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Generally, in a magnetic material the magnetostriction constants X,«and X», are quite different. In the

present paper we take this fact into account in a new calculation of the ferromagnetic resonance in

polycrystalline magnetostrictive films under large isotropic strain. The results are quite different from those

predicted by the Macoonald theory, where it was supposed that X,« = X»&. The calculation presented here

is based on the independent-grain approach with randomly oriented grains and is expected to be valid when

the strain-induced anisotropy field is of the same order of magnitude or is larger than the saturation

magnetization. The calculation is developed for the case when the applied field is perpendicular to the plane

of the film, and it is assumed that the dc field is large enough to keep the transverse components of the

magnetization one order of magnitude lower than the longitudinal one. An analytical study shows that the

absorption line presents singularities arising from those values of the resonance field that are stationary with

respect to grain orientation. The singularities are located near H, pp, H»p, and H»„which are the

resonance fields corresponding, respectively, to crystallites with [100], [110],and [111]direction along the

applied field. Near H»p the absorption line shows a logarithmic singularity; the condition that a secondary

Peak should be resolved near H lpp is determined. The results are illustrated by a numerical comPutation of
the resonance line where the strain-induced anisotropy field, the elastic constants, and the crystalline

anisotropy are varied independently. Finally, it is shown that the contribution of the crystalline anisotropy

to the total hnewidth can be completely canceled out for a given value of the strain-induced anisotropy. The

theory explains several results obtained in various magnetostrictive thin films, which are listed in the paper.

I. INTRODUCTION

It is well known that when a ferromagnetic or
ferrimagnetic material is submitted to a strain (or
stress), a strain-induced anisotropy field is cre-
ated through the phenomenon of magnetostriction.
In single-crystal samples submitted to an uniaxial
stress or to isotropic planar strain (or stress), the
effect of strain (or stress) on ferromagnetic-reso-
nance (FMR) experiments has been frequently
studied. ' It has been clearly established that
when the strain (or stress} is applied along a given
symmetry axis, one observes a shift 5H in the
magnetic field required for resonance. In partic-
ularly, uniaxial stress was applied to bulk single
crystals, and the X&oo and X&» magnetostriction
constants were deduced from 5H with good accura-
cy. ~ Planar strain (or stress) are generally ob-
served in a thin film deposited on a substrate of
dissimilar material. The planar strain is assumed
to be isotroyic if the film is perfectly adhered to
the substrate. In single-crystal yttrium iron gar-
net (YIG) films the calculated and measured stress-
induced field perpendicular to the film plane-de-
duced from 5H-were in good agreement. In yoly-
crystalline samples the situation has been much
less clear, although isotropic planar strains in-
duced by the thermal expansion mismatch between
film and substrate were frequently observed by
FMR in magnetostrictive thin films. 5 In previous
experimental works, strain was only taken into ac-

count when the strain-induced field was particular-
ly high, and in these cases the theory proposed by
MacDonald. was used. '

In this calculation the isotroyic planar stress
was obtained by averaging the stress contribution
over all possible directions of the crystalline axes
and by using the approximation of isotropic mag-
netostriction Xjoo = X»q. %ith this approximation,
the effective demagnetizing fieM which is to be in-
serted in the well-known Kittel resonance formula
is given by 4',« =4mM+ SX,o/M, where o is the
planar stress, X, is the magnetostriction constant
of the polycrystalline sample, and ~ is the satura-
tion magnetization. This calculation predicts for
a polycrystalline sample a shift in the magnetic
field required for resonance, but the resonance
line shape and the corresponding linewidth should
remain unaffected.

Recently new experimental results were obtained
in polycrystalline ¹iFe20&thin films with large
isotroyic strain. ' The experimental data could
not be explained on the basis of MacDonald's calcu-
lation. Therefore a new calculation has been de-
veloped in which the fact that in most of magnetic
materials X~» is quite different from X»& is taken
into account. %hen &zoo+ X.act MacDonald's theory
is no longer valid and the shift of the resonance
line and its shape is quite different than predicted,
particularly for large strains.

For a correct formulation of the yroblem it is
necessary to calculate first the anisotropy energy
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induced by isotropic planar strain when A, &00 and

X»& are different. Using this expression the reso-
nance line can be calculated-in the same way as
was proposed for polycrystalline samples with
crystalline anisotropy'0-by two basically different
approaches. In the first method the dipolar inter-
action between the different parts of the sample is
taken into account and the stress induced anisotropy
field 5H is considered as a small perturbation.
This calculation is expected to be valid when M' is
much smaller than 4mMO. On the other hand, the
independent grain approximation can be used when

the condition !AH l 4&10 is satisfied. In this
case-following SchNmann's assumptions -dipo-
lar interaction between grains can be neglected,
each particular grain goes through resonance in-
dependently, and the resonance field corresponding
to a given grain depends on its orientation with re-
spect to the applied field.

The aim of the present paper is to present a new

calculation of the resonance line using this last hy-
pothesis. The calculation is developed for poly-
crystalline films of cubic structure, with the ap-
plied dc field parallel to the film normal. The
spirit of the calculation is similar to that given by
Schlomann ' for polycrystalline materials with

large anisotropy. First the magnetic field neces-
sary for resonance is calculated for a particular
grain. In a second step a distribution function
A(H) is calculated by integration and it is assumed
that the absorption spectra P(H) depends on the ap-
plied field in the same way as A(H). Here A(H) is
defined as given by Schiomann: "A(H)dH is pro-
portional to the number of grains which have their
resonance in the range of applied dc field H and
H+dH. " The results are presented in the following
order: In Sec. II we develop the expression of the
modified magnetoelastic energy in presence of iso-
tropic planar strains. It will be shown, in particu-
lar, that the strain and stress hypothesis give the
same results only when the material is elastically
isotropic. In Sec. III, the calculation of the reso-
nance equation and the corresponding absorption
spectra is presented. The validity of the approxi-
mation used in the calculation is discussed. It is
shown that the resonance line presents singulari-
ties, as in the case of ferrites with large crystal-
line anisotropy. The singularities are located at
those values of the resonance field, that are sta-
tionary with respect to grain orientation. Their
behavior is discussed based on an analytical study
given in Appendix B. The magnetocrystalline an-
isotropy will be included also in the resonance for-
mula. In Sec. IV, the results of some numerical
calculations are presented to illustrate the results
of Sec. III, for different values of the strain-in-
duced anisotropy, of the crystalline anisotropy,
and of the elastic constants. An important conse-

[001]

FIG. l. The primed coordinates x'y 'z' correspond,
respectively, to the [100], f010], and t001] cubic crystal
axes. The unprimed coordinates xyz correspond to the
film axes, where the film is normal and the applied dc
field are z directed.

quence of the results obtained is developed here:
For a given value of the stress the total anisotropy,
which is the sum of the magnetocrystalline and the
stress induced anisotropy, cancels out and the line-
width can be reduced to that corresponding to a
single crystal. Finally, in Appendix A a new for-
mulation of Snit' s generalized resonance formula
is given in a Cartesian coordinate system.

II. CALCULATION OF STRAIN-INDUCED ANISOTROPY
ENERGY

%e wish to calculate the magnetoelastic energy
density E, of a particular grain in a polycrystal-
line film subject to externally applied isotropic
planar strain. The calculation applies for crystals
of cubic symmetry. First we introduce two Carte-
siancoordinatesystemsx, y, 8 and x', y', ~' as
shown in Fig. 1 with principal axes of the particu-
lar grain along the x'y'z' direction. Let the x, y, s
direction corresponding to the film coordinate with
the film normal (axis normal to the plane where
strain is applied) along the z axis, and the z, y
axes in the film plane. %hen the direction of the
film normal is defined by the polar angle e mea-
sured from [001]and by the azimuthal angle P mea-
sured from [100]the following rotation matrix can
be determined:

cosa cosP —sinP sine cos

a&& = cosa sinP cos P sina sinP i
~ (1)

~ ~

~

~

—sina 0 cosG

In (1) the direction cosines of the normal to the
film are given by the az values. For the case of
a cubic crystal the magnetoelastic energy in the x
y s coordinate system is

Ip P lg 1 13
Eme Hl(ella' + ~22a2 + eSSa8 )
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+»2(elaalaa+ elsalas+ &asaaas),

where 81 and J3~ are the magnetoelastic coupling
constants related to X&00 and X.»& by the familiar

3equations nfl 2(Cll Cla)~100 and +2 2C44~111&
I I I I&»=e„I„. and &~=a„„.are the components of the

strain tensor as defined by Landau, ' the nq are the
direction cosines of the magnetization relative to
the cubic crystal axes, and &~j and aq are the values
relative to the unprimed coordinates. The elastic
energy is given by"

I 1 Ia I2 Ig I I I
He 2 ll(ell+ aa+ ess)+ Cla(elleaa+ 211 ss+ 222 ss)

+ 2C44(eg+ eels+ eg), (2)

where Cli, Ciz, and C«are the elastic stiffness
constants.

The expression of the magnetoelastic energy in
presence of the external strain was obtained with
the following assumptions: (i) The stress on the
film in a direction normal to the plane of the film
is zero (ass = 0). (ii) The shear strains in the plane
of the film, and normal to the plane of the film are
equal to zero: 2&& =0 with i 41j. (iii) The isotropic
planar strain can be represented by two equal, or-
thogonal, uniaxial strains in the film plane: &11

A relation between the two remaining
components of the strain tensor can be found easily
as follows: First the equilibrium value of &ss is de-
termined from the total free energy E& =E',+E,' by
minimizing Ez with respect to &ss.

4c = (Cla+ 2C44 —Cll)/Cll (10)

For an elastically isotropic medium ~C=0. The
expression of the magnetoelastic energy in the
primed system will be obtained if (7) and (8) are
substituted in the total free energy E, which be-
comes the sum of two terms E, and E „where

(Cll+2C12)(C11- Cla+~C11H~c) a H8 C„(1+2m~,)
11+2 12) ~ % 2 I I~i ~a+ Rs++PPia+n)

f&j

(H1Z&aPels+2&a Z«~aIaP&se~s)
2C11(1+2U&c)

E, represents the elastic energy and it does not de-
pend on the magnetization direction. In E „the
first term depends on the strain and represents the
magnetoelastic energy in a strained crystal. The
last term in E,does not depend on the strain and
represents higher-order contributions to the mag-
netic anisotropy. This term is much smaller than
the first one and generally also much smaller than
the magnetic anisotropy itself. Consequently, it
will be neglected in the following. To obtain the
energy in the unprimed system, we substitute (6)
into E „.which leads to

E JM= RHlaa+ (Hl —Ha)(gal+ baa+ cas

+ dalaa+ ealas+ faaas), (ll)
&ss = 6&r&6ess = 0 ~ (4) 1+as+as=1

The relation between the strain tensor and the di-
rection cosines of the magnetization in the primed
and unprimed system are, respectively, given by

I~~j=~«aji ~as (6)
%sf

aI=Fa„a, . (6)

With hypothesis (2) and (3) the expression (5) be-
comes largely simplified:

where

e = sill a cos a(l —4sln 2P)

5=4sin asin 2P

c = —sinaa(cos a+ —,
' sinaa sin22P)

d = —4 sinaacosasin4p,

e = —sinacosa [cosaa —sinsa(l ——', sin22P) ]

f = ——,
' sin asin4p,

(12)

el( = f + (ass —2)a4$
3

Ie„=a„a„(ass-e}, i9'j ~

When (V) is substituted in (4) we obtain the following
formula for &ss as a function of &:

Hl
1+2~cU

H~

1+2hcP

% = Ã&u —&is~(&+ C»j M

(laa)
6C 1 12 111 ~

11

with

2 Cia —Cli~co
~

&Em+

Cll(1+ McU) 6&ss Cii(1+ 2&c~) '

&& .f~ess =&l~ aP&'4$+2&a~«alelseis
f&j

where

2 3 8 3 3&= +is+as+ +~Hss+@as+ss

= sinsa(cossa+-, ' sin asin22P)

For some particular orientation of the crystalUte
axis Eqe. (11) reduce to a particular simple form:
when the [100]or [111]crystallite axis is along the
film normal, E, is given, respectively, by

E100 ~I Elii ~I ~8' =~ass, ' =~, +const. (14)
M 2 s ' M 2 1+ 3&e

For these cases, E is an uniaxial anisotropy en-
ergy. The normal to the film plane is an easy axis
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when H1 (or, in the case of the [111]direction, Hz)
is negative and is a hard axis when H, (or H3) is
positive. In the literature the isotropic stress ap-
proximation'6 is frequently used. In this approxi-
mation the components of the strain tensor are ex-
pressed, as functions of the corresponding stress
by minimizing the elastic energy and these values
of &~& are substituted directly in the magnetoelastic
energy. 5 When the condition of isotropic planar
stress is written, 0» =0» =o and all other stxess
components equal to zero, we obtain again &qs.
(11), with, however, H, and Hm given by the follow-
ing expression (15) and not by (13):

(15)

The stress 0 is related to the strain by

F0'— (18)

We wish to calculate the resonance field of a
particular grain for the case when the external ho-
mogeneous dc magnetic field is applied along the
normal to the film. The resonance condition can
be obtained from the total magnetic energy E. In
presence of the applied dc field, and including the
crystalline anisotroyy energy E, the total energy
E is given by

(18)E=Ez+Eq+E~ +EI,
j.where E~ = -M 8 is the Zeemann energy, E& = 2

(NM) M the demagnetizing energy, E, the magne-
toelastic energy as defined by Eqs. (11)where H is
the applied external field, N the demagnetizing ten-
sor, and M the saturation magnetization. The an-
isotropy energy in the unprimed coordinate system
can be obtained from the familiar formula EI,
=K1(lX1 CRp + R1 lXS + Qp (RE ) whell the C1 a1'e ex-Pg l2 t2 t2 P2 P2

pressed as functions of the a1 [Eq. (6)].
Using the expression of the energy as given by

Eq. (18), the resonance condition can be obtained
from the generalized resonance formula (A8) of

where I'is Young's modulus and p, is Poisson's
ratio.

For elastically isotropic media

(+11 ~12)(~12+2~1R) ~11 (17)
C11+C12

p C»+ C12

and it can be easily shown that for this case the
values of H1 and H1 given by formulas (13) and (15)
are identical. In the following sections the expres-
sion of the magnetoelastic energy obtained for iso-
tropic strain will be used; the isotropic stress ap-
proximation can be considered to correspond to an
elastically isotroyic media.

III. CALCULATION OF MAGNETIC FIELD NECESSARY FOR
RESONANCE AND STUDY OF RESONANCE LINE

Appendix A, in principle, without any approximation.
In (A8) the first and second derivatives of the mag-
netic energy must be taken at the equilibrium posi-
tion of the magnetization. However, when the ap-
plied field is too low the magnetization vector devi-
ates considerably from the field direction and the
expression of the components of the magnetization
at the equilibrium position becomes extremely com-
plicated. The following hypothesis greatly simpli-
fies the calculation: We use the large-field apProx-
imation, supposing that the applied dc field is suf-
ficiently great that the component of the magnetiza-
tion along it is an order of magnitude greater than
those in the film plane. (This condition can be eas-
ily realized in experiments with a sufficiently high
measuring frequency). When H1 and Hm in Eq. (11)
are both negative (and much larger than the anisot-
ropy field) the normal to the film is an easy axis
and the magnetization vector tends to be aligned
with it. Then the approximation should be valid
even when the applied field is not too great. When
the high-field approximation Mz =M»m„, m„ is
introduced in Kq. (18), the Zeemann and demagne-
tizing energies become, respectively, Ez = —HM&
——HM and E~ = 2mM2z —2mM2. Now the equilibrium
value of m„and m, of the static components of the
magnetization can be easily computed from Eq.
(A3). It can be shown that with the approximation
presently used one can obtain an expression of the
resonance condition valid up to the second order in
H1, H1 and in H, = 2K,/M. At this point of the cal-
culation we suppose that H» H» and H, are of the
same order of magnitude. When H, «AM, as is
the case in most ferromagnetic and ferrimagnetic
materials, H, can be considered as small compared
to 5H, which we have assumed is of the order of
+&M. Nevertheless in some specific cases-as will
be shown in Sec. ID-it is necessary to obtain a
formula valid up to the second order in both H„
H2, and H, . For this order, we need to deter-
mine the equilibrium value of m„and m„only uy to
the first order:

H. -(H, -H, )
H e,

H. - (H, H,)-
H

The generalized resonance formula (A8) can be
simplified when terms leading to third pcwer in
H» H2, and H, are neglected:

(~&&)' = (El)'+ (Ea)' +(Es)'+ &s)'[E11Eaa —(E1a)'1

E1[Xg (E11+Ejg ) (X1E11+XP Egg ) ]

+&3(E1E»+EIE~)

where the subscript 3 corresponds to the z axis.
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When the first and second derivatives of the energy
in (20) are calculated at the equilibrium value given
by (19), the resonance condition for a particular
grain is given by

Hp(a, P)=4pM+Hi —H, —[3(Hi —Hp) —5H, ] U

+[(&o/y)'+a, U' b-, U -c, V]"', (2l)

H&pp = &g/y +4pM +H& —H, ,

Hug=(g/y+4rM+Hp+ p H

with

(28)

The distribution function starts and ends with a
finite value Of the resonance field corresponding to

2 8 2 & ~ 4 2 ~ 2
V=a&ea23a33= 4sin o cos 0. san 2P,

ai = 21(Hi -Hp) —102(H, Hp) -H, + 85H, ,

bc = 5(Hi-Hp) —24(H, -Hp)H, +19H, ,

cq= 6[3(H, -Hp) —15(H&-Hp)H, +14H, ] .

(22)

(23)

H'
2 1 2Q y

Happ Hug = 5H $HN ~ (29)

which are the two other singularities of the reso-
nance line. The total width of the spectra is given
by

If in Eq. (21) we take H', =Hp and H, = b, =0, the
resonance field reduces to H = 4rM +H', +&a/y, which
is the expression given by MacDonald. For Hj =Hz
= 0 we find again the expression given in Ref. 11.

Now the distribution function of the resonance
field strength is calculated. For an analytical
study of the absorption line it is convenient to take
the linewidth Of the individual grains equal to zero.
The distribution function is given by

pf 82f
A(H) = 6(H —H (a, P) )dP, (24)

"0 p

where 5(H -Hp(a, P)) is the Dirac 5 function.
It can be easily shown that this integral presents

singularities for the stationary values of Hp(a P),
i. e. , BHp/Ba = BHp/BP = 0. The three stationary
values deduced from the first derivative of the res-
onance equation (21) are given by H, pp, Hgfp and

H&&& which are the resonance field for grain with
[100], [110], and [111]axis parallel to the applied
field.

In the discussion which follows, the anisotropy
field will be considered as a small perturbation
(H, «4pM) and the independent-grain approxima-
tion —as defined by Schl'omann' —will be satisfied
if 5H&4mM, where

sinot d Qt

J
HqgH= Hg-

C
(25)

H up = 4vM + 4 (Hg + 3Hp +Hz)

with

+ ((&o/y)P+ [ —,'(H, Hp —3H, ) ]P]-'s, (26)

1+a~c
H'

and Ha 1 +~5~

This new anisotropy field depends on the anisotropy
Of the magnetostriction and on the elastic anisotro-
py. It is also proportional to the magnitude of the
strain p. It can be shown (Appendix B) that the ab-
sorption line presents a logarithmic singularity for
H11p ~

In the following sections, we shall consider only the
cases H~ & 0, H& & 0, and I H& I & I H&1, which cor-
respond to data obtained in NiFe&04 and Ni thin
films. Then Happ and Hying are, respectively, the
minimum and the maximum of the resonance field
distribution. It can be easily shown that 'when

H, —Hp is higher than a critical value (Appendix B)
a secondary resonance peak is resolved near H&pp.
For an elastically isotropic material (with H, = 0)
this condition is lH[l —IHpl &0.%o/y. It canbe
shown that the peak near Hgjg is generally not re-
solved.

IV. NUMERICAL COMPUTATION OF RESONANCE LINE

Now we consider the physically more realistic
case in which the individual crystallites have a
Lorentzian absorption curve with the same line-
width nH. (This last hypothesis in only approxi-
mately satisfied: In single crystals 4H varies
slowly with the direction Of the applied field rela-
tive to the axes of the crystal. ) Then the absorp-
tion line becomes

b8
P(H) =, . sina dn

„Rr dp

(,'n.H)'+[H -Hp(a, P)]'-' 30
40

where ~ is the full linewidth and we use the nor-
malization condition

J P(H)dH= 1 . (31)

It follows from the static equilibrium condition that
the magnetization vector deviates slightly from the
applied field. Thus the theoretical resonance line
should be compared with the sum of the absorption
measured in two transverse directions and in the
longitudinal direction relative to the normal Of the
film.' The absorption is proportional to the imagi-
nary part of the trace of the susceptibility tensor
when phenomenological loss is included. The sus-
ceptibility tensor can be calculated from Eq. (AS).
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FIG. 2. Theoretical absorption curves of a polycrys-
talline magnetostrictive film for different values of the
parameter 5H'=Hf'-H2'. We take here H, =D, b, =0,
Lh& = 0.0035~/y for the computation and H& is the internal
field in the sample: H~-4'-H2'. As 5H' increases,
the main peak intensity decreases, the linewidth increas-
es, and a second peak tends to be resolved on the low-
field side of the curve.

FIG. 4. Influence of the magnetocrystalline anisotropy
on the absorption curve of a polycrystalline magneto-
strictive film. We take here for the different parameters
the values of Ref. 9, which correspond approximately to
the experimental nickel ferrite thin-film case: =0,
(d/y=5580 Oe, 47|M=3060 Oe, ~=20 Oe, QH'=-2500
Oe. A is the external field.

As M, » m„, m„ the longitudinal absorption is neg-
ligible.

The ellipticity of the precession can be now esti-
mated from the two-dimensional susceptibility ten-
sor for the case when the driving field is linearly
polarized an/ with sufficiently low linewidth of a
particular grgin. A simple calculation leads to
+(H) 24„„+xa„)and a multiplicative correction
factor of the form

-C I2 —2C 06

R0
0
C0

-0.5 -0.3 0 Hq- ~y

Y

FIG. 3. Influence of the elastic anisotropy on the ab-
sorption curve of a polycrystalline magnetostrictive film.
We keep constant the quantity 6K=K( Ht'l(1+ Q-P
= 0.45 co/y rather than 6H', so that Hfoo and Hf f f remain
located at the same field. The elastic anisotropy can
both increase or decrease the tendency of the second
peak to be resolved. Approximately, the case of
=0.6 corresponds to that of nickel.

-0.1

should be incorporated in Eq. (30). This expression
shows that for crystallites with [100) II H and

[111]II H, the precession is circular (in fact in this
case m„=m„= 0) and the ellipticity is the largest

for those for which H II [110]. So the theoretical
curve underestimates slightly the height of the
spectra near Hff p. However, this correction is
only of the second order and in most cases is neg-
ligible.

The numerical computation of Eq. (30) was made
by standard integration methods, with the use of
an electronic computer (CII 10070). The computa-
tion was developed onlyfor the cases K, & 0, H~& 0,
and iH, i ) iHs i. The analytical study in Sec. III
and Appendix B shows that the width and the shape
of the resonance line depend on the three following
parameters: 5H'=H', —H2, 4„and H, . Figures
2-4 illustrate the evolution of the resonance
line when these three parameters are varied inde-
dependently. Figure 2 shows the resonance line for
various values of 5H' =H& —H2 for an elastically iso-
tropic material (&,=0) and for H, =O. One can note
that with increasing 5H' the peak near H»p is con-
served, the center of gravity of the line is displaced
to lower fields, and a separate peak is resolved
near Hfpp as predicted by the calculation described
in Sec. III. These results are similar to that ob-
tained by Schlomann" with increasing crystalline
anisotropy. Figure 3 shows the influence of the
elasticity parameter: In this calculation 5H has a
fixed value and again we took H, = 0. The curves
with 4, WO are to be compared with the line corre-
sponding to elastic isotropy: for &,) 0, Hffp is
shifted to higher fields, the width of the spectra be-
tween the singularities corresponding to H, cc and
H»p increases, and the peak near H, pp is no longer
resolved. For b,,& 0, the contrary is observed. '
However in this case the peak near Hfpp is of the
same amplitude as that near H»p. These results
are explained when one considers the resonance
equation (21). The resonance fields between Hms
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R0
I4
O
tO
Cl

ISH'=-1.2 kCh

js1'=-1.s+"
e.sk~(

and H»p are shifted to higher values for 4, & 0 and
to lower values for 4, &0, while the position of

K&pp is not affected as U=0 for this case. Finally
in Fig. 4, the influence of the anisotropy field is
presented in an elastically isotropic case (6,= 0),
for a given value of 5K'. For K& & 0, the width of
the line decreases Hggp is shifted to lower fields
and the peak at H»p is no longer resolved. These
results are explained by the fact that for negative
crystalline anisotroyy the normal to the film is, re-
spectively, the easy and hard axis for crystallites
with [111]II H and [100] II H, which is contrary to the
case of the anisotropy induced by the strains. For
K&& 0 the opposite results are obtained.

A singular situation occurs when the stress in-
duced anisotropy field, and the crystalline anisot-
ropy field are of the same order of magnitude and
have the same sign. ' First we consider the case
of elastic isotropy (b,,=0): For H', Hs= sH„ th-e

first-order term in the resonance equation is can-
celed out and only the second order term contrib-
utes to the resonance linewidth. When +/y is suf-
ficiently large, this contribution is negligible, and
the width of the line is reduced to the same order
of magnitude as that corresponding to a single crys-
tal. Figures 5 and 6 present the resonance line
and the corresponding linewidth, when K, is fixed
and H', —Hz is varied. (The calculation was made
with parameters close to that measured on bulk
NiFezO, .} We can remark that for the numerical
values taken here, the independent grain model is
not a good approximation because the dipolar inter-
actions have to be taken into account. It can be
shown that the dipolar interaction only affects the
linewidth, which is narrowed by the dipolar inter-
action except for the case H& —H&= gH, ." Finally
it can be shown that the same effect occurs even
for a material with large elastic anisotropy. The

7.6

FIG. 5. Influence of gA' on the shape of the absorp-
tion curve in the vicinity of the magnetocrystalline anisot-
ropy cancellation: He= -600 Oe and the cancellation oc-
curs near

&
H~= —1000 Oe= 6H'. Here 6H' is ex-5

pressed in kOe and H is the external. field with same
values for other parameters than in Fig. 4.

We presented a new calculation of the resonance
line in polycrystalline film under large isotropic
planar strain, where the fact that generally X&pp

WX»& was taken into account. The calculation was
made with the independent-grain approach and we
used the large-applied-field approximation. The
validity of this approximation can be easily con-
trolled in a given experimental case: H& and Hz
deduced from the value of the applied field cor-
responding to the singularities must be independent
of the measuring frequencies.

The results are qualitatively the same as for
ferrites with large anisotropy": The absorption
line presents singularities, the logarithmic singu-
larity occurs for the applied field equal to H»p p and
the two other singularities are located at the ex-
treme values of the distribution function. However,
in the present case the shape of the spectra depends
on a great number of parameters: ~ippy &»j ~ C» ~

C&z, C44, and &, while it is sufficient to know the
single parameter Ha when only the crystalline an-
isotropy is considered.

The present theory was successfully used to ex-
plain the peculiarities of the resonance line ob-
served in polycrystalline NiFeaO4 thin films. It
can be also useful to explain some other published
experiments where the results were not under-
stood. Mather' has recently reported experimental
results on ferromagnetic resonance at oblique
angles in stressed Ni films. He attributed the
peaks of the absorption curve to standing spin-

aH fa]
Jl

300

200

100.

-0.5 -1.5

H)- H2

[vo ]

FIG. 6. Influence of 5H on the linewidth in the vicinity
of the magnetocrystalline field cancellation. Same values
as in Fig. 5 for the other parameters. When A~~ 0,
cancellation still occurs, but for different values of gH',
as is pointed out on the diagram.

value af 5H giving the minimum linewidth is now
obtained by numerical computation. The fact, that
the effect of crystalline anisotropy oa the reso-
nance linewidth can be suppressed in polycrystal-
line material with a given strain-induced anisotropy
field, could be useful for practical devices.

V. CONCLUSION
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wave modes. Location of the peaks at perpendicular
resonance and their angular behavior are well
explained on the basis Of Our theory, while the
results couM not be interpreted using the well-
known angular dependence of spin-wave modes. In

Fe304 thin films, Nos6 et cl. observed three res-
onance peaks, in perpendicular resonance. The
positions of these peaks as functions of the applied
field were generally independent of the film thick-
ness. Therefore, the peaks probably correspond
to singularities of the resonance line. We believe
that the great number of experimental results-
listed in Ref. 5-obta! red in various magnetostric-
tive films under large strain, have to be carefully
reexamined on the basis of our calculation.

The present theory is only valid for a material
with randomly distributed crystallites. When ther-
mally induced strain exists during the film prep-
aration, the crystallites are not oriented randomly
because the grains having low strain energy are
favored during growth. ~ This effect was observed
in several thin films. ~e The present calculation
then has to be modified in order to take into ac-
count the strain-induced texture.

APPENMX A: GENERALIZED RESONANCE FORMULA IN

A CARTESIAN COORDINATE SYSTEM

For the calculation we suppose the external field
sufficiently high to saturate completely the mag-
netic media. The coordinate axes i, j, and A form
a right-handed system. First we compute the
static equilibrium position of the magnetization vec-
tor by requiring that the torque to which the mag-
netization is submitted is equal to zero:

(A1)

where the effective static internal field H,z, is de-
rived from the total magnetic energy E. If E is in-
dependent of the partial derivatives of the magne-
tization with respect to the coordinate system, H«
is defined by

and the components Of the magnetization vector
can be deduced from

1~Q Y Q 2 V Q (A5)

where E,j = 5 E/5x, 6xj is the second derivative of
the free energy taken at the equilibrium position.
The effective field can be obtained from the total
energy, assuming small motion of the magnetiza-
tion vector around the equilibrium position. Then
the components of the effective field are given by

(Hgf f)j Sz/5x j (Ej + Zxj jj +Ejj xj +E jp xy)

(A6)
Finally, the three linearized equations in s& of the
following form are obtained when (A6) is substituted
in (A4):

1 ding Q Q Q Q Q Q Q Q

y dt
—x j ( ~zx, jxj Ej„) +(x~jzxj —jxj E „-jE~g

+x„(xoZ,', -x,'E,', +Z,') . (AV)

The determinant of the coefficient of x, yields a
secular equation giving the resonance frequency:

(A3)
x, m, /M, „Z, gz/gx, , Q(x, )

The resonance condition can be obtained from the
equation of motion of the magnetization vector:

=y MXH ~~,dt
(A4)

where the components of magnetization vector are
given by m, = (x, +x, )MO, x, being the rf component
of the magnetization. Then the total energy can be
expressed in a Taylor expansion up to the second
order in the rf magnetization components as fol-
lows:

+2 Q x,'x,'(Z'„E,', -Z,', Z',, )+ Z(x', p[zj'jz,', -Ej",]. (AS)
jcftp f+ ftk
g&k g&k

APPENDIX : ANALYTICAL STUDY OF RESONANCE
LNE NEAR ITS SINGULARITIES

The behavior of the resonance line near a singu-
larity- can be studied as follows:

Assuming that the stationary point corresponds
to the [uvcu] direction we chose a coordinate system
wl"ose polar axis is [uvsj]. The direction of the nor-

mal to the film is defined by the polar and azimuth-
al angles ez and Pz in this special system. Then the
resonance field is developed as a function of e, and

P» and the distribution function given by Eg. (19)
is integrated for H —H„„=0, where H is the ap-
plied field and H„„ the resonance field correspond-
ing to the stationary direction (a, = 0).
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A. Behavior near Logarithmic Singularity 100

1 IH-H„
A(H)=

( )
I p ln (B2)

We show that in the present case the resonance
field H»p corresponds to this logarithmic singular-
ity. The calculation is made for 6, = 0 and H, = 0.

First, the magnetoelastic energy is expressed in
the [001], [1,10], [110]coordinate system:

pB1[(p11+&22)(o1 +&2 )++22 2 ++13 1 p]

Schlomann showed" that when the resonance field
can be put into the form

Hp(o.',p) =H„[1+(a sin p —b cos p ) sin n ] (Bl)

and for ab & 0, the corresponding distribution func-
tion has a logarithmic singularity and the singular
part of A(H) for IH-H„ I

= 0 is

R0
I

L'
0
0)
Cl

5.6 6.7

20 Qy

100 Oe

H(k Oe)

+4+pl(p11 ~33) (+1 +3

++12+1+2+ F23 +pop] 4 (B )

and then the magnetoelastic energy is calculated in
the unprimed system, where a, and P, are the polar
and azimuthal angles with respect to the [110]and

[001] direction. Finally, when the resonance equa-
tion is developed as a function of o, and P, near the
stationary point, we find

Hp(a&P&) =Hup[1+(a sin P, —bcos Pz)sin a,], (B4)

with

(H —H )(12(((o/y)'+ [-,'(H,' —H')] ) ' —(H,
' —H,'))

4H o(( /y)'+ [-'(H'- H')]']"'

(H,'- H,')(12((~/y)'+ [-,'(H,' —H,') ]'PIP —(5H,
' —SH,'))

8Hf gp(((o/y) + [—'(H,' —Hp) ] ]
(B5)

It can be easily shown that when &, and H, (IH, I

FIG. 8. Shape of the spectra near the H~oo singularity
as a function of the crystallite linewidth ~. The nu-
merical values are the same as for Fig. 4: H~=4~=0.

«15HI) are taken into account the singularity at
H&« is conserved.

B. Behavior of Resonance Line near Extrema of &p (0., P)

The two other singularities are located at the
minima and maxima of the distribution function.
We develop the calculation for the case correspond-
ing to the numerical computation H&&0, H&&0, and

I H& I & IH& I . Then the resonance field H«p corre-
sponds to a minimum of Hp (a, P). We determine
now the condition that a secondary peak should be
resolved in its vicinity.

When Eq. (19) is developed as a function of a
near Happ, it takes the form Hp (n, P) = Happ (1+az
+bz ) If anew .variable y=H&pp (az+bz ) is intro-
duced (where z = sin' a), by inversion of this equa-
tion we obtain

0 44 ~

where

A H~pp&
As

0.2
1 2

B=— BdP
2%~ 0

(B6)

0
0 0.2 0.4 0.6

FIG. 7. Variation of the critical value 6H'/(co/y)
[Eq. (16)] as a function of the elasticity parameter A~.
In the calculation H~=O, H2=0, and 5H=Hg.

~(~) 1
~

A —4B B—B
)I A I Happ A Happ

(B7)

and the condition that a secondary peak should be
resolved at Happ for H —H~pp 0 i

Finally it can be shown that the distribution func-
tion for H-H«p=0 takes the form
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sA(H) A —4B
8H A

This condition as a function of H'&, H&, ~„and H,
is finally given by

co 195[I
H'I —

I Hg I ] + 942[ 1 Hg I
—

I HI I ]H, + 767 H~+ 1604,[l H,
'

I —
I Hp I ]

y 54 I H& I
—

I Ha I ]+90 H, + 4&,(IH~ I [9+4 &,]+24[1H~ I
—

I H~ I]}
(as)

Without magnetocrystalline anisotropy and for an
elastically isotropic material (H, = 4, = 0) the singu-
larity near H, oois resolved if H&- H& is larger thanthe
following critical value: IH&I —IH2 I & 0. 3 &o/y.

When the material is not elastically isotropic,
Fig. 7 shows the variation of the critical value of
IH,'I —

I HI I as a function of the elasticity parame-
ter &,. In the same way one can predict that this
critical value increases for H, & 0 and decreases

for H, &0. The preceding condition-necessary to
obtain a well-resolved peak at H&00-is no longer
valid when we consider crystallites with nonzero
linewidth. Figure 8 shows (for &,=0, H, =O) how
the peak gradually disappears as the linewidth is
increased. A well-resolved peak occurs for &H
= 20 Oe, but the peak is no longer resolved when
&H = 100 Oe, although the condition (a8) is well
satisfied (y5H/ar = 0.45).
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