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The first-order temperature corrections to the zeroth and second, longitudinal and transverse

wave-vector-dependent frequency moments are calculated for a Heisenberg spin system with uniaxial and
exchange anisotropy and with an arbitrary interaction range. These moments are applied to several

lattices including the hexagonal close-packed structure of terbium, which possesses a large uniaxial

anisotropy constant. The calculated energy transfer of magnetically scattered neutrons is shown to be in

good agreement with experimental data for terbium and also gives evidence of a significant
short-range-order effect.

I. INTRODUCTION

The method of wave-vector-dependent frequency
moments' ~ has been successfully used in studying
the dynamical properties of Heisenberg spin sys-
tems by means of approximate phenomenological
representations of the spectral line shapes of spin
correlations. The knowledge of the three lowest-
order nonvanishing, frequency moments (zeroth,
second, and fourth) establishes a phenomenological
approximation based on a two-parameter Gaussian
diffusivity. However, the knowledge of only the
zeroth and second moments is still useful in that
contact can be made with the energy distributions
of neutrons, scattered inelastically by pertinent

magnetic materials.
Most of the frequency-moment calculations have

been conducted at elevated temperatures, ' "
where the spin system can be considered to be al-
most completely random. As the temperature is
lowered, the component spins of the magnetic sys-
tem experience the presence of short-range order,
e. g. , as exhibited by the frequency wave-vector-
dependent susceptibilities measured by inelastic
neutron scattering experiments. Since these ex-
periments are often performed at temperatures not
much higher than several times the magnetic criti-
cal temperatures for strongly exchange-coupled
systems, the existence of the short-range order
could be expected to have significant effects.
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For an isotropic Heisenberg paramagnet, Tahir-
Kheli and McFadden have computed the tempera-
ture dependence of the frequency moments. The
series expansion of the moments in powers of Tc/T
was calculated to the order (Tc/T)4 for the zeroth
moment, (Tc/T)~ for the second moment, and

(Tc/T) for the fourth moment, and were special-
ized to the case of a simple cubic lattice. In addi-
tion, for a spin system isotropic in the exchange
coupling but with uniaxial anisotropy, i. e. , a static
crystalline field, Sears has calculated the zeroth
and second moments to the order equivalent to
(Tc/TP

Terbium and other rare earths are examples of
uniaxially anisotropic spin structure and have been
the subjects of experimental investigation, par-
ticularly neutron- scattering studies. ' ' Paramag-
netic exchange broadening in terbium, observed
by Cable et ul. ,

"showed that the uniaxial anisot-
ropy energy yielded a significant contribution to the
widths of the energy distribution of magnetically
scattered neutrons. Moreover, since the experi-
ment was performed at a temperature approximate-
ly three times the Weel temperature, a significant
departure in the broadening from that calculated
on the basis of infinite temperature indicated the
presence of short-range order in the spin system.
The study by Sears showed that much of the de-
parture of the infinite-temperature theory from the
experimental results could be eliminated by the
first-order temperature correction to the second
moment. However, a discrepancy in the second
moment of Sears has been reported in Ref. 4 and
is also noted in this study.

The principal objectives of this paper are to de-
rive and assess the first-order temperature cor-
rections of the zeroth and second, longitudinal and
transverse frequency moments of a Heisenberg spin
system with both exchange and uniaxial (crystal-
field) anisotropy and to investigate the importance
of the aforementioned discrepancy in the second
moments, in particular, as applied to the available
data on the energy of scattered neutrons in terbium.

The organization of this paper is as follows: In
Sec. II the basic concept of the frequency moments
is formulated, and a description of the Hamiltonian
of the spin system considered is presented. In
Sec. III the first-order temperature corrections
to the moments are calculated in a generic form
with exchange and uniaxial anisotropy and with an
arbitrary range of the exchange interactions.
These moments are then particularized in Sec. IV
to the hexagonal-close-packed (hcp) lattice of ter-
bium with nearest-neighbor isotropic exchange.
Section V contains a discussion of the derived re-
sults and some final statements. In Appendix A,
some details of the calculation of the exchange
terms in the hcp structure are presented. Appendix

8 contains the anisotropic frequency moments par-
ticularized to several other lattice structures, the
linear chain, the two-dimensional net, and the
simple cubic lattice, with next-nearest-neighbor
interactions.

II. FORMULATION

The Hamiltonian of the anisotropic Heisenberg
spin system can be written in the form

H= —Z [I,(~)S~S +ID(tv)S,'S'] —AE (Sf ) .
(2. 1)

This Heisenberg model assumes both exchange
anisotropy, i. e. , I, wID, and uniaxial anisotropy by
the A term Her.e I(gsu) is the exchange interaction
integral between two spins at sites g and ce. The
z-z exchange, Io, is considered to be distinct from
the x-x or y-y exchange, I,. The operator 8,' is
the n component of the spin vector associated with
the lattice point g, and A is the uniaxial anisotropy
constant, characterizing the strength of the crys-
talline field. This latter type of anisotropy is also
referred to as axial, crystal-field, or single-ion
anisotropy. The exchange integrals are assumed
to depend only upon the spatial separation of the
sites and to vanish as the separation goes to zero.
The range of the exchange interactions includes
next nearest neighbors. The spacing of the spins
is assumed to be uniform for the one-dimensional
linear chain, the two-dimensional simple net, and
the three-dimensional simple cubic lattices. Peri-
odicity in the bounda~ conditions is considered to
be applicable, as is the absence of all magnetovi-
brational contributions to the scattering. The
Dirac system of units with 8= 1 is used throughout
this study.

The space-time-dependent spin corxelation func-
tion ls defined as

E "(g—a, I —f ')=([S,'(I), S'„'(t ')]),
where z and 0, '=x, y, z. Because cylindrical sym-
metry is assumed, correlations with et e' vanish
and the transverse correlations with e=x and with
o =y are equivalent. In the general anisotropic
case, the longitudinal correlations with z = z differ
from the transverse correlations. The time depen-
dence of the spin operators is in the Heisenberg
representation with respect to the Hamiltonian.
The angular brackets denote a statistical thermal
average over a canonical ensemble, and the
straight brackets denote a commutator.

The wave-vector-dependent f requency moments
can be defined by determining the time derivatives
of a Fourier representation of the spin correlation
function. These moments are

(~tr+1)g+ p e fK'(r w)
~
f--

dt dt '
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XP (g-$U t t ) (2.3)

(H(t)&(t ')
&

= &&(t '- 'P) H(t)&, (2.4)

where P= (ksT) ', ks = Boltzmann's constant, and

T = absolute temperature, lead to the following re-
sult for the zeroth moment:

&&oo)P Z eig ~~ ~

i
dp&s;(0)e ""S„(0)e"")

I~V wP

(2. 5)

It is noted that the spin operators in Eqs. (2.3)
and (2. 5) are specified for equal times.

The method for the computation of the frequency
moments involves first the application of the equa-
tion of motion of the spin operators,

where R is the wave vector, the indices n and r
are non-negative integers such that n ~x, and the

~ag»

sum over all position vectors g-w includes the ori-
gin. It has been shown that the odd moments, i.e. ,
(&o&P, (sr~&g, etc. , vanish, by considering their
alternate, more basic definition in terms of the
spectral function, which is the space-time Fourier
representation of the spin correlation function. ' ~

The zeroth moment or wave-vector-dependent
susceptibility is not determined by Eq. (2.3), but
involves a special case calculated in Ref. 3. The
interchangeability of the symmetric spatial vari-
ables g and ~ in the correlation function and the
statistical mechanical identity,

variable permutations of the site indices. These
traces have been tabulated by Ambler et al. "

If the components ao, ' in Eq. (2.2) are inter-
preted as "+-"and extended to Eqs. (2.3) and

(2. 8), it can be shown that the transverse moments
are

&~"&a = &~"&g =1&~"&x . (2. 9)

To calculate the second longitudinal and transverse
moments, the following time derivatives are re-
quired:

t—S,'(t)=Z I,(gf)[S,'S;—S,'S;),
I

t S—~(t)=2AS~Sg AS—g 2Z—I,(fg)SOS y

(2. 10)

+ 2 5 Io(fg)St S g . (2. 11)
f

In the second moments as defined in Eq. (2.3), the
thermal averages of spin commutators are con-
sidered. Then Eq. (2. 7) with Q considered as a
commutator becomes

Tr(HQ} P'Tr(H Q}
Tr(l} 2 Tr(1}

z [Tr(HQ }][Tr(H}]
[Tr{1]]'

Thus this is a suitable form for the first-order
temperature correction to the second- and higher-
order frequency moments. Note that

I—„,s, (t)= [s, (t), H]. (2.8) Tr{1}=2S+1. (2. iS)

The time-independent statistical thermal averages
(Q), where Q is a generalized spin operator product
or commutator, are computed by the usual high-
temperature expansion procedure with the density
matrix p= e ~~. Then the generalized thermal
average, to second order in inverse temperature
(i.e. , to the first-order temperature-correction
term), is

Tr(e~"Q}
Q —

T ( -se}

= Tr{Q —PHQ+ —,P H Q —~ ~ ~ } 1+1 2 2 Tr(PH}
Tr 1

(Tr(PH }) —-'Tr(PH}
Tr(1 }

(2. 7)
The zeroth moment to second order becomes

& '&F= ~ '«'""[P&s,s.&+l P'&S, [S., H]&l,

(2. 8)
where the equal-time specification is now omitted.
This procedure also requires the evaluation of
traces of products of spin operators with highly

If a spin parameter a is defined as

a = —,
' S(s+1), (2. 14)

it can be seen that the Tr(H) is finite for the axial
anisotropic Hamiitonian of Eq. (2. 1) and that it
equals —aAN, where N equals the number of spin
sites.

III. FIRSTARDER TEMPERATURE CORRECTIONS TO
FREQUENCY MOMENTS

With the thermal expansion of Eq. (2. 8), the
zeroth longitudinal moment becomes

&(d &f 4 1=1+Pa —,A 1-—+2K e' '
Io(R)jK '%

P+ - 4+ R
(3.1)

where the spin separation vector g- w has been
replaced by R. If V is similarly defined as the
lattice vector between site g and all sites other
than so, which are included within the range of the
exchange interactions, then the second longitudinal
moment becomes, by Eq. (2. 3),

&& &if 1 p I2(R)(1 etx i)
16Pa 2 g
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+P(2 —2A 1-4 Z I,(R)(1-e' '")
R

+ P(2 2 I,(R)I,(U)I,(R- U)(1 —e'"' )

+ —Z I'.(R)I,(R)(e'"'"-1). (S.2)

Vhth the same expansions, the zeroth transverse
moment is

(~'&g =1+P(2 —2A 1-—+2K e I,(R)fR «%

pa ' 4a
(3.3)

and the second transverse moment becomes

{s.4)

16Pa' '
(, 4a 70 140a 224 5 4(2 "„

= ko~ 11——+ Ps& —— + + 1-—Q {-e1 I.(R)Io(R)+ $Io(R) ——', I'.(R)].

+
4
~ [I'(R)+Io(R) —2e'*'"I.(R)I2(R)1+ 2

& &- e'*'"[I.(R)I,(U)I,(R- U)+I,(R)I.(U)I.(%- U)]
R R6

+ I()(R)I()(U)I()(R- U)+I.(R)I (R- U) I.(U) ) +
6

Z (e'K '" [I2(R)+I2(R)I (R)]- 2I (R)I,(R)).

It should be mentioned that the necessary condi-
tions attesting to the possible correctness of these
results are satisfied, namely, (a) the cancellation
of all terms in N, the number of spin sites, and
(h) the vanishing of the A terms, when 8= —,'. In
addition, these results for the moments transmute
to the results of Ref. 4, in the isotropic limit, i. e. ,
when both A = 0 and I,= Io. In this latter case, it is
further observed that the longitudinal and trans-
verse moments become identical, as required.
The axial-exchange anisotropic dependence of these
moments in their temperature expansion is entirely
new.

In the notation of Ref. 6, the moments essentially
involve a linear combination of the present longitu-
dinal and transverse moments. However, the term
in the second-order temperature expansion of the

second moments, involving

Z I'(R)( '

in the exchange-isotropic forms of Eqs. (3.2) and
(3.4), is missing in Sears's equivalent expression.
Since this discrepancy was also noted in Ref. 4, it
is probable that Sears's result is in error.

These forms of the frequency moments are gen-
eral, in the sense that they apply to any lattice
structure, for arbitrary range of the exchange inte-
grals, and for any spin magnitude. The frequency
moments are now applied to paramagnetic terbium,
an hcp structure with a large negative uniaxial
anisotropy constant A and with principally nearest
neighbor, isotropic exchange, so that I, =ID=I in
Eqs. (3.1) to (3.4). The moments isotropic in the
exchange are therefore

() sg" " =s+Pd —;~ 1-—+2K e'" "I(R)'
4& K

(s. 6)

3 x )g

~ =8(2 Q (1-e' '")I (R)+(6 —4a P (1-e' '")I2(R) +16u2Z (1-e'K'")I(g)I(U)I(R-U)
P lt R N8

~IW

—Se A 1-— l-e ' I R, , 3.6

" =s+PP --'.a 1-—+2K e'*'"I{R), (3.V)

/K 6(22+ (1 el K '8) I2(R) 12
(2 Q2

tt 4a

/ P 16g2 P(1—e1K' )I(g)I(U)I(y U) 4s P(1 —e g'R)I (g)
R6 R

~ )1n'A(( ——Z (1- e' ' )I (R)~ 18asA' —— + ' . (3.())4a 70 140m

In the, hexagonal close-packed structure, there are three distinct kinds of exchange. I et I& denote the
coupling constant for nearest-neighbor spins in the basal plane, I„the corresponding exchange for the spins
in a unit cell, and I, that for neighboring spins along the c axis. If we consider the fundamental translation
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vectors a, b, and c to be along the x axis, 30' counterclockwise from the y axis, and along the s axis, then
it can be shown (see Appendix A) that the moments can be written

" =a+Pa' 8Ai 1-4 +4(I e, +I e, +I e, )4n

2 ct" =18a'[t,'(8 —e, )+t'.(8 —c,)+t', (1 —c,)] ~ 88a'I(4a —1)l',(8 —e,)-t.'(8 —e,)-t' (1-c., )

(3.9)

—fca((—l[l,'(8-e, ) t'.(8- e,) ~ l', (1-e,)]I, (8. 18)

(3.11)

(3.12)

=a+ PtP —$A 1 ——)~+4(I]eg+I„ea+I~ee)

" =16a I],(3 —e, )+I„(3—e2)+I,(l —e~)+]]t]A 1-—
~

+8Pa (4a-1)I~(3- e,)-I„(3—e],)-I,(1- em)

"~ ——" '3-" '3-":1-".2.A'-'- '
~

24
'

1 u 8 c 3

Here we have used the notation

e, = cos(K~, )+2 cos(-,'K~, ) cos(-,')) 3K„a,) t

e, = cos(-,'K,e)(e' ' ««~' [2 cos(-,'K~0}]

+ 3 gsfeo/S'l

e, = cos(X,e},

e=lcl.

(s.ls)

(3.14)

(s. 15)

{s.16)

(s. iv)

In the notation of Ref. 6, the Eeroth moment
ao(R) and second moment aa(K) are, in terms of the
present moments,

(3.18)

(g), , ' ( '&

E P, x) p
(3. 19)

The rms energy transfer is therefore

, = [a,(K)/oo(K)] 'I'. (s. 30)

The generic form of the frequency moments in
E(ls. (3.1) to (3.4) is also particularized to sev-
eral other lattice structures with exchange interac-
tions extending to next- nearest neighbors. These
results are given in Appendix 8 for a linear chain,
a two-dimensional net, and a simple cubic lattice.

IV. APPLICATIONS

The following required data for terbium are given
in Ref. 6: 8= 6, ao= l. 58 A. The exchange con-
stants I&, I„,I, are 0. 057, 0. 050, and 0. 038 meV,
respectively. The axial anisotropy constant A

= —0.45 meV.
Vhth this data, the rms energy transfer versus

wave vector is calculated in the a direction at a
temperature of 660 'K and displayed in Fig. 1.
Here the solid curve is the present result; the long
dashed curve is the Sears calculation; the short
dashed curve is the present result at infinite tem-
perature. The crosses denote the data obtained by
Cable et el. at 660 K. The present result at in-
finite temperature agrees with that of Sears, since
the theoretical disagreement does not involve the
infinite-temperature term. It is seen that the
present calculation at 660 'K agrees fairly well
with the Sears calculation so that the likely error
in Sears's calculation is a relatively minor one in
practice. The present result, however, does not

give a better fit to the experimental data, but does
show a significant presence of short-range-order
effects.

Figure 2 displays the same information as in
Fig. 1, except that the wave vector is in the c di-
rection. Most of the above comments apply here,
except that now the present calculations at 660 'K
{solid curve) show an improvement over Sears's
results in fitting the experimental data at small
wave vectors.

The continuing slight disagreement with the ex-
perimental results could be due to the neglect of
extending the interaction range to include next-
nearest neighbors or to the exclusion of higher-
order temperature-expansion terms in the mo-
ments.

V. CONCLUDING REMARKS

The second-order temperature terms of the
zeroth and second, longitudinal and transverse,
wave- vector-dependent frequency moments have
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ture of the system Hamiltonian is one of these, in
that the assumption of no coupling between the spin
and lattice degrees of freedom neglects the possi-
bility of magnetovibrational scattering. The as-
sumption of nearest-neighbor isotropic exchange
and the accuracy of the experimental measures of
the input parameters for terbium are also areas of
some uncertainty, however small. Finally, the
short-range-order effects may be quite significant
beyond the limited thermal expansion considered in
this paper.

The general form of the moments were also ap-
plied to several dimensionalities, including a lin-
ear chain, a simple net, and a simple cubic struc-
ture, For a hypothetical simple cubic lattice, the
variation of the moments with temperature, uni-
axial anisotropy, exchange anisotropy, interaction
range, and the wave-vector direction and magni-
tude, were calculated. It is hoped that the tem-
perature dependence, found to be significant, and
the anisotropy in the moments can be more com-
pletely verified in the future when more pertinent
data become available.

FIG. 1. rms energy transfer of scattered neutrons
versus the wave-vector for terbium at 660'K in the a
direction of the hexagonal close-packed structure. The
solid curve is the present result based on the derived
moments, which disagree somewhat in the first-order
temperature correction with the previous derivation of
Sears. The long dashed curve is the Sears calculation.
The short dashed curve is the infinite temperature re-
sult common to both the present calculation and the Sears
calculation. The crosses denote the neutron scattering
data obtained by Cable et al.

ACKNOWLEDGMENTS

Many thanks are due to Dr. R. A. Tahir-Kheli
of the Department of Physics of Temple University
and to Dr. D. G. McFadden for their helpful dis-
cussions and suggestions. I am also indebted to
the Temple University Computer Activity for a
generous allotment of computer time on the CDC-
6400.

been derived for a Heisenberg spin system with
uniaxial and exchange anisotropy and with an arbi-
trary interaction range. These generic moments
were applied to terbium, an hcp structure with a
large negative uniaxial anisotropy. Available data
on the rms energy transfer of magnetically scat-
tered neutrons in terbium' and previous nearest-
neighbor exchange-isotropic moment calculationss
provided a basis of comparison with the present
results. Although an error was found in the pre-
vious moment calculations, this error was assessed
to be rather small for the case of terbium. In
fact, the calculations of the neutron energy transfer
by the present moments showed no improvement
over those based on the prior moments in matching
the experimental data for the wave vector in the a
direction but did result in a slight improvement for
the wave vector in the c direction. The short-
range-order effects were found to be significant.

The theoretical estimates of these frequency mo-
ments are subject to several possible uncertainties,
which are difficult to assess. The approximate na-

3.5-

30—

E 2.5

E
L

0.5 I.O l.5 2.0

FIG. 2. Same as in Fig. 1 except that the wave-vec-
tor is in the c direction of the hexagonal close-packed
terbium.
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APPENDIX A

Nearest-neighbor interactions for the hexagonal
close-packed (hcp) structure of terbium are of
three distinct varieties, the exchange in the basal
plane, in the unit cell, and in the c direction. We
shall denote these exchanges by I„ I„, and I,. In
the geometry of the hcp structure, there are six
nearest neighbors in the basal plane, six in the
unit cell, and two in the c direction. If the notation
of E(ls. (3. 9) to (3. 17) is used, then the spin sepa-
ration vectors in the basal plane are

where z, j, and k are unit vectors in the x, y, and
s directions.

The term SKI'(R) is simply

5 I (K)=6I +6I„+2I,.

The term ga6I(R)I(U)I(R- U) vanishes every-
where for nearest-neighbor interactions, except in
the basal plane. Therefore, we have

2 I(R)I(U)I(R —U) =6I2
R8

and
V1= a

v4= —a,
v2=b v3= a+b,

v, =-b, "2=—(a+b)
P e'"' I(R)I(U)I(R- U)=2I,'c, .
%5

The unit cell vectors are
1»r1= 3 a+3b+ 2c,.

]» ]r2= —3 a+ 3b+ z c,
1»r3=- Ba- 3b+-, c,

2» ]» l»
r4= 3 a+ ~ b- —,c,
r5- Q a+ Bb 2c

]»r6= —3 a- 3b- 2C.

The separation vectors in the c direction are

+ Q e(K' &I2 =2I2c, +2I„c2+2I,c2,
j=1

where c„c2, and c2 are defined in Etis. (3. 13) to
(3.17). Here we have defined the crystal axes as

a= ape, b=(2u 3 j —2i)a(), c=ck,

W1=C, W2=- C.

Therefore an exchange summation term of the

type g ae' I (R) can be written

6 6

Q efK'RI2(R) L egK 'v2I2 Q el K
'23I2

j=1

APPENDIX B

It is convenient to introduce a few new definitions
in order to specialize the frequency moments of
E(ls. (3.1) to (3.4) to certain lattice structures.
With the nearest-neighbor distance denoted as (1)
and the next-nearest-neighbor distance as (2),
the various energies are normalized by the
nearest-neighbor longitudinal exchange I()(1) as fol-
lows:

G=I, (1)/I(], H=I()(2)/I(), L=I,(2)/I(], D=A/I2,

where I2=I()(1).
In a one-dimensional linear chain, the wave-

vector-dependent quantities are introduced as

u, = cos(K), v, = cos(2K),

where K is the reduced wave vector, incorporating
the lattice constant. By simple geometrical con-
siderations, the longitudinal and transverse fre-
quency moments of a linear chain then become

= 1+P Iea 4(u, + vi H) + +2 D 1 -—
&(d')g. . . 1 &

16Pa"I0
, 2

——(1 —u~)G +(1—v~)L +PI2a —2D 1 ——~[(1 —u~)G4oj

~ (1 —v, )L ]~ 2G L(3 —2v, —v, )I
——', Pl [(1—v, )G (1 —v, )LLL],

&~')K 1
pg 0 1 1=1+PI a 4(u G+v L) —KD 1 ——

4a
XX

16Pa I () 4a
~ 2 ——~D 1 ———u~G —v, LH+2(1+H +G2+L )+PI()a{-2u,G(H+L) —v, (L+G H)+3(H+G L))

+PI()(G (u, G +v, L ) —2(G +KL )+ (u, ~G+v, H L)'j

+PE uD 1 ———+u G+v LH ++ 1+H —G - L +PIpaD —1 ——+2 2 2 3 3
0 4p 5 1 1 5 70 2a 16a

In the two-dimensional simple net with the fol-
lowing redefinitions of the wave-vector dependence,

u2 = cos (K~) + cos (K2) 2 v2 = cos(K„)cos(K2) 3

the two-dimensional moments become
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= 1+PIoa 4(up+ 2vm H) + fD I
1-—I,a 4a) '

EE

= (2 —ug)G + 2(1 —vm)I
0

—f PlqaD(1- —)[(2-sg)G 2(1 —v )L ]

+ 6PI, aG'L'(3 —u, —v&)

+ —,
'

pIO [G~(u~ —2)+ 2(v~- 1)L H ],
(~'&x

Pe
* =1+PIoa 4(u, G+2v~L)- fD 1-—

I4aj

((o')g, 1
16Pa I0

~ z = $D 1-—-uzG- 2vm LH+1+H4c

+G +I +PIoa[-4(uzG [H+L]

+ vm [L + GH]) + 12(H~+ G~L) ] + pI0{~ [u~G(G + 1)

+2v, L(L'+1)]-G'-. HL, }
1

+ PIOD 1 ——[- $(umG+2vzHL)

+ ~(1+H')- 2(G'+ L'P ]

+ pIoaD —
I 1 ——+, 3'I 3

~Ml

For a simple cubic lattice with

u, = cos(K, )+ cos(K„)+cos(K, ),
v, = cos(K„)cos(K„)+ cos(K, ) cos(K, )

+ cos(K„)cos(K,),
the frequency moments are

(u)')f t' 1 &=1+PIoa 4(us+ 2v~H)+ fDI 1-—
pa 0 3 8 4a j„'

~, =G (3-u, )+2L (3-v, )
0

—f pI, aDI 1- —I[G'(3-u, )+2L'(3- v, )]4a]

+ 6pI, a[G'I (9- 2u, —v, )+ 2L'(3- v, )]

+-', PI,[G'(3-u, )+2(3- v, )I.'H],

= 1+PIoa 4(usG+ 2vs L) —fDI 1—
pa 0 8 8 4ai '

+, - gD I
1- -u, G-2v, LH

16p I0 ( 4a

+ f (1+2H +G +2L )

+4PIoa (-u~G(H+ 2I )

—v~L(1 +H~}-vs HG~

—2vmHL +3(3H+2H +3G L+2L~)]

+ P Io j—' [u G(1+ G ) + 2v L (L + H )] ~

—f (G'+2HL')}

1
+PIoaD 1 ——[- f(u~G+2v~LH)

+ ~~, (1+2H3) —3(G + 2L~)]

, 3'I 3 5
'lO) 2a 16a

For a hypothetical simple cubic lattice, these
latter moments were evaluated in theix variations
with temperature, uniaxial and exchange anisotropy,
interaction range and strength, and the wave-vector
direction and magnitude. This hypothetical lattice
in its isotropic nearest-neighbor limit was as-
sumed to be identical to RbMnF3, a cubic perovskite
structure, in its antifexromagnetic state, so that
contact could be made with the results of Ref. 4,
where, in addition, the wave-vector directions
were specified in accox'dance with the neutron scat-
tering data of Windsor et al. '3 Computations of the
changes, relative to the infinite tempexature case,
in the zeroth and second, longitudinal and trans-
verse, frequency moments were conducted as func-
tions of the above-mentioned vaxiables. These
calculations (not shown here} indicate the explicit
sensitivity of the moments to wide ranges in the
above parameters.
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Department of the U.S. Army.

'R. A. Tahir-Kheli, Phys. Rev. 159, 439 (1967); Phys. Rev. B
1, 3163 (1970).

R. A. Tahir-Kheli, J. Appl. Phys. 40, 1550 (1967).
'R. A. Tahir-Kheli and D. G. McFadden, Phys. Rev. 178, 800

(1969); Phys. Rev. 182, 604 (1969).
"R. A. Tahir-Kheli and D. G. McFadden, Phys. Rev. B

1, 3178 (1970).
'R. A. Tahir-Kheli and D. G. McFadden, Phys. Rev. B

1, 3649 (1970).
V. F. Sears, Can. J. Phys. 45, 2923 (1967).

'J. Als-Nielsen, O. W. Dietrich, W. Marshall, and P. A.

LindgI, rd, Solid State Commun. 5, 607 (1967); J. Appl. Phys.
39, 1229 (1968).

'T. M. Holden, B. M. Powell, and A. D. B. Woods, J. Appl.
Phys. 39, 457 (1968).

~O. %. Dietrich and J.Als-Nielsen, ¹utron Inehutic Scattering
(I.A.E.A., Vienna, 1968),Vol. 2, p. 63.

' J. %. Cable, M. F. Collins, and A. D. B. Woods, Proceedings
of the Sixth Rare-Earth Research Conference, Gatlinburg,
Tenn. , 1967 (unpublished), p. 297.

"E. Ambler, J. C. Eisenstein, and J. F. Schooley, J. Math.
Phys. 3, 118 (1962).

"C. G. Windsor, G. A. Briggs, and M. Kestigan, J. Phys. C
1, 940 (1968).


