
PHYSICAL REVIEW B VOLUME 8, NUMBER 3 1 AUGUST 1973

Effect of Electron Correlation in a Narrow Hanoi

K. A. Chao
IBM Thomas J. Watson Research Center, Forktown Heights, ¹w Fork 10598

and Institute of Theoretica/Physics, Chalmers University of Technology, S-402 20 Goteborg 5, &~eden
(Received 16 October 1972)

Gutzwiller's variational method is used to investigate the Pauli spin susceptibility and the spin waves
in a degenerate narrow band. It is found that the susceptibility tends to become negative for sufficiently
strong correlation if the number of holes is small and if large density of states occurs at the top of the
band near the Fermi energy. For Ni, a numerical analysis is performed using the simplified
density-of-states curve proposed by Kanamori. The conditions for the occurrence of ferromagnetic Ni
agree with those obtained by Kanamori. The energies of spin waves in ferromagnetic metals are
obtained by examining the normal modes of spin excitations in the correlated ground state. Only the
improvement upon the random-phase-approximation (RPA) result which is due to correlated electron
hoppings is considered. In the long-wavelength limit, the coefficient C in the expression I co~ =Cq is
reduced from the RPA value by this correlation effect, in agreement with the predictions of other
theories.

I. INTRODUCTION

The characteristic features of the d electrons in
transition metals may be deduced from a number
of experimental facts. One of the most important
conclusions obtained from analyzing the experi-
mental data is that the d electrons exhibit both
itinerant and localized properties. ' This l.ed
Hubbard, Gutzwiller, s and Kanamori to the con-
struction of a model. Hamiltonian, which is now

commonly known as the Hubbard Hamiltonian.
The Hamiltonian consists of a tight-binding band

and a very short-range interaction among elec-
trons. Hubbard, Gutzwiller, and Kanamori used
different approaches to explore the ground-state
properties and obtained qualitatively similar cri-
teria for ferromagnetism. In the past few years,
the Hubbard model has been extensively investi-
gated by many authorss with various assumptions.
In order to be mathematically manageable, many of
these treatments are effectively restricted to a
nondegenerate band.

Recently, Gutzwiller's variational method was
applied to the case of a doubly degenerate band by
Chao and Gutzwiller. It was found that ferromag-
netism is favored under strong correlations if the
number of holes is small and large density of states
occurs at the top of the band. Unfortunately, the
resulting equation which predicts this qualitative
result is too complicated for accurate numerical
computation. In this paper, we rederive the cri-
terion for ferromagneti4m in an alternative way
so numerical computation can be performed.

If the ground state of the Hubbard Hamiltonian
is ferromagnetic, one should not be surprised to
find the dispersion relation of spin waves in ferro-
magnetic metals being affected by the intra-atomic
correlation. Since Herring and Kittel proposed

theoretically that spin waves could exist in ferro-
magnetic metals the properties of such spin waves
have been investigated very thoroughly by Izuyama,
Mattis, Thompson, and others. s These authors
used the random-phase approximation {RPA}to ob-
tain the Cq dispersion relation in the long-wave-
length limit, where q is the wave vector of the
acoustic magnon.

The effect of electron correlation on spin waves
has been discussed by Roth, ' Yamada and Shimi-
zu, Edwards, " Nagaoka, 3 Young and
Callaway, '3 and Chan and Young. " They found that
when the self-energy is included in the spin-wave
excitation energies, the RPA solution of the coef-
ficient C in Cq should be properly modified. This
paper will be devoted to the investigation of spin
waves in the Hubbard model.

Since the mathematical formulation in this paper
was developed in our previous work, the variation-
al scheme will only be outlined in Sec. II. In Sec.
III, we compute the paramagnetic susceptibility,
using a density-of-states curve which characterizes
the true one for Ni. It will be seen that under
strong correlation, the susceptiblity becomes
negative. Assuming a ferromagnetic ground state,
we proceed to obtain the spin-wave dispersion curve
in the Hubbard model in Sec. IV. In our treatment,
only the effect of correlation on hopping energies
is considered. In Sec. V, it is briefly illustrated
how the disperion curve should be further modified
when the bare intra-atomic interaction energies
are replaced by the smaller effective ones.

H. VARIATIONAL METHOD

Though a number of authors believe that a non-
degenerate-band model is unlikely to produce fer-
romagnetism, there has been little doubt about the
possibility of ferromagnetism in a degenerate
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band. If the narrow band is degenerate, Hund's

rule can be effective locally and the ground state
becomes ferromagnetic without invoking nearest-
neighbor exchange coupling. Without loosing gen-
erality but avoidiag mathematical complexity,
Gutzwiller's variational method has been gener-
alized by Chao and Gutzwiller to the simplest de-
generate case, namely, the double degeneracy.
In this section we will briefly summarize this
variational scheme. Only the main assumptions
and the general results which are relevant to this
paper will be reviewed.

In a simplified picture the d band of the transi-
tion metals consists of a triply degenerate subband
of tz symmetry and a doubly degenerate subband
of e, symmetry. Here we assume that the t& sub-
band lies below the e~ subband. We also assume
that this lower subband is completely filled and

can therefore be ignored. The upper subband may
be approximated by two -tight-binding degenerate
bands which have the e~ symmetry. This simpli-
fied model appropriately describes the band struc-
ture of Fe,Co& S~.

Consider the case where there are N electrons
(or N holes if the band is more than half-filled) in
a cubic lattice of L sites. Two tight-binding bands
are assumed to be known in the Hartree-like ap-
proximation. The Wannier states are defined in
second quantized form as

et L-) /2 Q e())g
Ql ga ~l kt

where l = 1 or 2 is the band index, g labels the lat-
tice sites, and o is the spin quantum number. In
a mixed representation the model Hamiltonian con-
sists of a term describing the degenerate bands in
the Hartree-like approximation and three intra-
atomic interaction terms':

ufo=~ &(lk)n„,+ Cp Zn(~n~

+ C~ g n) genre~ JZ n(«nm«, (2)

where n», and n;~, are the number operators and n,~
=n«, +n, ~, . k, g, l, and 0 are the dummy indices.
The intra-atomic Coulomb energies are indicated
by C~ and Cs. '6 J is the intra-atomic exchange
energy. For convenience the band energy is shifted
to make g, e(lk) =0.

Let us first outline the main idea of the varia-.
tional method. According to Van Vleck's model of
minimum polarity, ' the ground-state wave function
should exclude the states corresponding to higher
degrees of ionization. To construct the trial func-
tion for the ground state, we will start from the
Fermi sea which describes the completely delo-
calized and uncorrelated electrons. The Fermi sea
is then expressed in terms of the Wannier states
by using the inverse transformation of Eq. (1).
At this stage, one recognizes that the uncorrelated

system allows too many atoms in ionized states.
To achieve minimum polarity in the system, such
energetically unfavored ionized states are partially
projected out of the Fermi sea. The variational
parameters, which measure the percentage of the
ionized states to be projected out, are thus intro-
duced into the trial function.

Assume that our crystal contains N(o) electrons
with o spin, and N(ol) of them are in the lth band.
The uncorrelated ground-state wave function is the
Fermi sea O'. Let K(ol) be the occupied region of
k space for the lth band and cr spin when there is no

correlation among the electrons. Then the Fermi
sea can be written

q = Q g (('„,4,
la

(3)

( I-) /2 P e-(Aga)~, = '
+r~ (6)

into (3), )k becomes

4 =g A(C)4 (0) (6)

IA(C) I measures the probability that the Wannier
functions specified by C are occupied. For the
present analysis, we need not know the exact form
of A(G).

The configuration C is characterized by the num-
ber of multiple occupancies it contains. This
number is reduced by correlation effects. In
other words, electron correlation modifies the
probability amplitudes I A(C) I according to the
geometry of C. In our variational-method approach
to the correlation problem, A(C) is reduced by a
factor )I(l)o„ lao&) whenever two Wannier states
$))gf (r g) and (—l))gag(r —g} with gE G are occupied.
The weights )I(l)o„ l),az) have the values between
zero and unity. Small )I (l&o), loom) corresponds to
strong correlation. By symmetry properties the
six weight factors )i(l, o;, lzo~) are reduced to three
independent ones. They are defined as )I(1}
=)I(lt, 24)=)I(10, 2k), )I(2)=)I(lt, 2t)=)I(lt, 2t),
and )I(3)=)I(2t, 24)=)I(lt, 10).

The trial function of the correlated ground state
can then be expressed as

~(1)vt) t,2e)+v() &,2&))I(2)v((e,2c)+v((a, 2t)
c

C

where kc K(ol) and Co is the vacuum state.
In order to decompose 0 into localized states,

we will use a set of lattice sites G(ol) to specify a
set of Wannier functions P„(r-g) through the rela-
tion gc G(ol). The localized many-electron wave
function 4(G) is defined as

(4)
la g

where g(= G(al). The configuration 6 represents
the four sets G(ol) with o = t, 0 and l= 1, 2. Sub-
stituting the transformation
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5' IB«)~(~&l'=1 ~ I&«&l'=»
C all C

(8)

where the primed sum over C runs through the
configurations which have the same numbers of
multiple occupancies. y is the ratio of the number
of such configurations to the total number of C.
Equation (8() has been proved to be a reasonable
approximation for the narrow band, and yields
exact solution at the atomic limit. 3'~.

For each set of the parameters )1(1), rl(2), and
)(i(3), the numbers v(l, o„ lmoz) have certain well-
defined probability distributions of a binominal.
type. Since they are sharply peaked we can ap-
proximate the mean numbers of multiple occu-
pancies by the peak values, which are determined
by

Xp(3)u(12,12)2N&22,2()B(p)g(p)C)(p) (rl)

where v(12o2, lzoa) is the number of sites g such
that the Wannier states (t)22N, (r g-) and (())22~(r-g)
are occupied. The factor B(C) is introduced to
count for the less important interatomic correla-
tion.

The effect of interatomic correlation is implicit-
ly treated in the quasichemical approximation. "
Instead of determining the exact form of B(C),
we let

2(),rr„4rr, )'(N(rr, ),) -2 (),rr„)rr))
le

X Ne2 — V a2, lo
le

= v(120'22 lyon))rL '—N+ v2)

where v, = 2$«.~.v(l o, l o ). From now on
v(l, o» lao), ) refer to these most probable numbers.

In order to obtain the criterion for ferromag-
netism, it is necessary to compute the occupation
probabilities in reciprocal space for the strongly
interacting electrons

=L'&e "~")&g'.Iol,.o». l+.&/(+. I+.& . (10)

Using the expression Eq. (7) and the quasichemical
approximation Eq. (8), the first-order density
matrix is given by

p («:gk) =&~.
l l,.".I~.&/&~. l~.&

dg=k,
=D(al)&)ill at2, a,„,I

21I& d g 22k

where 4 is the Fermi sea, and

2
rl()rr, 2rr, )(N(rr, ),) —E r ()rrr„ I r, ) . ((2)

l2e2l~a~ 2(l geg)&(la)

D(rrl)=(N(rrl)(I, —N(rr))1)' (N(rr)) —Z ()rr, I rr ))(I—N+ r, )'.
x L —N+v, +.

Substituting Eq. (11) into Eq. (10), we have

&n», )=[I -D(ol)ln(ol)+D(ol) f(lko) (13)

where n(ol) =N(ol)/L is the number density of elec-
tron and f(lko) is the Fermi distribution function
for the lth band and 0 spin.

We should point out that in quasichemical ap-
proximation the difference between the correlation
effect on long-range hoppings and that on short-
range hoppings is neglected. This results in a
constant reduction factor D(ol) in Eq. (11), re-
gardless of the relative locations of the sites g and
h. A direct consequence of this approximation is
the preservation of the sharp Fermi surface, as
indicated by the finite discontinuity D(ol) in the
occupation number (n», ). In other words, the
Fermi surface is built in-from the start to give a
appealing description of a metallic state. Since
the author has not been able to fully take into ac-
count the dynamics of the long-range hoppings, one
cannot rigorously answer the question how sharp
the Fermi surface should be in the real system.

Nevertheless, the possibility of having long-rassle
hoppings is small in the case of a narrow band.
Therefore, the exact treatment of the hopping dy-
namics should not qualitatively change the results
obtained from the quasichemical approximation.

It can be shown that the discontinuity D(ol) in
the occupation number is a slowly varying function
of the electron density and/or the correlation
strength. Its value is one when there is no corre-
lation. For the special case of one electron per
atom, D(al) decreases quadraticly to zero in the
correlation strength. It should be noted that in
the present theory D(ol) =0 marks a metal-to-in-
sulator transition, and the corresponding critical
correlation energy depends only on the band struc-
ture. On the other hand, if the density of electron
is not equal to one, D(ol) is always finite. For
instance, for ferromagnetic Ni, 1 ~D(ol) & 0. 6.
In this paper we will not consider the case of one
electron per atom, i. e. , D(ol) is always finite.

Using Eq. (13), the expectation value of the en-
ergy (H~& with respect to the trial function 21I, can
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be readily obtained as

&Ho&=&~. ~Ho~ ~.)/&~.
~
+.)

=QD((rl)&(ol)+ C~ Z v(lo„2o, )

+C, Zv(lf, lt) —JZv(1(r, 2a), (14)

where e((rl) = g, f(lko)e(lk). To get Eq. (14) we have
used the normalization of the band energy. &Ho)

is then minimized by varying v(l, o„ lrar). When
this is done, we can compute (Ho) for various values
of the electron density n=N/L as functions of the
magnetization g= [N(k) N(t)—]/L. It is found that
for a small number of holes and large density of
states near the top of the band, the ferromagnetic
ground state is stable if the electron correlation
is sufficiently strong.

Let us use the subscripts f and p to denote the
ferromagnetic and the paramagnetic states, re-
spectively Th. e energy difference ~ = &Ho)r
—&Ho)~ is then schematically shown in Fig. 1. Re-
gion I corresponds to weak correlation while in
region III the correlation is so strong that there is
almost no double occupancy. In this paper, we
are mainly interested in the region II where the
correlation is fairly strong but a finite fraction of
the sites are doubly occupied.

III. PARAMAGNETIC SUSCEPTIBILITY

The criterion for ferromagnetism given in Sec.
II manifests itself in the Pauli spin susceptibility.
For uncorrelated electrons the magnetic properties
of the ground state depend only on the average ex-
change interaction and the free hoppings, but not
on the actual spatial distribution of the electrons.
This argument does not apply to a correlated sys-
tem. Equation (14) clearly indicates that the
exact number of douole occupancies is as impor-
tant as the strength of the intra-atomic interac-
tions in determining the magnetic properties of the
ground state.

In a paramagnetic state, N(fl) =N(bl) = —,N(l).
From the symmetry properties it is easy to see
that D(kl) =D(41) =D(l), v(10, 20) = v(14, 24) = v(1),
and v(IN, 2t)= v(lt, 20)= v(2). Let v(3, l)
= v(l f, lk), a=L —N+ 2v(1)+ 2v(2)+ v(3, 1)+ v(3, 2),
and P(l) = 2N(l) —v(1) —v(2) —v(3, l). Then from
Eqs. (7) and (12) we have for the paramagnetic
state

)7(i)'p(1)p(2) = v(i) a, i=1, 2

)7(3) p(l)'= v(3, l)a, /=1, 2

D(l) = p(l)(a+ [rl(1)+ ri(2)] p(l ) + ri(3)p(l)].

x 12 aN(l)[L —2 N(l)l ) ', (15)

where in Eq. (15) l Wl.

To compute the paramagnetic susceptiblity we
may take P(l) electrons from near the Fermi sur-

h, E

FIG. 1. Schematic plot of the energy difference ~
= (&p)y (Hp)& between the ferromagnetic state and the
paramagnetic state as a function of the correlation energy

C can be along any direction in the three-dimensional
mainfold spanned by C~ =C2-J, C2, and C3.

face of the down-spin lth band and change their
spin to up, keeping them in the same band. Such
an operation changes the numbers of double oc-
cupancies. It is shown in Appendix A that for
small I(l) and strong correlation

5v(1) —5v(2) i(I )g(2)
v(1) v(2) p(1)p(2)

5v(3) &(I)' + &(2)'

v(3) P(1)'+P(2)'

D( 4))=D(l) {(* ('(()
2[1 -2n(3)l

4[1 + n(3)']
[2L —N(l)1

(16)

(17)

(18)

where 2v(3)= v(3, 1)+ v(3, 2). In Eq. (18), pius
and minus signs correspond to up- and down-spin
bands, r'.spectively.

Using Eqs. (14), (16), (17), and (18), the total
energy increase over the energy of the paramag-
netic state is obtained to the second order in t(l),

1 1 4n(l)[1+ ri(3)~] e(l)
L p(l p) [2 —n(l)]

4 (4(4(4))41))()),())4
2 —n(l)

+ 2Cz[5v(1) + 5v(2)]+ 2CS 5v(3) —2J5v(1)

D(l) 2 2LJ,r,
Lp„,(lp)

f(l) —
p(1) p(2)

k{1)f(2)

(Ie)

where n(l)=N(l)/L, e(l)=[&(00+&(kl)]/N, and p is
the Fermi energy. The effective exchange energy
J,« is defined as

J,« = [(J-C2)v(1)+ C (2)r1v/L (2O)

p, «(l p. ) is the effective density of states of the lth
band per atom per eV per spin. It is related to
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the density of state p(lu) of the uncorrelated sys-
tem by

p.n(fu) = R(fu) 'p(fu),
where

4n(f)[I+ q(3)'] i e(I) I

[ —.(I)]*

(21)

4u[1 —21)(3)] 2LC,v(3)
2 -n()) ))())I))())'+))(a) ) )

is the correlated Stoner enhancement factor. In
the last equation, the minus sign applies if the
particles are electrons while the plus sign corre-
sponds to the holes. Note that ()(Ho) includes the
change of energy due to the readjustment of D(l).
This is equivalent to theband-shift effectdiscussed
by Roth and by Harris and Lange. '

Magnetism becomes possible when 5(HO) is nega-
tive. It is shown in Appendix B that /HO) &0 if

I'P(f) D(l)R(lu)
r i g i L p(lu)

(23)

Y/'W

Y(1-X)/(Y-X) W

-(Y-X+XY)W/2 Y

(1 —~) W
Y

1-X

0

1(

(X+Y-XY)W/2Y

FIG. 2. Density-of-states-vs-energy curve which
favors the ferromagnetic Ni. The hatched region con-
tains X states per atom per eV per spin. The energy is
so normalized that a fully occupied band has zero energy.

This condition is obviously satisfied when R(lu)
&0. The last term in the bracket of Eq. (22)
makes it very difficult to compute R(lu). However,
this term is positive definite. Therefore R(lu)
is less than zero if

4n(l)[1+ g(3)'] t &(l) I

[2 —n(I)]'

4(1 —2')(3)I
v)2-n(l)

is negative.
We shall apply our result to Ni. Consider the

simplified density of states p(le) shown in Fig. 2.
It contains two parameters x and y. x is the total
numbers of states in the high-density region. y
is the product of the bandwidth W and the density

of states in the same region. According to
Kanamori, this density-of-states curve charac-
terizes the true one of Ni. For Ni, y = 3.
Kanamori found that the ferromagnetic ground state
is favored if x &0. 28 and the Hubbard parameter
is 2W. For infinitely strong correlation, the con-
dition relaxes to x &0. 55.

Since the d band of Ni contains 0. 6 holes, the
plus sign should be used in Eq. (24). r(lu) is
computed in Appendix B for different values of x
and 'g(3). For a given value of ')l(3), there is a
critical value x, such that r(lu, ) &0 if x &x,. The
computed values of )))(3) and x, are listed in the
first two columns of Table I. Recall that in Fig.
2 the Fermi energy p, is restricted in the high-
density region. For 0. 6 holes per atom, this con-
dition is satisfied only if x ~ 0.15.

In order to have a meaningful comparison of the
present results with Kanamori's, one must know
the relations between ri(3) and the intra-atomic
Coulomb energies C~, C3, and C, =C~ —J. When
we minimize (Ha) of Eq. (14) by varying the num-
bers of double occupancies v(go„ lzoz), we obtain
the relations between the v(l, e„ f))oz) and the C, 's.
Then, by using Eq. (9), the relations between
C, 's and g(i)'s c'an be established. However, the
resulting equations are too complicated to solve
numerically. An alternative, which is much sim-
pler although less accurate, is to use the relation
between the corresponding quantities in s-band
model. In nondegenerate-band model, there is
only one Hubbard parameter Co and a single varia-
tional parameter g. The relation between C0 and

p has been given by Gutzwiller. 3 In this way, we
obtained the values of Co listed in the third column
of Table I.

Comparing our results with those of Kanamori,
we see that ferromagnetism is more favored by
the present theory than by the Kanamori's if the
correlation is very strong. On the other hand,
when the correlation gets weaker, Kanamori' s
criterion becomes less stringent.

If the Stoner enhancement factor R(lu) is posi-
tive, one must examine the inequality Eq. (23) to
check the stability of the paramagnetic state. It
is then important to understand the physical mean-
ing of the effective exchange energy J,«defined by
Eq. (20). Let us indicate by (la: l o ) the two
Wannier states P„(r g) and (f), ...(r-- g) localized
on the same atom. We recall that C~ and C~ —J
are the intra-atomic interaction energies between
two electrons in (1, o:2, —o) and (1, o:2, o), re-
spectively. So from its definition, LJ,«measures
the difference in total intra-atomic interaction en-
ergy between all the electron pairs in (1, o".2, a)
and all the electron pairs in (1, o".2, —o). There-
fore it is the intra-atomic interaction energy rather
than the pure exchange energy which is essential
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TABLE I. For a given value of q(3), g~ is the critical
value such that AM@) «&0 if g&«g~, where @MAL) is given by
Eq. (24) and g is indicated in Fig. 2. Co is the corre-
sponding intra-atomic Coulomb energy computed from
the 8-band theory. TV is the bandwidth.

q{3)

0.1
0.2
0.3
0.4
0.47
0.5

0.97
0.91
0. 82
0.62
0.2S
0. 12

4.2
3.4
2. 7
2.3

The spin-wave creation operator is assumed to
be a linear combination of the elementary excita-
tions:

St(K(u, ) =Q X(lkq)a~, „,a»,

(27)

The coefficients &(Ikq) and the energy )I&a, are ob-
tained from solving the equation of motion

[H, S"(8'(u, )]=k(o, S (R(o, )
to the magnetic properties of the narrow band.

Since both sides of Eq. (23) are reduced by the
correlation effect, it becomes crucial to know
which side is more affected by electron correla-
tion. The calculation for Ni indicates that under
favorable condition the atoner enhancement factor
R(Ip) can be negative even though the numbers of
double occupancies v(i)'s are nonzero. Therefore
under similar condition it is not impossible for a
small positive R(lp) to satisfy Eq. (23). Never-
theless, the condition R{lp) &0 is much simpler
for computation although more stringent than Eq.
(23}. In fact v(i) always approaches zero faster
than the discontinuity in the occupation number
D(I), except for one electron per atom where v(i)
and D(l) go to zero simultaneously. So the appear-
ance of magnetic ordering is mainly due to the
possibility of negative R(lp) From .Eq. (22), we
can make the following conclusion. Strong correla-
tion, small number of holes, and a large density
of states at the top of the band where the Fermi
energy lies favor the occurrence of magnetica1. 1y
ordered phase.

IV. SPIN VfAVES.

In the following we assume that Eq. (23) is sat-
isfied, and that the ground state 4, of Ho is fer-
romagnetic with the majority of electrons having
down spin. ' To treat the spin waves in correlated
itinerant electrons, we add the spin.-flip exchange
interaction to Ho. The suitable Hamiltonian is

It is general. ly known that electron correlation
suppresses the random exeitations and thus lowers
the excitation energy. For instance, the plasmon
energy is less than the excitation energies asso-
ciated with the random electron density fluctuations.
To illustrate how correlation improves the RPA
solutions of the magnon energies, we consider as
an example the simpler case of a nondegenerate
band. In this ease, the Hubbard Hamiltonian be-
comes

The HPA solution of the magnon energy E, in
this system is determined by~a

ki %+et (28)L, co[n(4) —n{t)]+&(k+ q) —&(k) —E, '

where the number operator n~, is replaced by the
Fermi distribution function. However, we have
shown in Eq. (13) that correlated electron hoppings
cause the mean value of n~, to deviate from the
Fermi function. Therefore, as a result of this ef-
fect n~ should be replaced by its correlated mean
value. Furthermore, the bare Coulomb energy
Co in Eq. (28) is reduced by correlation to a small-
er effective one.

In this section, we will study the modification of
spin-wave energies due to the correlated hoppings
only. If we use the transformation [Eq. (1)]to re-
write H in Bloch representation, then we have

~ n»mt'»a &%@~ stkeqt& I ~ &CSn»'acts»'i I'kn'or~ nl'0 ~)
a'

where I'4E. The dots represent the terms involving more than one magnon. These higher-order terms
are neglected.

We will replace the operator n», by its mean value in a correlated system. The mean values {n»,) are
given by Eq. (13). The notations 5&(fkq) =e(lk+q) —e(lk) and 5(n(lkq)) =(n», ) —(s»„,) are used to simplify
the form of our equations. Combining Eqs. (26) and (29), we obtain
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[ll 3 {3f)n]=Z lla(lkq) ~ —3 [05(n(f k 0))+ C 5(n(lk 0))])1(lkq)af, ,a„,
EA

-P —P [J5&n(l k q)&&(l k q)+ C~6&n(lk q)&&(lk q)]a)3,„,a», ——I{u, Q &(Ikq)a»~, a», , (30)
ta n'

where I 0-'I. Equation (30) yields the following
coupled equations:

A(lkq) = X(lq) 5e(lkq)+ —, Q [J5&n(l k 0))

we assume that the two degenerate bands lie on
top of each other. We then have «(Ikq) = 6e(2kq)
= «(kq), &n»,&=&n@ ) =&nk, &, and 4(1)=4(2)=4.
From Eqs. (34), one sees that A« =A],z and A~&

=A&&. The condition ~~A,~II = 0 becomes

+ C, k(n(lk 0))] —lff0,), (31) +Z+C, + (n„)-(n,„,)
L «(kq)+ (J+ C )6 —I{u, (36)

X(lq) = —Q [J5&n(l kq))X(l kq)L a

+ C~ 5&n(lkq)& X(lkq)), (32)

The plus and the minus signs correspond to the
acoustic and optical branches, respectively.

The acoustic-branch solution of Eq. (36) can be
simply written

where l 4 l.
By either using Eq. (13) or simply applying the

conservation of particles, it is easy to see that

(n„)—(n„,)L, «(kq)+ J'4 —8{u,(A)
(36)

—Q 5(n(lkq)) = —[N(tl) —N(fl)]= &(I)
1 1
L a L

So Eq. (31) can be rewritten

X(fq)
6glkq)+ J&(l )+ C~h(l) —k{u,

Equations (32) and (33) readily imply a determi-
national condition IIA, &ll = 0. The elements A&& are

lqff & &nlff+o )
L )3 «(1kq)+ Jh(2)+ Csh(1) —k(u,

(34a}

~C (n„,) —&n2, ,&L, 5e(2kq)+ J&(1)+C,&(2) —&(u,

(34b)

&nmk, &
—&nmk, )

L k «(2kq)+ J&(l)+Cqh(2) —I{uq

(34c)

&n» &
—&n»

I. k «(lkq)+ Jh(2)+ C~&(1) —}I{uq

(34d}
In the case of very weak correlation C~ = 0, (n», )
becomes the Fermi distirbution function. The
determinantal condition then reduces to exactly the
one obtained by Matl;is.

We consider first the zero-momentum mag-
nons. For q=O, «(lkO)=0. IIA,~II, 0=0 admits
the solutions k{uo&A) =0 for the acoustic mode
and 5{uo (0) = J[6 (I) + n (2)] for the optical mode.
These energies are the same as their RPA values.
We will show in Sec. V that R{uo(0} is reduced
when the bare intra-atomic interaction energies
are replaced by their effective values.

For convenience but without loss of generality,

where J'= J+ C~. In order to illustrate clearly the
effect of correlation on the spin-wave energies, we
consider the small-q magnons in a complete fer-
romagnetic state where (n„)= 0. In this region,
we can expand the left-hand side of Eq. (36) to
second order in 6e(kq) to obtain

3,(k)= 3 (n„) (ka(kq) —,[ka(kq)]')

(37)
Substituting the mean value (n„,) =[I -D(t)]n(t)
+ D(t) f(k4) into this equation, we obtain

k(u, (A)=D(4)ff{u (A)" "— Q [6&(kq)]

(36)

where

R(u, (A)a~" = Q f(ki)
~

5e(kq) — [«(kq)]RzA 1 (

(»)
tl(u, (A}"~" consists of two competing terms:

namely, a kinetic energy term and a superexchange
term. Since the kinetic energy term is positive,
the RPA always predicts ferromagnetism for
J -~. Therefore, the RPA magnon dispersion
curve has an increasing slope as J' gets larger.

However, it is well known that the RPA over-
estimates the magnon excitation energies. While
most theories which improve the RPA solution as-
sume some effective value of J, Both' has com-
puted the magnon energies using the s-band
Hubbard model. She then derived from the magnon
dispersion relation the effective exchange integral
which one must use with the Heisenberg model to
obtain the same spin-wave energy. What Roth has
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obtained can be summarized as follows: Let
)I(lp = C(el') q2 and P& = C(cT ) q2 be the
RPA solution and the solution including the cor-
relation effect, respectively. Then both C(J )" "
and C(J )

" are monotonically increasing func-
tions of J, and C(J )"~"& C(J )co" for all values
of J.

It will be seen in the next section that Roth's con-
clusion foQows from the fact that RPA allows too
many atoms being doubly occupied. The RPA
method therefore overestimates the magnon ex-
citation energies. In this section, we will show the
similar change of magnon energies due to the cor-
relation effect on electron hoppings. We are in-
terested in a strongly correlated ferromagnetic
system which contains a finite fraction of doubly
occupied sites. Such system corresponds to the
ferromagnetic portion of region II in Fig. 1. In
this case, the discontinuity in occupation number
D(&) in Eq. (38) is almost constant. For instance,
1 & D(t) & 0. 6 for ferromagnetic Ni for values of
J from zero to infinity. In region II, D(t) varies
roughly between 0. 7 and 0.8.

Since the D(4) in Eq. (38) can be approximated
by a constant, Noo, (A) is then an increasing func-
tion of the intra-atomic interaction energy J .
Furthermore, for a given value of J, «u, (A)
eke&, (A)a~". The equal sign holds only if D(t) =1,

that is, if there is no correlation. Therefore, the
magnon dispersion curve is flattened from its RPA
solution. Note that the above conclusion is re-
stricted to systems which have a finite discontinuity
in the occupation number, D(ol). The model
Hamiltonian [Eq. (2)] is inadequate to describe the
magnon excitation as D(ol) -0, where a metal-to-
insulator transition occurs. This extreme case
will be further discussed in Sec. V.

For the optical mode, a relation similar to but
less accurate than Eq. (39) can also be derived.
The q= 0 magnons have the striking property that
in Eq. (26) the coefficients A(lk0) = X(l) for all k.
This is easily seen from Eq. (33). If q is small,
we expect X(lkq) ™X(lq) to be a fairly good approxi-
mation for all k. Equation (26) is then reduced to the
simple form S (kv, ) =g, X(lq)S'(lq), where St(lq)
=g, c»~,a», Co. mmuting H past the operator
S'(lq), we have

[H, S'(Iq)] =Q «(Ikq)nt», a»,

+ Ja(l )S~(lq) —J&(l)S~(l q)

where I 4/. Again we consider only the case of
complete ferromagnetism and complete overlap of
the two degenerate bands. Under this situation, the
above commutator yields the following deter minantal
condition for q -0:

P f[e(k)] «(kq)+ J4 —K&o,
k

D(~) 2 f[&(k)] 6&(kq)+ Jh —S(o,
=0

This condition leads to the solutions

&oo, (A) = 7„ f[&(k)1«(kq)D(&)
(4o)

too, (0) = Ka), (A) + 2 Jb, (41)

Equations (38) and (40) differ by a term which is
inversely proportional to J . Hence for strong
correlation, the discrepancy becomes very small.

This result can be explained in physical terms
as follows: If there is no correlation, (n», ) is
just the Fermi distribution function f(lkt). The
contribution of the band energy to the magnon en-
ergy comes from the change of the number of oc-
cupied Bloch states in the hatched regions of Fig.
3. However, in the correlated system, some elec-
trons are scattered from below to above the Fermi
surface. The plotted (n», ) in Fig. 3 is the super-
position of a constant [I -D(tl)]n(tl) and the
D(fl) f(lkk). Since the constant part of (n», ) does
not contribute to the magnon energy, the only con-

I

tribution to leo, comes from the dotted region in
Fig. 3. Therefore this correlation effect reduces
the contribution of the band energy to Sm, by a
factor D(tl), and thus flattens the )I&o,-vs-q curve.

The coefficient C of the characteristic quadratic
shape Cq of the magnon dispersion curve for
small q is thus roughly reduced to D(bl)C by the
correlation effect. For instance, in the case of a
nearly half-filled band Edwards ' has fiound that the
reduction of C from its RPA value is more than
40'Po

V. DISCUSSION

The Gutzwiller's variational method has been
previously formulated in the atomic-orbital rep-
resentation. e In this paper, we have reformulated
the scheme, using the Wannier representation to
achieve a simpler mathematical derivation. The
qualitative features of these two alternations are
quite similar. In the case of a degenerate band,
the Wannier functions are less localized than the
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FIG. 3. Occupation probabilites for the electrons in
reciprocal space along an arbitrary direction. The solid
line is for uncorrelated system. k& and k & mark the
Fermi surface. K/2 and -K/2 indicate the zone bound-
ary. q is the momentum of the magnon.

atomic orbitals. Qne may think then that the use of
Wannier functions underestimates the intra-atomic
interaction energies CR, Cs, and J. Since there
is technical difficulty to precisely determine CR,

C3, and J, they have been treated as varying pa-
rameters in the Hubbard Hamiltonian. In this re-
spect, the Wannier representation is adequate for
the qualitative analysis.

The condition for the negative Pauli spin suscep-
tibility in Ni, given in Table I, is a consequence of
correlation effect on hopping energy, In order to
calculate the correction term for this condition,
it is necessary to perform a full scale computation
for the Stoner enhancement factor R(lii). Never-
theless, we can predict qualitatively how the
critical value x, in Table I should be altered. From
Eq. (22) we see that the correction term (the third
term in the bracket) is proportional to C,rl(3)/D(l).
Except for one electron per atom, the discontinuity
in occupation number D(l) is always greater than
zero. Since C3-0 at sufficiently weak correlation
and ri(3) -0 at extremely strong correlation, the
correction term contributes only in the strong-cor-
relation region while v(i) is still finite. Therefore,
a large increase of x, should occur at about r)(3)
=0. 5. No significant modification on x, is ex-
pected at the region of small ri(3).

Owing to the mathematical difficulty, the com-
putation of the Hubbard parameter Co in the third
column of Table I is based on the s-band model.
Hence this result should be considered as an es-
timation of the average value of CR, C3, and C&

= CR —J.
In Sec. IV we have only considered the effect of

correlated hoppings on the spin-wave energies.
The bare intra-atomic interaction energies CR,

Cs, and Jare used throughout the analysis from
Eqs. (30)-(41). As we mention before, in a cor-
related system, CR, Cs, and J should be replaced

by the smaller effective values. Here we only
discuss briefly how to reduce the bare interaction
energies to the effective ones. The details of a
complete treatment is reported elsewhere. ~

It is more convenient for our present analysis
if we express the single-particle excitations in
Wannier representation;

S (lkq)=a, r~, a»,

1 g exp[ —i(k+ q)gi+ikg2]a«, ,ar«
gyg2

(42)

The commutator of S (lkq) and the Coulomb inter-
action H, can be easily obtained:

[H„Si(lkq)]= —5~ exp[ —i(k+ q)g, + ikg2]
g1g2

x Cs(nil, r
—n„,,)ar', .ar g, , (43)

The primed sum is restricted to g& &g2 because of
the exclusion principle. The terms in the restricted
double sum are the specially correlated electron
hoppings. When one electron hops from g2 to g&,
it sees another electron at either g& or g2.

The nontrivial components in n«, at~, ar~, l%',)lg2& 1g ~ lg &

are those configurations [see the definition in Eq.
(7)] containing two occupied Wannier states
rtrr, (r gm) a-nd rtr„(r gz) -So t.he mean value of
n«, must be proportional to the number v(lf, lt)"2'
of such doubly occupied sites. Furthermore,
these specially correlated hoppings may cause the
numbers of double occupancies to deviate from
their optimum values, depending on whether the
final site g, is singly occupied or empty. If g, is
empty, then the deviation is one. According to
Gutzwill. er's variational scheme, the occupation
probability of the corresponding configuration is
reduced by a factor r)(lk, lb).

When this correlation effect is taken into account
in this way, one finds that C3 is reduced to its ef-
fective value C, ri(lk, lb)I'(Cs). I'(Cs) is a slowly
varying function which has the value between 0 and
1. By the same token, the effective exchange en-
ergy can be expressed as Jr)(10, 20)I'(J). These
effective energies should appear in the matrix
elements of Eqs. (34). We immediately see that
the J in the superexchange term of Eq. (38) is
lowered by the correlation effect. So the magnon
spectra are further flattened through the enhance-
ment of the superexchange energy.

The energy of the zero-momentum optical mag-
non now becomes k&@0(0)= Jri(10, 24)I'(J)[&(l)
+ &(2)]. Similarly, the Stoner gap parameters
can be expressed as Jri(10, 24)I'(J)b(l). In RPA,
I'(J) =1 and rl(10, 24) =1 and so the Stoner gap pa-
rameters become JE(l). Therefore, electron
correlation also reduces the Stoner gap parameters
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from their RPA values. In physical terms, this.
can be explained as follows. The zero-momentum
optical magnon corresponds to the reverse of one
of the two spins which are localized on the same
atom. The correlation effect decreases the num-
ber of such atoms from its RPA value. Therefore
the energy of the zero-momentum optical magnon,
or the Stoner gap parameters, should be less than
the corresponding RPA solution.

The results obtained in Secs. IV and V concern-
ing the spin-wave energy are valid in region II of
Fig. 1, where the correlation is fairly strong but
a finite fraction of sites are doubly occupied. If
the correlation is so strong that there is no doubly
occupied atoms (in region III of Fig. 1), then there
is no mechanism to couple together the elementary
spin excitations in Hubbard model which neglects
the interatomic interactions. Under this situation,
the Hubbard model is inadequate to describe the
magnon modes. One example is the case of one
electron per atom. As we mentioned before, a
metal-to-insulator transition occurs in such sys-
tem if the correlation is sufficiently strong. If
we neglect the interatomic interaction as well as
the virtual hoppings, as in the Hubbard model,
there is no mechanism to generate the spin waves
in the insulating state. Since the discontinuity in
occupation number, D(ol), vanishes only at the
metal-to-insulator transition, one should not apply
Eq. (38) to the systems of diminishing D(4).
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APPENDIX A

The v(i)'s can be more generally defined as
2v(1) = v(it, 2t)+ v(lb, 2t), 2v(2) = v(lb, 24)
+ v(14, 2t), and 2v(3) = v(lt, 14)+ v(2t, 24). For
given values of g(i) and N(ol) let vo(ol, o l ) be the
solution of Eq. (9). There are six coupled equations
due to the six different assignments of (ol, o l ).
For paramagnetic state N(tl) =N(kl) = —,'N(l). Then
because of the symmetry properties only four of
these six equations are linearly independent.

We substitute N(tl) = & N(l)+ t'(l), N(tl) = —,
'

N(l)
—l'{l), and v(ol, o f ) = vo(ol, o l )+ 5v(ol, o l ) into
Eq. (9). Then the so obtained six equations are
combined pairwisely as follows: The right-hand
sides aq well as the left-hand sides of the two
equations involving the same g(i) are addedup, re-
spectively. This sequence of algebraic manipula-

APPENDIX B

Consider a two-variable quadratic function

f(x, y) =Ax —2B»y+Cy (Bl)

A clockwise rotation of the coordinate axis through
an angle 9 = 2 tan '[2B/(A —C)] will transfer f{x, y)
into

f(u, v) =
& (A+ C+ e)u + 2 (A+ C —e)v, (B2)

where e=[(A —C)~+4B ]'~3. Let us choose the
particular values xo and yo such that So=go tane,
then the corresponding ~ vanishes. Therefore
f(u=0, v) «0 if A+C —n«0, or AC«B . Compar-
ing Eqs. (Bl) and (19), we see that Eq. (23) is the
condition for 5{Ho)«0.

We are particularly interested in the possibility
of negative r(lp) which is defined by Eq. (24). The
negative r(lp) will surely make 5(HO) —0. Consider
the density of states per atom per eV per spin

p(lZ) = (1 —»)/(1 —x/y) W

for —(y —x+»y) W/2y «E & —(» —Y+ «y) W/2y

= y/W

for —(x- y+ xy)W/2y «B «(x+ y —xy) W/2y
(B3)

where x and y are adjustable parameters. The
p(lE) is plotted in Fig. 1 as a function of E. p(lE)
is so normalized that a completely filled band has

tions yields the following results:

2([—,'N —v(1) —v(2) —v{3)]g(i) + v(i)j[5v(l)+ 5v(2)

+ 5v(3)]+ [L —N+ 2v(l)+ 2v(2)+2'g(3)] 5v(i)

='g(i) k(i), i= 1, 2, 3 (Al)

where h(l) = —h(2) = —f(1)l'(2) and h(3) = —2 [g(1)
+ f(2)~]. To obtain Eq. (Al), we have assumed
IN(1) -N(2) I «N and neglected the higher-order
terms in &.

Again we add up the three equations which are
obtained by substituting i = 1, 2, and 3 into Eq.
(Al). Using the notation v= v(1)+ v(2)+ v(3), the
resulting equation can be written

((2N 2v)['g-(1) + Ii(2) + q(3) ]+L—N+4vj5v

=[rl(1) —'g(2) ] f(1)t'(2) —~ 'g(3) [t(1) + l'(2) ]
(A2)

5v(i) are then obtained by substituting 5v from Eq.
(A2) in Eq. (Al). The so obtained 5v(i) are valid
for the entire range of correlation strength. For
strong correlation, (,'N —v)q(i)—and v(i) are much
less then L —N+ 2v. If we neglect these small quan-
tities, then we have the simple solutions for strong
correlation region as 5v(i) = rI(i)~h(i)(L N+ 2v) ~. —

D(ol) is computed to the second order in f by
the same technique. Equation (18) is readily ob-
tained under the condition of strong correlation.
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zero energy. Note that we have assumed the same
density of states curve for both bands.

We restrict our discussion to small number of
holes such that the Fermi energy of a paramagnetic
state lies in the high-density-of-states region.
The Fermi energy p. and the mean hole energy
&(l) can be easily computed as

p = (x+ y —xy —2 n) ll'/2y (B4)

e(l) = —(x+ y —xy ——,
'

n) W/2y

where n is the hole density which is assumed to be
less than 4x.

For Ni, y = 4. 5 ~0 and n = 0. 6. Substituting p, , 7,
and p(lp) into Eq. (24), the condition for r(lp) —0
is obtained in terms of g(3) and the critical values
x,. The results are listed in Sec. III.

'Present address: Department of Physics, University of Warwick,

Coventry, England.
'For a general discussion, see the review articles of J. H. Van

Vleck, Rev. Mod. Phys. 25, 220 (1953); E. P. Wohlfath, Rev.
Mod. Phys. 25, 211 (1953); J. C. Slater, Rev. Mod. Phys.
25, 199 (1953); C. Zener and R. R. Heikes, Rev. Mod. Phys.
25, 191 (1953).

'J. Hubbard, Proc. R. Soc. Lond. 276, 238 (1963); Proc. R.
Soc. Lond. 277, 238 (1964); Proc. R. Soc. Lond. 285, 542
(1965).

'M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963); Phys. Rev.
134, 923 (1964); Phys. Rev. 137, 1726 (1965).

'J. Kanamoki, Prog. Theor. Phys. 30, 275 (1963).
'Y. Nagaoka, Phys. Rev. 147, 392 (1966); A. B. Harris and R.

V. Lange, Phys. Rev. 157, 295 (1967); R. A. Bari, D. Adler,
and R. V. Lange, Phys. Rev. B 2, 2898 (1970); W. F.
Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970);
Battelle Symposium on Critical Phenomena, 1971
(unpublished).

K. A. Chao and M. C. Gutzwiller, J. Appl. Phys. 42, 1420
(1971); K. A. Chao, Phys. Rev. B 4, 4034 (1971).

'C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951);C. Herring,
Phys. Rev. 85, 1003 (1952); Phys. Rev. 87, 60 (1952).

'T. Izuyama, Frog. Theor. Phys. 23, 969 (1960); D. C. Mattis,
Phys. Rev. 132, 2521 (1963); E. D. Thompson, Adv. Phys.
14, 213 (1965); D. M. Edwards, Proc. R. Soc. Lond.
269, 338 (1962); T. Izuyama and R. Fubo, J. Appl. Phys.
35, 1074 (1964); J. F. Cornwell, Proc. R. Soc. Lond.
279, 346 (1964); Proc. R. Soc. Lond. 284, 423 (1965).

9L. M. Roth, J. Phys. Chem. Solids 28, 1549 (1967).
' H. Yamada and M. Shimizu, J. Phys. Soc. Jap. 22, 1404

(1967).

"D. M. Edwards, Proc. R. Soc. Lond. 300, 373 (1967).
' Y. Nagaoka, Phys. Rev. 147, 392 (1966).
"W. Young and J. Callaway, J. Phys. Chem. Solids 31, 865

(1970).
' K. Y. Chan and W. Young, J. Phys. C 4, 1855 (1971).
"In degenerate band model, the Wannier states are not as

localized as the atomic orbitals. However, at least for the
present work, we found that the Wannier representation and
the atomic-orbital representation admit similar analytical
expressions. Therefore we can use the Wannier representation
to avoid algebraic complexity. For numerical analysis, one
must compute the intra-atomic interaction energies from the
atomic orbitals. See the discussion in Sec. V.

' The notations C, and C, are used here in order to be
consistent with the notations C „C2, and C, in our previous
papers, Ref. 6. In fact, J =C,—C, .

' H. Hurwitz, thesis (Harvard University, 1941) (unpublished);
J. H. Van Vleck, Rev. Mod. Phys. 17, 42 (1945).

"For its definition, see Ref. 6.
' L. M. Roth, J. Phys. Chem. Solids 28, 1549 (1967), Eq. (27);

A. B. Harris and R. V. Lange, Phys. Rev. 157, 295 (1967),
Eq. (6.9).' Kanamori uses y =3 for his computation, which is based on
the triply degenerate T, subband. Since we are dealing with
the doubly degenerate e subband, y should be 4.5 in our
case.

"Strictly speaking, if Eq. (23) is satisfied, the magnetically
ordered state may be either ferromagnetic or
antiferromagnetic. The antiferromagnetic phase will not be
discussed in this paper.' T. Izuyama, Prog. Theor. Phys. 23, 969 (1960).

"K. A. Chao, Solid State Commun. 11, 1633 (1972).


