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The ~vol model is an Ising model with nearest-neighbor antiferromagnetic interactions (J, g 0) but
also next-nearest-neighbor ferromagnetic exchange (J2 & 0). This model is analyzed in external magnetic
field using the same techniques as applied to the meta model of Paper I. Again, the staggered
susceptibility g„appears to diverge along the critical line in the H-T plane with a constant exponent

5/4, consistent with the universality hypothesis. However, jn contrast to the meta model, it is
found that the direct susceptibility X diverges at the tricritical point with an exponent y = 1/4.
Implications of the scaling hypothesis at the tricritical point are discussed and the results for both the
meta and nnn models are utilized to obtain the scaling power a ~ corresponding to the "weak"
direction (in the sense of Griftiths and Wheeler). Included in this discussion is the double-power-law

form, predicted to hold within the crossover region by tricritical-point scaling.

I. INTRODUCTION

A next-nearest-neighbor (nnn) spin- —,
' Ising model

with tricritical behavior was introduced in Eq.
(2.4) of the preceding paper' (Paper I). The Ham-
iltonian is

X= cTg Zg 8~8' eTg Zr s~sy —iJHZSg
Ba

Here Z~ &0 (antiferromagnetic), J'2&0 (ferromagnet-
ic), and the first and second sums are over near-

est-neighbor (nn) and nnn spine, respectively. H is
a direct external field, and p. is the magnetic mo-
ment per site. The Hamiltonian is considered on
the simple-cubic lattice.

Vfe apply the same series-expansion techniques
to this model (with J', = —1, and J~=+ —,') as were ap-
plied to the meta model of Paper I. Ne therefore
do not repeat the discussion of the method of ob-
taining the sexies and of the various methods of
analysis, but rather go directly to the results. The
coefficients of the reduced-susceptibility and stag-
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gered-susceptibility series are presented in Table
I; these series are analyzed in subsequent sections.

It is to be stressed at the outset that over-all
series convergence was better for the nnn model
than for the meta model. This is not unexpected,
since with nnn bonds the lattice is effectively more
closely packed than with nearest-neighbor bonds
only, in the sense that a given number of high-tem-
perature-series terms are better able to feel out"
critical behavior. Qn the other hand, the fact that
these models incorporate bonds of opposite sign,
giving rise to cancellations in the graphical expan-
sion, makes predictions concerning relative con-
vergence more difficult to make in advance.

At the end of this paper, we discuss the results
for both the meta and nnn models in the light of a
scaling hypothesis at the tricritical point (TCP).
The estimates for the direct tricritical susceptibil-
ity exponents y are used to obtain values for the
tricritical scaling power corresponding to the
weak" direction in the sense of Griffiths and

Wheeler. Other tricritical scaling powers unfor-
tunately cannot be obtained with any reasonable ac-
curacy. We pay particular attention to the double-
power-law form predicted by TCP scaling to hold
within the crossover region bounding the critical
line near the TCP. Several factors, most notably
the differing values for y, cause us to conclude that
the two tricritical models show significant differ-
ences in critical behavior, despite the fact that they
are both three-dimensional Ising models.

critical point is given by

T"' '* (h) = lT"'(h) —(l —1)T" "(h) (2.2)

I I.O

This extrapolation procedure was complemented
by calculation of complete Neville-table sequences
for the critical temperature at various fields. In
this method the mth-order set of extrapolants (tI"'j
is defined by

t (m) [lt (m-1&
(l )t (m-1) ]/m (2. 3)

where t&
' = p~, the original ratios. We show in

Table II Neville sequences for fields from
h = 0.0-0.5. The t&" entries coincide with the se-
quence determined from Eq. (2. 1). The critical
temperatures from Table II are estimated to be
ks T,(0.0) = 10.15s 0.01, ks T,(0.1)= 10.07 + 0.02,
ks T,(0. 2) = 9.85 a 0.02, ks T,(0. 3) = 9.48 a 0.02,
ks T, (0.4) = 9.00 a 0.03, and ks T,(0.5) = 8.46 a 0.04.

The Neville-table estimates are all quite consis-
tent with the final estimate of Eq. (2. 2), the T,s' '*.
The latter seemed reasonable choices for best es-
timates of the critical temperatures. The sequence
of exponents ye&'

' is then calculated according to

y ' '=1-l[1—p, (h)/ksT' ''*(h)] (2.4)

Finally, from the set b,&'8 j, we form the set of
extrapolated exponents (y,,"+ '*j defined by

II. CRITICAL-LINE ANALYSIS

A. Ratio Method I0.5 h=o
h=OI

The plots of the ratios pg(h) vs 1/l for the nnn X„
series along paths of h -=pH/ksT ranging from 0 to
0. 6 are shown in Fig. 1. These series do not ex-
hibit the oscillations observed in ratio plots for the

X,& series of the meta model, and estimates from
them may be made directly suithoat the necessity of
a bilinear transformation. Examination of the ratio
plots reveals a slight downward curvature, which is
more pronounced at higher h. To have our analysis
take account of this curvature, we use both a
slightly modified version of the ratio method and al-
so Neville-table analysis. The estimates from
these methods, along with the eighth-order Pade-
approximant analysis of Sec. II B, were all mutual-
ly consistent and hence lent confidence to the cor-
rectness of the critical temperatures which were
determined.

First, we define the sequence of estimates
ksT, "(h) by

ksT, "(h) = lp, (h) —(l —1)pi ~(h) . (2. 1)

We then consider the sequence of linear extrapo-
lants of this sequence, where the lth extrapolated

IO.O

h=0. 2

h =0.3

9.5

h =0.4

9.0—

8.5—
h =0.5

8.0— h =0.6

I

I

4

7.5
I

3

I I I

I I I 0
6 7 8
1/g

FIG. 1. Ratio plots p& vs 1/l for staggered-suscepti-
bility series Xwq(h) at various values of h = gH/kT (cf.
Fig. 4 of Paper I).
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(l, 8) ex
E

(l, 8 g 1qy(l 1,8) I.25

In Fig. 2 we show in a Iil plot the estimates for
y,t for the h= 0 X,& series. The lower curve is the
set (y,,"8}, while the upper curve is the set
(y,&'8"Q. The latter set is seen to converge to the
expected value of 1.25 slightly faster than the for-
mer. Figure 3 shows the extrapolated exponents
for several nonzero field paths. We emphasize that
although we have plotted the y,t estimates on a very
finely grained scale in Figs. 2 and 3 with three dec-

I.24—

TABLE II. Neville-table estimates for critical tem-
peratures for various h paths. The entry t&

' is given by
Eq. (2.3) in the text.

l.23 I

I

4

I

I

5

I

I

6

I I

I I

7 8

t(i)
'~

3 10.28
4 10.20
5 10.18
6 10.17
7 10.17
8 10.17

3 10.20
4 10.13
5 10.10
6 10.09
7 10.09
8 10.09

10.17
10.12
10.15
10.16
10.16
10.16

10.10
10.05
10.07
10.08
10.08
10.08

t (4)
l

t(5p

10.03
10.08 10.09
10.09 10.10 10.10
10.09 10.09 10.08 10.08
10.08 10.07 10.07 10.06 10.06

(c) a=0.2

10.11
10.16 10.17
10.17 10.18 10.18
10.17 10.16 10.16 10.15
I0.16 10.15 10.14 10.14 10.14

FIG. 2. Ratio-method estimates of exponent y,t for
zero field, h=o. The lower sequence is the set deter-
mined from Eq. (2. 4), while the upper sequence is a set
of linearly extrapolated exponents, calculated according
to Eq. (2. 5).

imal places shown, the estimates are to be re-
garded as accurate to only two decimal places.
With series of this length no real significance
should be attached to the last decimal place; we
have included three decimal places in the figures to
convey somewhat more detailed information about
the degree of convergence than would be possible if
we rounded off to the nearest hundredth. Rounding
off would reduce several of the different field plots

9.99
9.91
9.88
9.87
9.86
9.86

9.90
9.83 9.81
9.83 9. 83 9.84
9.85 9.86 9.87 9.88
9.85 9.86 9,86 9.86
9.85 9.85 9.85 9.83

(d) a=0.3

9.86
9'. 83 9.82 l.25—

h =0.4
h =0.3
h= 0.2
h =0.5
h =O. l

h=O

9.65
9.57
9.53
9.51
9.50
9.50

9.59
9.48 9.44
9.46 9.45 9.45
9.48 9.49 9.51
9.49 9.50 9.51
9.49 9.49 9.48

(e) 8=0.4

9 ' 52
9.50 9.50
9.47 9.46 9.45

l.24—

y (2)

h= 0.6

9.21
9.12
9.06
9.04
9.04
9.03

8.69
8.59
8.52
8.50
8.49
8.49

9.18
9.03 8.98
8.99 8.97
9.00 9.02
9.02 9.03
9.02 9.02

8.69
8.48 8.42
8.43 8.39
8.46 8.48
8.47 8.49
8.47 8.47

8.96
9.05 9.07
9.04 9.04
9.01 8.99

8.39
8.52 8.55
8.49 8.48
8.45 8.42

9.03
8.97 8.97

8.47
8.41 8.40

l.22
I

3

l

5

1/R
FIG. 3. Ratio-method estimates of exponent y,&

for
several nonzero field paths as well as j'g =0. These are
sequences of linearly extrapolated exponents. Note the
fineness of the scale of the ordinate. The last decimal
place in the estimates is not, however, to be regarded
as significant.
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TABLE ID. Estimates of exponents y, t and critical
temperatures T, for various h = pH/k&T, values. Here
y,", is the last linear extrapolant of the sequence of Eq.
(2. 5) in the text. The k~T~ arethek&T~ ~~ determined.
from Eq. (2. 2). The last column shows the critical tem-
perature obtained from PA's to [y~t(h)j . Besides the
extreme closeness of the p+& to —,the excellent agree-
ment between the two sets of T~ strongly supports the uni-
versality-hypothesis prediction along the second-order
line.

0
0.1
0.2
0.3
0 4
0.5
0.6
0.7
0.8

1.25
1,25
1,25
1.25
1.25
1,25
1.24
1.22
1.18

10.15
10.07
9.84
9.47
9.00
8.45
7.85
7.24
6.64

10.15
10.07
9.84
9.48
9.00
8.45
7.84
7.23
6.61

of Fig. 3 to a string of points right at 1.25, mis-
leadingly implying some sort of perfect convergence.

The slight curvature on these scales is therefore
not, we believe, a real effect pointing to values of

y,& higher than 1.25. Consider, for example, the
behavior of the zero-field points of Fig. 3. For h
= 0, the staggered susceptibility must diverge the
same way as the direct susceptibility in the corre-
sponding Ising ferromagnet, for which case the ex-
ponent is well established to be 1.25. Yet the zero-
field points show some curvature which is mimicked
by the finite-field plots. We think any systematic
trend is also ruled against by the decrease of the
estimates for the fields beyond h = 0.4.

As a final consistency check using ratios, we
analyzed the series by fixing the exponent at 4 and

examining the sequence of T,'s then obtained.
While the sequence of T, 's fell slightly lower than
the T,' ' ", they form an increasing sequence whose
trend is to values at least as high as T, ' '". The
estimates obtained in this method are consistent
with the Neville-table estimates.

Table III summarizes some of the information
obtained from ratio-plot analysis for several field
paths. Only two significant decimal places have
now been retained in the y, t entries.

B. PadeApproximants

The same Pads-approximant (PA) operations were
performed for the nnn model series as for the meta
series, and we therefore present a relatively brief
discussion here. The log-Pade results for X,t se-
ries along several different h paths are shown in
Table IV, and Table V gives the PA's to these se-
ries raised to the —', power. Unlike the meta series,
the log Pades here appear to converge reasonably

,(0) = qi i
J'i

i
(2. 6)

or pH, (0)=6 for the parameters q&=6, J&= —I.
The calculated singularities hook downward for

large h, and it is quite plausible that they represent
the spinodal" curve, i.e. , the analytic continua-
tion of the critical line into the ordered antiferro-
magnetic phase. Joining the calculated phase
boundary to the T = 0 critical field value by a curve
that meets the critical line with continuous slope
locates the TCP in the region of k&T, —= 6.40, or h
=0.84.

well. The exponents they predict fall systematical-
ly lower than 1.25, however, and the critical tem-
peratures are slightly greater than those predicted
from the ratio method. The departure from 1.25
increases as the field increases, although even at
h = 0 the exponent converges to only 1.23. In light
of our estimates from the ratio method and the ad-
ditional evidence from the PA to ()(„)~~s operation,
we believe this decrease in exponent to be a spuri-
ous effect which would not occur were sufficiently
longer series being analyzed.

It is interesting that a somewhat similar de-
crease of exponent is observed as the critical tem-
perature decreases toward the tricritical tempera-
ture in Oitmaa's high-temperature series analysis3
of the Blume-Emery-Griffiths lattice model for
Hes-He4 mixtures [Eq. (2. 2) of I]. In that model,
the direct susceptibility is the strongly divergent
quantity along the critical line; the universality hy-
pothesis predicts it diverges with a constant ~ pow-
er. As in the models we have considered, the se-
ries become more irregular at values of the field"
& parametrizing the critical line which lie closer
to the TCP, and the series analysis indicates
singularities beyond the point estimated to be the
TCP.

The last column in Table III gives the singulari-
ties ks T, (h) estimated from PA's to [X,t(h)] ~' along
the various h paths. Agreement with ksT,"(h) is ex-
cellent up to h—=0.7, and even the h=0. 8 values dif-
fer by only 0.5%. As in the meta analysis, we no-
tice that when T, (h) & T~s(h), the estimated exponent

y, t is less than 1.25. We believe the extreme prox-
imity of y, t to p, and the excellent agreement be-
tween the T, (h) and T, (h) provide strong support
for the universality hypothesis prediction of a con-
stant g exponent for y,t along the second-order line,
at least for fields up to those corresponding to h
=0.6 (iJ.H = 4.7). —

We take the T, (h) estimates as the best values
with which to map out the critical line in the H-T
plane. As for the meta model, h is incremented up
from 0 by steps of 0.02, and the set of phase-
boundary points (T„H,) shown in Fig. 4 is located.
The T = 0 critical field is given by arguments simi-
lar to those applied to the meta model and we obtain
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TABLE IV. Log-Pads' tables for X~& series along vari-
ous h paths. In parentheses below each pole is the cor-
responding residue. The notation denotes the fact
that no physical pole appeared in that entry of the table.

6.62
(1.15)

TABLE IV. {Continued)

(e) h=0. 8
6.70 6.69
(1.06) (1.07)

10.14
(1.25)

10.16
(1.24)

10.16
(1.23)

10.16
(1.23)

10.16
(1.24)

10.16
(1.as)

10.16
(1.23)

10.16
(1.23)

10.16
(1.23)

10.16
(1.23)

(a) a=o
10.16
(1.as)

10.16
(1.23)

10.16
(1.23)

10.16
(1.23)

6.69
(1.07)

6.68
(1.ov)

e.70
(1.ov)

6.69
(1.ov)

6.69
{1.ov)

6.67
(1.09)

10.16
(1.2s)

9.82
(1.25)

9.85
(1.23)

9.85
(1.23)

9.85
(1.23)

9.85
{1.24)

9.45
{1.14)

8.98
(1.25)

(b) a=o.a

9.85
(1.2s)

9.86
(1.23)

9.85
(1.23)

9.85
(1.as)

9.85
(1.as)

9.85
(1.23)

9.84
(1.24)

9.03
(1.2o)

9.03
(1.21)

(c) I =0.4
8.98 9.03
(1.25) (1.21)

9.85
(1.2S)

9.85
(1.as)

9.03
(1.21)

9.03
(1.21)

9.85
(1.23)

9.03
(1.21)

C. Mean-Field-Theory Predictions

Finally, we mention and compare with the mean-
field-theory (MFT) predictions near the Neel point.
The series value for the Neel temperature is
ks T„""= 10.15 & ks TN

' = pg l Jg I +qpJ2
——6+ 12 (2)= 12.

Despite the discrepancy in absolute critical temper-
atures, the shape of the phase boundary near TN is
again fairly well described by MFT, which predicts
(pH, )'=14.2ks(T„—T,). Figure 5 is a plot of (p&,)'
vs ks(T„- T,) for points near T„, along with a few
straight-line fits. The MF line is seen to be close
to the calculated points at low fields.

III. TRICRITICAL-POINT ANALYSIS

In Sec. II, we estimated the tricritical point to
occur for h&

=—0.84. Along this path, the suscepti-
bility series is

X(k=0.84)=0.529666+ 3.41285P +15.0970PS

9.03
(1.21)

9.03
(1.21)

9.02
(1.21)

+ 63.6808P + 367.884P + 2056. 62P

+ 11709.OP'+ 68 793.OP . (S.1)
9.03
(1.21)

9.03
(1.21)

8.08
(1.06)

V. 79
(1.28)

V. 89
0..16)

7.89
{1.16)

7.87
(1.19)

6.85
(o.9v)

9.03
(1.21)

7.89
(1.16)

7.89
(1.16)

7.89
(1.17)

(e) h=0. 8

6.65 6.69
(1.11) (1.07)

(d) a=o.e

7.82 7.89
(1.a4) (1.1e)

7.91 V. 89
(1.15) (1.16)

V. 89
(1.1e)

V. 90
(1.15)

6.68
(1.08)

7.88
(1.18)

6.56
(1.9a)

Although the coefficients are all positive and mono-
tonically increasing (in contrast to the meta model),
ratio methods still do not produce convergent
enough results to be of significant value. However,
the X series is evidently better behaved than for the
meta case, and we will see shortly that the Pade
methods do indeed produce rather well-convergent
results.

Turning our attention momentarily to X,&, we show
in Table VI the PA to the series [X„(k=0.84)]'~'.
From this table we estimate a critical temperature
of k&T, = 6.37 + 0.02. The log-Pade operation to
X(0. 84) yielded the table of singularities and resi-
dues shown in Table VII. Convergence, although
not excellent, is far superior to the corresponding
table for the meta model, Table VI of Paper I.
Most of the singularities of Table VII are in the
range k&T, = 6.4a0. 1, in good agreement with the
X q singularity. Furthermore, one may see that the
exponent y, lies in the range y„,-0.2 —0.3, with
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I
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I
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I
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6.0--

5.0-
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FIG. 4. Phase boundary
for nnn model with J~ = —1,
J2 ——+ &. The second-order
portion of the phase line is
shown solid, and the first-
order portion dotted. The
series analysis indicates
singularities below kz T~
—= 6.4, which hook down-
ward into the antiferromag-
netxc phase.
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a value about 0.25 for critical temperatures closest
to k&T, = 6.4. To pin down the exponent and tricrit-
ical temperature more precisely, we carry out the
procedure of raising the X series along various
paths near h=0. 84, including )&(h=0. 84) itself, to
a variety of powers equal to and near the inverse
of 0.25.

A sample of the results is presented in Tables
VIII-X. Since the interpretation of the data follows
similar lines as for the meta model of Paper I, we
give only a brief discussion. Shown in parts (a)-(c)
of Table VIII are Pads tables for the X(0. 84) series
raised to the inverse of 0.2, 0.25, and 0.30 respec-
tively. It is evident that convergence of the X

Pads [part (b)] is the best; moreover, it converges
to a critical temperature in excellent agreement
with that from Table VI. This is also the case
along h= 0. 82 and h= 0.86. Convergence and con-
sistency with the X,t root are best for g'. How-

ever, the agreement between the X and X,& roots is
not quite as close as for h = 0.84.

The next two tables display the Pades to g raised
to the same set of powers as in Table VIII, but
along paths slightly further away from h = 0.84.
Tables IX and X are for h = 0. 80 and 0.88, respec-
tively, for which the I(„analysis locates singulari-
ties at k&T,a 6. 61 and 6. 13. Convergence for the

Pade is now not nearly as good as for h = 0.84,
nor is the X Pade clearly the best convergent of the
three powers shown. However, neither the X nor

Pades along either path reproduce the corre-
sponding y,t critical temperature with the accuracy
of X in the h = 0.82-0. 86 range.

We conclude that for this model, h& ——0.84+0.02,
corresponding to T,/T„=0. 88+0.01. As in the
meta model, the location of the TCP was indepen-
dently confirmed by Monte Carlo methods.

The susceptibility at the tricritical point behaves
as

(8.2)

with an uncertainty in the exponent y, of at most,
0.05. We are able to be somewhat more confident
about the error bars here than in the meta model.
The value for Z obtaineds by Monte Carlo techniques

6.0

5.0—

40—

x 30—

2.0—

0&I I I I I I I I I I I I I I I I I I I I

0 Q. io 0.20 0.30 0.40 0.50
kk[TN TC (H)]

FIG. 5. Plot of (pH, ) vs k~tT, +) —TNj. Lines of
three different slopes are drawn for comparison. The
mean-field-theory prediction is m =14.2, which is clear-
ly not the best fit at higher fields (pR~ & 1). For very
small fields, where we expect the square law to hold best,
it is impossible to distinguish the three lines (cf. Fig. 8
of Paper I).
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TABLE V. Singularities givenby PAtableto g&} for

various k paths ~

TABLE VI. Singularities given by PA's to the series
g,~(8=0.84)] ~ . The critical temperature is estimated
to be k&T =6.37 + 0.02.

(a) a=o
10.14 10.15
10.15 10.15
10.15 10.15
10,15

2 10.13 10.13 10.15 10.15
3 10.13 10.15 10.15
4 10.14 10.15
5 10.15 10.15
6 10.15 10.15
7 10.15

6.25
6.27
6.43
6.36
6.37

6.29
6.45
6.35
6.37

6.35
6.36
6.37

6.36
6.37

6.37

9.80
9.82
9.83
9.83
9.84
9.84

8.95
8.97
8.98
8.98
8.99
9.00

9.82
9.83
9.84
9.84
9.84

8.97
8.98
9.10
9.00
9.00

(b) g=0.2
9.83
9.84
9.84
9.84

(c) a=0.4
8.98
9.12
9.01
9.00

9.83
9.84
9.84

8.98
9.00
9.00

9.84
9.84

9, 00

tice with J's/Z, = —2, and on the simple-cubic lattice
with Zs/J'i = ——,'. For both cases MFT predicts that
T,/T„= —',. The data, however, indicate that T&/T„
=0.35 on the square and =—0.42 on the sc lattices,
values greater than —', . Hence no regular trend in
the behavior of the MFT prediction for T,/T„ is
easily recognizable. Finally, we mention again
that MFT predicts no divergence in X at T& as the
TCP is approached from above, while our numeri-
cal evidence suggests that a law of the form of Eq.
(3.2) is obeyed.

7.79 V. 79
V. 79 7.79
7.80 7.56
7.82 7.84
V. 83 7.84
7.84

(d) a=o.6
7.80
7.57
7.82
7.84

6.53
6.50
6.54
6.5V

6.59
6,60

(e) I =0.8
6.50 6.54
6.52 6.71
6.68 6.60
6.60 6.61
6.61

V. 82
V. 84
7.84

6.59
6.61
6.61

7.84
V. 84

6.61
6.61

IV. TRICRITICAL-POINT SCALING

Riedel developede a scaling theory for TCP's in
close analogy with parameter-scaling theories
earlier applied to anisotropic magnetic systems.
He formulates a principle of competition" in the
TCP region between TCP-dominated critical behav-
ior and critical line-dominated behavior. This com-
petition leads to crossover and double-power law"
effects which may be predicted in terms of the scal-
ing powers and fields.

Ke find it most convenient in our discussion to
adopt the generalized homogeneous function (GHF)
approach to TCP's of Hankey et el. a, who extended
Riedel's work to the full three-dimensional field
space of Fig. 1(c) of Paper I). It is crucial to choose

on the same model with different parameters (Ja/8,
= —~ instead of --,'), was y, =0.29+0.18, which is
within the error bars of our series result.

Comparison with Mean-Fieid Theory

The ratio T,/T„ is predicted by MFT to be

TABLE VII. Singularities given by log-Pads method
to g(h = 0.84) series. Beneath each pole is the correspond-
ing residue. The notation denotes the fact that no
physical pole appeared in that entry.

(3.3)

for J'&= —1, J'2= &, q&-—6, q&=12. Thus MFT evi-
dently does somewhat better in estimating this ratio
for the nnn model than the meta model. Again the
MF prediction is greater, but only slightly, than
the series result. However, a look at the Monte
Carlo results~ in the nnn model shows that it is
wxong to generalize that MFT will always overesti-
mate this ratio. In the Monte Carlo study, calcula-
tions were done on the two-dimensional square lat-

6.51
(o.24)

6.01
(0.34)

6.46
(o.23)

6.40
(o.25)

5.50
(o.47)

6.15
(0.30)

6.28
(o.27)

6.41
(o.24)

6.56
(o.21)

6.43
(o.24)

6.53
(o.21)

6.49
(o.22)

6.48
(o.23)

6.48
(o.23)
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6.32
6.73
6.68
6.60
6.57

5.91
6.37
6.39
6.38
6.39

5.60
6.10
6.15
6.17
6.20

(a}p=5
7.03 7.15
6.69 6.63
6.85 6.58
6.54

(b) p=4
6.89 6.57
6.39 6.38
6.38 6.39
6.39

(c) p=P
7.00 6 ~ 31
6.18 6.21
6.24 5.98
6.52

6.57
6.60

6.35
6.39

6.19
6.24

6.61

6.42

6.32

TABLE VIII. Singularities given by PA's to fx Q = 0. 84)P,
with (a) p=8, (b) p=4, and (c) p=p. It is clear that con-
vergence is best for the series g4, part (b), from which
the critical temperature is estimated to be 6.39 a 0.01.
This is in excellent agreement with the value of Tc ob-
tained from the X& analysis along this path (cf. Table V).

rection x& of Ref. 2, and one in the plane of the CXS
but not parallel to the critical line at the TCP, the
"weak" direction 7z. Specializing to our antiferro-
magnetic models, we take x& to be H~, and 7z or-
thogonal to x~ in the H-T plane, so that the three
scaling fields (7„a's, 7t) at the TCP are all mutual-
ly "orthogonal. "' Then the scaling hypothesis at
the TCP may be stated by assuming that the singu-
lar part of the Gibbs potential obeys the following
GHF equation:

G(x «„x x„&x,)=XG(r„x„x,) . (4.1)

Here A. &0, the a~ are tricritical scaling powers,
and Eq. (4.1) is taken to hold for small values of
the arguments. This equation in turn determines
all TCP exponents, the equation of the critical line
in the plane, I~, as x&~,&™x&, , and the equation
of the crossover curve. The latter is also de-
scribed by x&~„~-x&&„, , or xz~„~-x3&», where pap/ae ii»
-=a,/a, is the crossover exponent. These equations,
the formulas for the TCP exponents obtained by ap-
propriate differentiation of Eq. (4. 1), and the scal-
ing "laws" relating them are described in detail
els ewhere

The direct susceptibility exponent ) is given by

y= —(1 —%,)/s, , (4.2)

the scaling fields at the TCP correctly. 9 In parti-
cular, the only direction at the TCP which is singled
out is one parallel to the phase boundary there, and
this is taker. to be the 73 direction. The other two
scaling directions consist of any vector pointing out
of the coexistence surface (CXS), the 'strong" di-

provided the TCP is approached along a path not as-
ymptotically parallel to the critical line I &. A con-
stant H or T path, or the H/T = const path used in
our calculations, falls in this category. '~ On the
other hand a constant magnetization path M = M&

would pick up a different exponent since such a path

TABLE IX. Singularities given by PA's to (t(8=0.80)]~,
with same powers p in parts (a), (b), and (c) as in Table
VII.

TABLE X. Singularities given by PA's to I)((k = 0.88))~.
with same powers p in parts (a), @), and (c) as in Table
VII.

6.31
6.81
6.79
6.76
6.74

5.90
6.45
6.49
6.51
6.53

5.59
6.19
6.25
6.25
6.29

(a) p=5
7.40 6 ~ 97
6.79 6.76
6.81 6.74
6.73

(b) p=4
7.73 6.64
6.51 6.52
6.54 6.46
6.26

(c) p=~
9.14 6.43
6.31 6.37
6.44 6.72
6.62

6.71
6.75

6.50
6.54

6.35
6.39

6.77

6.63

6.61

6.29
6.64
6.56
6.43
6.39

5.88
6.27
6.27
6.23
6.23

5.57
6.00
6.04
6.05
6.07

(a) p=5
6.84
6.59

6.35

6.49
6.41

(b) p=4
6.57 6.71
6.27 6.23
6.27 6 ' 23
6.23

(c) p=~
6.46 6.23
6.05 6.06
6.06 6.03
5.96

6.43
6.45

6.20
6.23

6.03
6.08

6.45

6.25

6.12
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is expected to come in parallel to I j. One would ob-
serve an exponent renormalized by p to give y„.&
= y/y = —(1 —2a~)/as. Our values for y «and y
obtained at constant 1'& = i&.H/k»T paths, imply that,
if scaling holds,

2
+2 (me«) = 3 y (4.3)

@3 (nnn) =
V (4.4)

A second scaling hypothesis with different scaling
powers appropriate to the critical line L& may be
made. When combined with the TCP scaling hypoth-
esis, a double-power" law for thermodynamic func-
tions results inside the crossover region where both
laws are simultaneously assumed valid. Quantities
here possess singular amplitudes characterized by
a mixed exponent containing both TCP and eritical-
line scaling powers. For example, the staggered
susceptibility is predicted" to vary as

~e

xs "st "st (x&~Pxs ) st (4.5)

Here y,t is the critical-line exponent of ~, y, t is an
unknown TCP critical exponent defined on a path of
approach not parallel to I.,[y„=—(1 —2a, )/aa], and
k describes the critical line x~~s& = —kxs jss&. The
second factor (xz+kxs'~s) in Eq. (4.4) measures the
distance of a point (x„x,) from the critical line,
and corresponds to [T —T, (H)] in X„-A(T,)[T
—T,(H)] ", where now the amplitude A(Ts) is shown

explicitly. The divergence with a power of y,t = g
expresses the smoothness-post ~late prediction that
close enough to I one will see ordinary critical-
line exponents. The amplitude function x3"&

corresponds to A(Ts), and clearly contains infor-
mation about yIt. If 2, and a, are known, then pit
could be used to determine ez. Thus in principle
all three scaling powers c& could be obtained from
a knowledge of the in-plane (H T) amplitu-de behav-
ior of X,t, the shape of the phase boundary at the
TCP to give y =as/ua, and a value for y which yields
by itself the value for as.

Despite this prescription's simplicity in principle,
unfortunately in practice it cannot be carried out be-
cause of the numerical difficulties and uncertainties
present in the TCP models. We believe the location
of the TCP in these models is not precise enough to
afford a reliable estimate of q from the curvature of
the phase boundary, nor is the phase boundary it-
self accurate enough near the TCP for a sensitive
measurement. Even if the TCP were known more
precisely, to calculate y entails imposing a set of
tangential and normal coordinates on the phase
boundary at this point, a process which is subject
to appreciable error.

The amplitude behavior of the function X,t may be
ascertained from the Pade tables to (X„)&~"s&
= (X,q) . It would be desirable if the amplitudes
were observed to fall sharply to zero at a certain

value of external field, for then this could be used
to help identify and pin down the TCP. For the
meta model, however, it was observed that while
the amplitudes decrease as the phase boundary is
followed up to higher fields, they do not fall strictly
to zero. The amplitudes continue decreasing be-
yond h =—0.V in the region where the hook occurs.
Thus it is impossible to provide a value for y„
from this data; me feel, though, it can safely be
claimed that y,«me«, &y,t because of the general
decreasing trend in the amplitudes. For the nnn

model, the X,t amplitudes behaved quite differently,
remaining quite constant along the phase boundary,

up to and beyond the TCP. This behavior mould

suggest that @st(nn» = y„.
Double-power laws of the form of Etl. (4. 5) are

not entirely abstract, for they have been verified
numerically using series expansions for another
problem where there is crossover between hvo uni-

versality classes. This latter mork is for an Ising
model with fixed in-plane interactions J and weak
between-plane bonds RZ (R & 0) in zero external
field. As 8- 0, the lattice crosses over from
three- to tmo-dimensional behavior. The special
symmetry point analogous to the TCP is the point
8 = 0 in the three-dimensional "field" space of T,
0, and R. We note that this problem has numerous
significant advantages over the TCP models from
a ealculational point of viem. The special point
where a changeover of exponents occurs is known

precisely, and the scaling directions are the same
as the physical axes in the field space, i.e. , 8
and [T —T,(R = 0)]. Of course, the two-dimensional
Ising exponents are either known exactly or known

very mell from series, and even the crossover ex-
ponent for this model has been rigorously deter-
mined. Thus double- power laws here are not of
practical use in actually finding unknown exponents.
Nonetheless, this model illustrates the validity of
double-power laws in at least one instance, and

provides several tests of our methods and programs.
It shoms hom double-power laws have the potential
to be quite powerful in situations where exponents
are not all known in advance.

We conclude this section with a brief survey of
the status of TCP scaling in the three TCP models
where series or Monte Carlo work has been done-
the meta model, the nnn model, and the BEG mod-
el. The Monte Carlo work ' 6 has been able to
supply estimates for the tricritical exponent P for
the meta and nnn models: P „,= 0. 5~ 0. 1 and

P, = 0. VB+ 0. 2, respectively. Scaling theory pre-
dicts P = (1 —0,)/T&„so these values coupled with
the az of Eqs. (4. 3) and (4. 4) may be used to ob-
tain a3. The result is that 23 -—uz for each model,
which consequently predicts p=—1 and a nearly linear
phase boundary at the TCP. While such behavior
is not impossible, it seems highly unlikely. Our
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estimates of the curvature of L& near the TCP,
which for the reasons explained above must be re-
garded as very rough, give p= & for the meta mod-
el, and p=0. 5-0. 7 for the nnn model. One could
of course not rule out a change in curvature very
close in to the TCP.

In the BEG model, the series data of Ref. 17 is
fit by a sum of singular terms rather than the prod-
uct form of Eq. (4. 5). Assuming that the term
whose amplitude is finite at the TCP furnishes an
estimate for the TCP exponent, it may be shown
that the scaling-predicted value for the amplitude
which vanishes at the TCP is consistent within the
error bars with the quoted values for p and the
power describing the vanishing amplitude. " More
recent calculations on this model by the same
group, however, indicate a possible violation of tri-
critical scaling. "

V. CONCLUSIONS

In this work we have obtained high-temperature
series expansions for two spin- & Ising antiferro-
magnets with tricritical points, the meta model
and the nnn model, and have studied their respec-
tive phase diagrams. The phase boundary in the
H-T plane is mapped out, and estimates made for
the location of the TCPs and the direct tricritical-

,susceptibility exponent y in each model. The main
results of the calculations are summarized in the
phase diagrams of Fig. 7 of Paper I and Fig. 4 of
II, and in the predictions for y of Eq. (5. 2) of I
and Eq. (3. 2) of II. Further, the series evidence
supports the validity of the smoothness-postulate
prediction of a constant exponent y, t=T for a wide
range of fields along the second-order phase-transi-
tion line in both models.

Scaling at the TCP is discussed, especially dou-
ble-power laws predicted to hold in the crossover
region near the TCP. Our values for y yield values
for the TCP scaling power am ("weak"-direction
scaling power) for each model. However, the in-
herent uncertainties in the series analysis and the
spinodal continuation of the critical line make other
scaling powers difficult to predict (assuming scal-
ing indeed holds). A reliable determination of the
crossover exponent p is impossible to make. The
behavior of the amplitudes for y „allowed us to
conclude only that the tricritical-staggered-sus-

ceptibility exponent y, t is less than y, t for the meta
model, and about equal to y„ for the nnn model.

The question of whether TCP scaling is obeyed
in these two models still is open. The recent
Monte Carlo results' for P would seem to cast
not inconsiderable doubt upon at least a strong
tricritical- scaling hypothesis applicable to both
the first- and second-order lines. Series work
on the. BEG model produces results which may be
inconsistent with TCP scaling.

In conclusion, we note with interest and curios-
ity that these two models definitely show significant
differences in behavior, the most striking being
the different values for y. The amplitude behavior
of g, t also is markedly different, and the spinodal
hook goes up in the meta model, whereas it goes
down for the nnn model. From universality argu-
ments, one might expect that these models should
behave similarly, since they are both three-di-
mensional Ising models. We do not know the an-
swer to this puzzle, but can only speculate that
there are several different kinds of TCPs in na-
ture, both in models and probably in real materi-
als as well. Further studies on TCP's, both mod-
el calculations and measurements on TCP proper-'
ties of metamagnetic materials, would be very use-
ful in elucidating some of these questions. Series
work in conjunction with Monte Carlo work on the
same TCP models seems to be a fruitful combina-
tion, especially if longer series and Monte Carlo
calculations on bigger lattices become available.
Looking further into the future, perhaps it will be-
come possible to devise and study microscopic
Hamiltonians whose critical behavior more closely
simulates that in particular metamagnets when
more experimental tricritical data becomes avail-
able, or even more complex systems (with, e.g. ,
spin-flop transitions).
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High-temperature series expansions are used to test the reduction hypothesis of IGuianofFs operator
algebra for the three-dimensional fcc Ising model with spin s = 3', 2, ce. Agreement with our data is

convincing. Numerical values are given for the coupling coefficients between the order parameter p, and

p,
3 and between between p, and the local energy density.

I. INTRODUCTION

In 1969 Kadanoff proposed an "operator algebra"
for thermodynamic. critical fluctuations near sec-
ond-order phase transitions. According to this
hypothesis there are in the critical region only a
finite number of essentially different local oper-
atorse (r), a =i, 2, .. ., having divergent critical
Quctuations. With each such fundamental critical
operator is associated a critical index &o (now

called the anomalous dimension of e, ') such that

&e &
ft tv(4l~ kl j (l)

&@ (r}e,(5)&-&e &&eg- „~„,„, ,

where 0& t = (T —T,)/T, «1, r»a (lattice spacing),
and external fields are set to zero. The amplitude
8 is constant in the critical region; D z(x) is a
scaling function; v is the correlation length index.
(d*, the anomalous dimension of the vacuum, van-
ishes if two-exponent scaling holds. The "reduc-
tion hypothesis" ' then states that any local opera-
tor Q(r) can be expressed near the critical point
as the linear combination

Q(r)- Z Ao~e~(r) + nonsingular Parts,

and in particulax for a nearby product of two fun-

damental operators

e,(r) e (r') =Z A „(r —r')e„[-,'(r+ r'))

+nonsingular parts, (4)

provided ~ r - r'
( «$(t)- got

" (the coherence
length).

Kadanoff and Ceva5 succeeded in constructing ex-
plicitly the critical algebra for the two-dimension-
al Ising model in zero field, and Kadanoff' showed
how a knowledge of which coupling coefficients
A ~ „are nonvanishing may serve to determine the
critical exponents, thus deriving for the first time
correct critical behavior by a method other than
exact solution. Direct construction of the opera-
tor algebra has not so far been feasible for any
other system; however, the recent renormaliza-
tion group work initiated by Wilson now provides
a systematic framework in terms of which the
relevant eritieal operators can be identified and
the coupling coefficients (structure constants) A

can in principle be evaluated.
Numerical tests of (3) and (4) have not been re-

ported in the literature and the coupling coefficients
are not in general known. It is the purpose of
this paper to test the reduction hypothesis in the
context of the three-dimensional face-centered-
cubic spin-s Ising model in zero magnetic field
by the use of the high-temperature series expan-


