-=«4$I~ «~
~

"~-=Ge,

y =«j~«4$~ 41 =H

p4$=-«4$l~«4$i 4$~ 4$= He, —

%'e list the directions xz in the order shown be-
cause when referring to the critical surface Rq
of Fig. 2 of I, H is a direction pointing out of the
coexistence volume bounded by the R, 8 is a dh'ec-
tion in the coexistence volume but pointing out of
the R&, H is a direction parallel to the R& at the
Noel point but not parallel to the tricritical lines
R„and 7, the "tangent variable, " is parallel to

the R(.
Since the field space is now four dimensional, it

is now peculiarly advantageous to use the method
of invariants outlined in Secs. V and VI of I and

Sec. II of this paper. The space of invariants of
g& is only three dimensional, and the R& wQl be-
come points in this space.

There are two advantageous ways of choosing a
basis set of invariants. The first was used in I
and forms invariants by scaling with respect to the
tangent variables. It is shown below (IVC) that
this procedure enables one to plot the lines of tri-
critical points as points at the corners of a tetra-
hedron in the space of invariants. The R3 become
the six lines joining the vertices of the tetrahedron.
First, however, we analyze the situation in the
space of invariants formed by scaling with respect
to +, because this reduces the problem to a form
similar to the already familiar tricritical point of
a metamagnet which has been fuQy treated in I.



GE NE BALI Z E 0 S C A LI N 0 HY POT 8 E S IS IN. . . II. . . 1181

4a~ysf, ym) =0

Crossover cone

a,y~s) =O

r volume

scaling hypothesis now requires the invariant part
of the Gibbs potential xss -=y4s = G/ i x4s ~

~'4s -=Fs(xs f,
xss, xss) to be an invariant equation under the group
Bs.'

gs: x]&-—X's&xs, with ass=1 (i=0, 1, 2, 3). (4. 6)

The result of the simultaneous validity of the
groups gs and 84 (i.e. , theproduct group Qs e Ss) is
that the Gibbs potential is expressible as a "double-
power scaling function"

3 ss fs(ysi~ 3 ss) (4. V)

yea
ysi-=xsg/xss's'~'ss (i =0, 1, 2). (4.6)

FIG. 2. Plot of the region around one of four 3B~ in the
space of invariants (y4f y42 y4s) of g4. The boundaries
of regions of validity for double- and triple-power scal-
ing are indicated.

(4.4a)

The scaling hypothesis of Eq. (4. 1) requires that

y4s fs(y4» y4s~ 3'4s) or Ga fs (&sa~&a~ ~a) ~

(4. 4b)
A representation of the various critical spaces
close to the 'Rs in the invariant (ys„y4s, y4s)-
space is given in Fig. 2 (for 6t & 0).s That figure
is similar to Fig. 14 of I, which shows the situa-
tion for constant 6t(& 0). This similarity is clearly
to be expected because one can always choose a
particular value of S&0 in the variables of Fig. 2.

The various coexistence volumes Xs map into
surfaces in Fig. 2 with a conformation close to the
txicritical point that is entirely analogous to the
conformation in Fig. 14 of I. The Xs end in R2,
which are the same as before, in regions that are
close to the Ro.

%e can now proceed entirely by analogy with the
scaling hypothesis made at tricritical points in I,
bearing in mind that the variables being used are
not H2, H, T, but the invariant variables H2~, H@,
~Ra

The directions of the second scaling hypothesis
for the "invariant space metamagnet" (Fig. 2) can
be chosen in an analogous fashion to the ordinary
metamagnet of I. The direction xsz is chosen in
the y4& direction and points out of the coexistence
volume 'X„the direction xs2 lies in the y42 y4s
plane and is not parallel to the critical surface R2,
and the direction xss is parallel to the critical sur-
face R2. More precisely,

xs| =3 41 s xsg =+pl y44 (ss 3 = 21 2) (4. 6)

and R&& is an appropriate nonsingular linear trans-
formation and summation over i is implied. The

ysl ~si y ys2 ~s2 u (4. 10)

where i=1, 2, 3. For the R2 shown in Fig. 2 of I,
we have y» = 0 and y» = —k». Similarly the equation
of the 'X2 is y» = 9, y» = const. Appropriate regions
of other Xs will map into lines in the ys&, ys2 plane.
In particular the Xs in the H2= 9 hyperplane is re-
stricted to an appropriate range of y2 for y»=0.

Near each R2, a third group of scaling equations

~ Rq
r

/

= Yy)

fsa(yes yea) =O

Crossover cone

FIG. 3. Plot of the three R2 of Fig. 2 in the space
(ys~, y32), invariants of the group Q4 ta) g&. The crossover
cone of Fig. 2 has become the circle in Fig. 3.

Equation (4.7) is valid within a double crossover
region, bounded by the region of validity of g4 and
also a crossover surface in the y4&-invariant space-
given by

(4. 9)

Within this region all thermodynamic functions
are representable in the space ysz, ys2 of Fig. 3.
Here appropriate functions are invariant under the
product group g e g .

Figure 3 is entirely analogous to Fig. 15 of I, and,
as in that case, the three lines of critical points
in Fig. 2 map into three points.

The R2 are thus predicted to be representable
in regions close to both the Rq and Ro by the equa-
tions
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~2' &2k =g 2f&2~& &= 0, 1, 2 (4. 11)

where a&0= 1. This implies that the Gibbs poten-
tial near a Ro, a R&, and a Rzisexpressibleasa
triple power-scaling function:

is valid. For each Ra, we pick two directions s&z and

xzz, the strong and weak directions of Griffiths and
Wheeler, in the y3, invariant plane, and define
Xpp=ypp =Xpp/X33 +, We now require xpp = F2(X21,1/

x22) to be an invariant equation under the group 92
of transformations:

of the shapes of the CRS and CXS within the various
crossover regions of the product groups. Finally,
if we set y„=y„=0inEq. (4. 4b) weobtainthe scal-
ing hypothesis about the critical point T, (I = 0).
If 8, is allowed to vary %e simply obtain the well-
known double-power scaling law with a parametere
for @,&0. This double-power law is valid under the
product group 94 8& where 9z is the symmetry
group about the line T,($,) of Fig. 2 of I.

This is an explicit example of a case where a
product group gj@8, with I j - i l1 may be appro-
priate.

X20/X22 +1(X21/X22 }~ (4. 12}
C. Analysis Using the Tangent Variable to Form Invariants

Thus all )he data from the appropriate four-dimen-
sional region should collapse into a line. The
crossover cone for the validity of the triple-power
scaling function should also be representable in the
space (y„, y32) of Fig. 3 as y44=X44/lx441'44'"4 3=o » ~ ~ ~ 3 ~ (4. 16)

We now form a different set of functionally inde-
pendent absolute invariants y4q of 94 by scaling with

respect to the tangent variable x44 =- v'- TNO.'

f32(y31~ y32) (4. 13) The scaling hypothesis of Eq. (4. 1) requires that

X„=C xp'('22, (4. 14)

which can be rewritten (from definitions of xpp x30,

y40)

G = CX'4,
' 'XSS» &aa

This "triple-power scaling law" is a special
case of the general triple-power scaling function.
It is valid within the wedge between the curves y»
—xppx33 "' '33'—- const. and the circle f43( y42 y43) = 0
as shown in Fig. 4.

In conclusion, the systematic application of the
heirarchy of scaling hypotheses gives predictions

We illustrate this result for the special case of H2

=0 (for 6t& 0). For the H2=0 hyperplane, the invari-
ant mapping of the various CRS and CXS are given
in Fig. 4. Within the appropriate region (a wedge
within a circle), Eq. (4. 12) applies. Since x„=0
for this case, all data collapse to a point

y40 f8 (y41y y42t y42} (4. 1'I)

In the space of invariant field variables (y41 y42,

y43), the four R, again map into points: two in the

y4q = 0 plane for y4& & 0 and two in the y43 = 0 plane
for y4~ &0. These four points form the corners of
a tetrahedron, as in Fig. 5. In this representation
we are explicitly able to show the way that the ~R~

connect the different 3R&.

In Fig. 5, the curves joining the vertices of the
tetrahedron are the scaled representation of the
R&. Each R& is joined by these curves to each of

the other R&. Similarly, the 4X, on the T axis of
Fig. 2 becomes the point at the origin of Fig. 5 and

the four Xz become curves joining the origin to the
R&. Similarly, for the X3 which are not depicted

in Fig. 5.
The curve joining the two R, for y42 &0 is the

R2 on top of the mountain" in Fig. 2 of I. The

D

Tripp

Double power

3
X2 ~4

f~2(y~2 V~3) =o
Crossover

/ 33=C ()=1 2)
Crossover (+@g3|3)92)

32

f43(Y42 f43)
Crossover
{SgD3)

X2

FIG. 4. Full (y433 y42)
plane of Fig. 2 showing
both 3R& for y4&

= O. They
are connected by a R2 near
which there is a region
where the groups Q and 82
are valid, but gs is not.
The crossover surfaces and
the groups whose ranges of
validity are thereby limited,
are indicated.
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U. SCALING LANS AND SCALING FUNCTIONS

~ s ~ ~ o ~ ~&
2

FIG. 5. A schematic representation of the complete
system of CBS and Cxs near the 4RO, obtained by scaling
with respect to the tangent variable. Two of the R& for
y42 & 0 are in the plane y43 0 while those for y42 & 0 (also
shown in Fig. 4) are in the plane y4&

= 0. The total sys-
tem is topologically equivalent to a tetrahedron. Not
shown are the various X3 which join the X2 to the R2.
The values of y4& are mapped as y4&/(y4&+ e&) where e&

are constants to ensure that all pertinent points are
xnapped within a finite region.

other curves leading away from these two R~ (for
y„& 0}to the other two ~R, (for y»2) are the wings
of Fig. 14 of I, which extend into the region Hz & 0.

Thus the wings for 8 & 0 are joined by continu-
ously connected surfaces to the wings for 8, & 0
and are thus sections of the same R&. There are
in reality six R2.'one for 6t &0, one for 8 & 0, and

four "wings. "
Now one can proceed to make a scaling hypoth-

esis about the B& as before. First we choose a
suitable set of variables which are 1inear combina-
tions of the y4&.

'

(4. 1S)

where i, j= 1, 2, 3 and summation over i is implied.
Then the Gibbs function will be expected to be given
by an invariant equation under the group Bs of
transformations

Xsg —X S~Xsg y j = 0~ 1

and aso = 1. However this new transformation must
inevitably give the same results as when the scaling
was performed with respect to the groups Q4 9s
in Sec. IVB. The analfsis will be the same as for
that case.

The consequences of the existence of vaM equa-
tions of scaling for critical points of higher order
are very similar to those for a sRO.

In a region where a direct product of x groups of
transformations are valid, it is possible to form
scaling functions with simultaneous scaling by r
variables. This will give data collapsing by r di-
mensions, and this shouM make the testing of the
scaling hypoth sis in the vicinity of a critical sub-
space of any order quite possible: the maximum
value for r is (8 —1) because in the vicinity of a
critical point of order 6 there should be regions
where a direct product of (6 —1) groups of trans-
formations are valid (e. g. , the crossover region
near a 'Ro of I and region III in Fig. 4}. Now it
should be possible to plot all the data from the 6-
dimensional region in terms of one variable.

There should be larger regions where one group
9

&
is not valid and the data should be expressible

in terms of two appropriately scaled variaMes.
Then data collapse onto a surface, which should be
easy to verify.

For each set of scaling powers ae& at a critical
subspace of order 6, there will exist a different
set of exponents and scaling laws relating them.
For a point of order 6, there will therefore be 6
independent exponents, and if more than 0 are de-
fined, there must be scaling laws relating them.

In a system like the one considered in Sec. IV,
there will therefore be four independent exponents
at the Ro, three at each of the four R&, and two
at each of the Rz, giving 28 possible exponents be-
fore the symmetry is taken into account. The sym-
metries show that the R, are all equivalent be-
cause we have reflections H- —H and Ha- —Hz and
the pseudoref lection tR,- -8, H- H~. These sym-
metries show that there are only bvo sorts of Rs.
Thus there are only 4+3+2+2= 11 scaling powers
we need to know to evaluate every possible expo-
nent for the system.

In fact for this system we shall see that we know
seven scaling powers certainly and we can estimate
two more. The only pair that we do not know are
the scaling powers for the "wings. " (see Ref. 6 of
I for definition of "wings *').

At the Ro the exponents are the same as for the
two-dimensional Ising model, and this gives a4&

=a»~ =Q, a42 =8, and»»« = 2, where the first two are
equal by the pseudoreflecti, on symmetry and expo-
nent a43 is evaluated from our knowledge of the
crossover exponent y4 =- a4, /»»« = y4.

For the R&, we know the scaling powers from
our knowledge of the exponents y and y„(describing
the divergence of the functions y and y„), and also
from the crossover ps describing the shape of the
Ra for H2=0 approaching the R&.
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Work by Harbus and Stanley~ estimates the scal-
ing power as& to be s. Tentative calculations based
on the shape of the phase boundary and the ampli-
tude function of the staggered susceptibility along
the phase boundary give rough estimates of aqua =-Q

1
and 833 = s»

Of the R&, two have the familiar exponents of
the three-dimensional Ising model, giving caq =6
and a33 =$ while the other four Rz are "wings" and
possess exponents about which we know nothing at
all.

The scaling laws are obtained by eliminating the
a~& between expressions for different exponents.
Exponents defined for paths of approach to a set of
equivalent R, (e.g. , the 'R, above) will thus be
related by scaling laws, but equalities between ex-
ponents for different sets of eR~ (i.e. , not related
by symmetry) should be regarded as fortuitous and
not as scaling laws. This will remain true for the
critical spaces of any system.

VI. SUMMARY AND CONCLUSIONS

We have shown above how to make a scaling
hypothesis at a critical point of arbitrary order,
in the case where the dimensionality of the spaces
of critical points of order 6 is 6 less than the total
number of dimensions available; i.e. , Eq. (1.1) of
paper I is satisfied. We have also shown how the
choice of variables for hypotheses at points of lower
order is decided by the groups of transformations
about points of higher order. In the example given
in Sec. IV it was shown that there could be regions

where different direct products of groups of scaling
transformations were valid, e.g. Q4 Q3 and

~4 83
In the particular example treated, there was a

very high degree of symmetry about the tempera-
ture axis, and instead of having different scaling
powers for every CRS (giving 28 possible expo-
nents) only nine independent exponents were found-
two at each of two sorts of Rz, three at the four
R&, and only two at the Rz because of the sym-
metry and the fact @4=q4.

The same symmetry that reduced the number of
exponents from 28 to 9 was operative in making
the lines of tricritical points intersect on the T=0
axis. In a four-dimensional space there is nothing
to force lines of tricritical points to intersect ex-
cept a symmetry ';it is of interest to note that in
complex Quid mixtures" critical points of higher
order can occur when the Hamiltonians do not pos-
sess symmetries. The order 6 for such a critical
point is equal to the number of phases in equilib-
rium there as is the case here but the number of
scaling fields at such a critical point is usually
not equal to 6.
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