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The thermodynamic properties and the surface phase diagram of O/Ni(111) have been calculated from
Metropolis and Wang-Landau Monte Carlo simulations based on lateral interactions derived from density-
functional theory (DFT) calculations. The DFT energies were mapped onto an Ising-like Hamiltonian accord-
ing to the cluster expansion technique formalism. Both fcc and hcp adsorption sites were included in the
Hamiltonian. Different criteria were used to evaluate competing parameter sets: cross-validation score CV,
Mallow’s C,, statistics, and adjusted R? statistics. The parameter space was searched using genetic algorithms
in order to find optimum parameter sets. The different parameter sets obtained from different criteria lead
essentially to the same transition temperatures. Excellent agreement is found when comparing the shape and
the stability regions of the theoretical and the experimental (from the literature) phase diagrams. We investigate
the nature of the p(2X2) and (\Ex \E)RSO" phase transitions at @ =1/4 and 1/3 ML, respectively. Differences
arise when comparing the values of the calculated and the experimental transition temperatures owing to

imprecision in present-day DFT calculations.
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I. INTRODUCTION

The collective behavior of atoms and molecules chemi-
sorbed on a single-crystal substrate is characterized by their
tendency to form distinct phases which possess well-defined
two-dimensional periodicity and order. This phenomenon is
caused by interactions between the adsorbed particles. The
stability of a surface phase depends on the temperature 7, the
coverage ® of the chemisorbed species, and intermolecular
interactions. Phase transitions may occur depending on
variations in (0, 7). The different adsorbate phases in (®,7)
space for a particular system are conveniently described by
means of the phase diagram of the system. The phase dia-
gram of atoms and molecules adsorbed on surfaces is a cen-
tral topic in surface science and is of great importance in
describing the thermodynamics and kinetics of processes on
surfaces such as adsorption, desorption, and catalytic reac-
tions.

Much research has been carried out on phase transition at
surfaces.'~* Experimentally, order-disorder phase transitions
of chemisorbed species at surfaces can be quantitatively
characterized by means of low-energy electron-diffraction
(LEED) (Refs. 5 and 6) and scanning tunneling microcopy
measurements.”8

The symmetry of ordered structures on surfaces is deter-
mined by the lateral interactions between the adsorbates.
Therefore, the evaluation of sufficiently accurate lateral in-
teraction parameters is essential for understanding phase
transitions and other thermodynamic properties of adsorbed
molecules or atoms on surfaces.

The development of computer power and first-principles
methods, such as density-functional theory (DFT),’"!! has
enabled the derivation of interaction parameters with predic-
tive power. Using such a technique, the phase diagrams of
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O/Ru(0001) (Ref. 12) and O/Pt(111) (Ref. 13) have been
studied, among others. Those systems, involving O and a
metal surface, are the basis for a number of important tech-
nological processes such as bulk oxidation, corrosion, and
heterogeneous catalysis. Thus, their understanding from
macroscopic and microscopic points of view is of enormous
importance.

The phase diagram of O/Ru(0001) from first-principles
was based on a very small set of DFT calculations.'>!'* Even
though the shape of the calculated phase diagram agrees very
well with the experimental one,'® the calculated transition
temperatures are around 200 K higher than the experimental
data. The phase diagram of O/Pt(111) from first-principles
was based on a larger set of DFT calculations'>!% than in the
case of O/Ru(0001). In particular, the authors carried out a
ground-state search that considerably improved the precision
of the derived interaction parameters. The O/Pt(111) phase
diagram has not been experimentally determined; thus, a
validation of the calculations was not yet possible.

The O/Ni(111) system has been extensively studied in the
past, including studies of the phase diagram,'”!® lateral
interactions,'” geometry of various phases,’*?! and critical
properties.”>>* However, up to now, no theoretical calcula-
tions of the phase diagram based on first-principles have
been carried out on this system. In this study, we pursue this
aim and systematically compare our theoretical results with
the experimental data in the literature.

The phase diagram of oxygen on Ni(111) has been studied
from LEED experiments'”!® for the coverage range 0.1
=0 =0.34 ML and temperatures of 150-500 K (Fig. 1). At
low temperatures a coexistence of lattice gas and of
p(2X2) islands at coverages below 0.25 ML exists, which
ends at the high-coverage side at the phase boundary to a
homogeneous long-range-ordered p(2X2) phase that is
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FIG. 1. Experimental phase diagram of the system O/Ni(111).
Phase boundaries are marked by solid lines as far as measured,
whereas dotted lines indicate necessary continuations, which are not
quantitative (taken from Ref. 18).

stable at coverages close to 0.25 monolayer (ML) (7.,
~440 K). In the range 0.25<0 <0.29 ML, splitting and
streaking of the p(2X2) pattern is observed and interpreted
to be due to the formation of antiphase p(2X2) domains.
At even higher coverage of about 0.33 ML a well-ordered
(V3 X V3)R30° structure has been found in the experiments
(T.=300 K). Also, a small coexistence region of
(3% \s’g)R30° and the antiphase structure is present.

Only fec sites are occupied in the well-ordered p(2 X 2)
and (V3 X V3)R30° structures at low temperatures.”’>! How-
ever, the occupation of hcp sites can be activated at tempera-
tures close to and above the order-disorder phase
transitions.”® At a temperature of above 500 K, Auger scans
indicate that oxygen dissolves into the bulk and the dissolu-
tion process seems to be independent of coverage.'’?* At
higher oxygen exposures (®>0.4 ML), oxide islands form
which finally grow laterally to coalescence at about two to
three layers of NiO.?°

To calculate the O/Ni(111) phase diagram theoretically,
we derive lateral interaction parameters from DFT calcula-
tions using techniques from statistical mechanics, i.e., the
cluster expansion (CE) method.?”3! The statistical-
mechanics problem is numerically solved using Monte Carlo
simulations based on the Metropolis*> and Wang-Landau33-*
algorithms. From those simulations, we are able to calculate
(based only on computed energies from DFT calculations)
the thermodynamic properties and the phase diagram of
O/Ni(111). In the process, we gain deep insight into the lat-
eral interactions producing the rich phase behavior shown by
this system.

The outline of this paper is the following. Section II
briefly describes the theoretical framework behind the first-
principles statistical-mechanics approach used to calculate
the O/Ni(111) phase diagram. Then, Sec. III summarizes the
technical details of our DFT and Monte Carlo calculations,
as well as the different criteria used to derive the O/Ni(111)
lateral interaction parameters. Next, Sec. IV presents and dis-
cusses the results and compares them with previous experi-
mental and theoretical studies in the literature. Finally, in
Sec. V, we summarize the results of this study.
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II. THEORY

The theoretical description of phase transitions is based
on the equations given by equilibrium thermodynamics. All
systems in thermodynamic equilibrium are at a minimum of
their free energy,

F=U-TS. (1)

Phases highly ordered at microscopic level are typically
present at low temperatures 7, where the energy U is the
dominant quantity in Eq. (1), i.e., the phases present at low
temperatures are the ones exhibiting low energy (ground
states). As the temperature increases, the entropic term in Eq.
(1) becomes more important and phases with a high entropy,
i.e., high degree of disorder at the microscopic level, are
present.

The link between the microscopic properties of matter and
its macroscopic properties is provided by the concepts of
statistical mechanics.’> Within the statistical-mechanics for-
malism, the free energy F(T) is given by?>

F=—kzTInZ, (2)

where kg is the Boltzmann constant and Z is the partition
function of the system given by

7=3 Hhl. 3)

1

The sum in Eq. (3) runs through all available microstates i of
the system.

One can numerically derive thermodynamic quantities
from Z by means of Monte Carlo methods. Those methods
considerably reduce the calculations needed. However, one
still needs a sizable number of energy evaluations (>10%) in
order to calculate thermodynamic properties. Besides, the
size of the system under study has to be large enough so as to
ensure that its thermodynamic properties correspond or are
close to the thermodynamic limit, i.e., to the properties of an
infinite system. Those requirements (many energy evalua-
tions and a proper system size) impede the execution of
Monte Carlo simulations where all required energies are di-
rectly evaluated from (expensive) DFT calculations. Thus, in
order to be able to carry out Monte Carlo simulations em-
ploying energies from DFT calculations, one needs to map
DFT results onto a simpler model of the system.

For chemisorbed adsorbates, the wells of the surface po-
tential are steep and deep. The locations of the minima of the
so-called corrugation potential thus form a well-defined lat-
tice, at which the occupation probability density of adsor-
bates is sharply peaked. Then, in the study of equilibrium
properties of adsorbed overlayers, one can neglect deviations
of the adsorbate positions from the sites of this “preferred
lattice” altogether and can introduce the lattice-gas model for
the study of adsorbates on surfaces.

In the lattice-gas model the complex many-body interac-
tions in the adsorbate/substrate system are approximated to
lateral interactions among the adsorbates on the surface. The
energy of the system is then given by an Ising-like
Hamiltonian3®
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FIG. 2. (Color online) Lateral interactions between and among
atoms adsorbed on the fcc sites of a (111) surface. p and ¢ denote
pair and trio interactions, respectively.

H(n) = 2 Vinl’ + E Vl]nlnj + 2 Vi’j’kninjnk + o (4)
i ij ij.k
Here, V; is the energy of an isolated atom; V;;

=Vy51,Vp2,Vp3,... is the pair interaction energy of nearest,
next-nearest, third-nearest neighbors, and so on, respectively;
and V;; is the energy of trio interactions (see Fig. 2); higher-
order terms (quartets, quintets, etc.) can also be included into
the expansion.

In order to specify a configuration, a site occupation vari-
able is assigned to each adsorption site on the surface. Dif-
ferent choices for the site occupation variables are possible.
In this study we use the so-called “point variables” n;=1
(occupied) and O (vacant). However, due to their correspon-
dence with the Ising model, “spin variables” are also pos-
sible, o;=+1 (occupied) and —1 (vacant). The relation be-
tween n; and o is given by n;=0.5(1+ ;). Our choice of
using point variables, i.e., n;, is due to the fact that they lead
to lateral interactions V between oxygen atoms on the surface
that have physical meaning.3”*® Besides, when considering
trio interactions, seemingly modest spin interactions J’s can
correspond to enormous unphysical lattice-gas energies V’s.
The reason for that is the highly nonlinear relation between
spin and lattice-gas interactions.3”-3

The sum in Eq. (4) runs over all the “cluster figures”
included in the expansion (a cluster is defined by a set of
lattice points). In other words, the sums in Eq. (4) count the
frequency that a determined cluster figure appears in a spe-
cific configuration.

By calculating the lateral interactions among the adsor-
bates on the surface, the lattice-gas model accounts for the
relevant quantities responsible for the collective behavior of
atoms on surfaces. However, one has to bear in mind that the
lateral interactions of the lattice-gas model are effective rep-
resentations of the complex many-body interactions in the
adsorbate/substrate system.

It can be shown® that when all lateral interactions are
taken into account in the sum, Eq. (4), the expansion is able
to represent any function E(n) of configuration n by an ap-
propriate choice of V values. The formalism of expanding
the energy (or other quantity) as a function of the lateral
interactions (or cluster figures) is known as the CE
method,?’3%3! and the lateral interaction parameters V are
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known as effective cluster interactions (ECIs).

Even though the accuracy of the CE is strictly valid at the
infinite limit, practically one cannot consider all the terms in
the sum, and the expansion has to be truncated. In general,
one could expect that the expansion would converge rapidly
after keeping only cluster figures that are relatively compact
(e.g., short-range pairs or small triplets). There is, however,
no formal proof of the latter assumption, and the accuracy of
the truncated expansion should be checked. The big advan-
tage of the CE is its ability to rapidly calculate the energy
E(n) for any arbitrary configuration. This ability renders the
technique useful for sampling the configuration space in
Monte Carlo simulations.

The unknown parameters of the cluster expansion, V;, are
determined by fitting them to the energy of a relatively small
number of configurations obtained through first-principles
DFT computations (this approach is known as the structure
inversion method or the Connolly-Williams method*’). For
this purpose, one has to solve a linear system of equations,

E=3V, (5)

where E is the vector of calculated DFT energies for a set of
different adsorbate configurations, V is the vector of the un-
known ECI energies, and 2, is the matrix of occupation vari-
ables n; for every ECI of every included adsorbate configu-
ration.

Once the ECIs have been derived, the Hamiltonian in Eq.
(4) was used to perform Monte Carlo simulations, i.e., tem-
perature effects have been introduced into the system. In this
way, Monte Carlo calculations with first-principles accuracy
were carried out.

III. COMPUTATIONAL METHODS
A. Energies from first-principles calculations

One of the most important outputs of the first-principles
calculations is the total energy of the system. However, in
order to compare different structures with each other on the
same basis, one often calculates the gain in energy of the
adsorbate/substrate system with respect to the free substrate
(clean surface) and the free molecule, i.e., the average
change in energy per atom due to adsorption (or simply
called here E,). For the case of the O/Ni(111) system, E, per
atom at coverage 0O is given by

o | N
E) = N_O<E8/Ni(111) = Exiqiny — TOEoz), (6)
where Eg/Ni(m) is the total energy of the slab containing the
oxygen adsorbate at a coverage 0, Ey;(jy) is the total energy
of the corresponding clean Ni(111) slab, E, is the total en-
ergy of an isolated oxygen molecule, and N is the total
number of O atoms present in the unit cell at the considered
coverage ©. The definition is such that a negative value of
E? indicates that the dissociative adsorption of the molecule
is exothermic at 7=0 K.
From E, data one can readily derive lateral interaction
parameters. However, for purposes of understanding phase
stability, it is often convenient to consider formation energies
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instead of E, energies. The formation energy of a particular
configuration at a given coverage, 0, of oxygen on Ni(111)
is given by

o 1. ¢
AE?Z ]T/[Eg/Ni(lll)_ (1- ®)ENi(]ll)_ ®Ep(1x1)-o], (7)

where Eg/Ni(l 11) and Ey(;q1) have the same meaning as be-
fore, E,x1).0 is the total energy of oxygen adsorbed on
Ni(111) at full coverage, and N is the total number of adsorp-
tion sites. The formation energy reflects the relative stability
of a particular configuration with respect to phase separation
into a fraction ® with full coverage p(1X 1) and a fraction
(1-0O) of empty sites (clean surface) at the same overall
composition.

The formation energy allows for determining the ground-
state structures by constructing the convex hull connecting
the lowest-energy points in the (AE;,®) plot.>”*! Thus, for-
mation energies are the central quantities in order to study
O/Ni(111) phase stability. The change in energy due to ad-
sorption and the formation energy at ® are simply related by

AEP = O(E? - E} Mby, (8)

where E? is given by Eq. (6) and EM-

adsorbed on Ni(111) at full coverage.

The use of formation energies is very convenient for de-
termining the convergence parameters of the DFT basis set.
The size of the basis set that leads to converged formation
energies, i.e., E, differences [Eq. (8)], is significantly smaller
than the one needed for converged E, energies. It is the dif-
ference in E, energies (and not their absolute values) that are
the quantities that determine the transition temperatures.
These differences are conveniently expressed by formation
energies [Eq. (8)]. Thus, we determined the parameters of the
DFT basis set from formation energy convergence tests. Af-
terward, with this basis set, we calculated E, energies to
derive the lateral interactions V of Eq. (4). In adsorption of
atoms on surfaces, the physical discussion of interactions
derived from E, energies is simpler and more intuitive than
the discussion of interactions derived from formation ener-
gies.

is E, of oxygen

B. DFT basis set and convergence

First-principles DFT was used to compute the total ener-
gies. The DFT total energies were obtained using the full-
potential augmented plane wave + local orbitals (APW +10)
and the linear augmented plane-wave (LAPW) method as
implemented in the WIEN2K*>*? code. Exchange and correla-
tion effects were included in the generalized gradient ap-
proximation (GGA) using the functional of Perdew, Burke,
and Ernzerhof (PBE).** Since O/Ni(111) is a magnetic sys-
tem, the DFT results reported below are from spin-polarized
calculations.

The Ni(111) surface is modeled using supercell geom-
etries containing fully relaxed symmetric slabs with five lay-
ers and 15 A vacuum between subsequent slabs. Oxygen
atoms are adsorbed on both sides of the slab. We have also
performed test calculations with thicker slabs and more
vacuum, without obtaining any significant differences with
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FIG. 3. Formation energy AE; versus energy cutoff Exgx for

®=1/4 ML. The convergence range is 5 meV wide and is indicated
by the gray area. The convergence threshold (EX. =12 Ry) is in-
dicated by the arrow.

respect to the chosen setup (see the Appendix).

If it is not indicated otherwise, the parameters of the
mixed APW+lo and the LAPW basis set are Ry
=2.0 bohr, R%T= 1.4 bohr (the nonoverlapping muffin-tin
spheres were chosen as large as possible to keep the required
interstitial plane-wave cutoff as low as possible), wave-
function expansion inside the muffin tins up to l‘[zg,(: 12, and
potential expansion up to M =6. A (12x12X1)
Monkhorst-Pack grid was used for the (1 X 1) Brillouin-zone
integration. The integration grid includes the I" point. For the
other surface unit cells used in the calculations, grids have
been chosen so as to obtain the same sampling of the recip-
rocal space. This ensures compatible results from calcula-
tions carried out in different surface unit cells.

A temperature broadening with a Fermi function® is used
with a broadening parameter 7%'=0.005 Ry in order to re-
duce the number of k points that are necessary to calculate
the total energy of the metallic system. The total energy is
corrected corresponding to 7=0 K. Core states are treated
fully relativistically and, for the valence states, relativistic
effects are include in a scalar relativistic treatment.

The energy cutoff for the plane-wave representation in the
interstitial region is E¥' =12 Ry for the wave function and
EP™ =196 Ry for the potential. Exgx is the most critical pa-
rameter affecting the accuracy of the calculations and con-
vergence tests are necessary to determine it. Figure 3 shows
a convergence test carried out to determine EL"LX The con-
verged quantity is the formation energy at ®=1/4 ML. The
calculations were carried out in a (2X2) surface unit cell.
The convergence range is 5 meV wide and is indicated by the
gray area. The energy cutoff used in the first-principles cal-
culations for the O/Ni(111) system was determined from the
convergence threshold in Fig. 3 and is indicated by an arrow.

As is evident from Fig. 3, formation energies are con-
verged within 5 meV regarding me Similar tests regarding
the k-mesh grid lead to convergence within 1-2 meV. Thus,
the numerical uncertainty of the basis set parameters used for
the O/Ni(111) system is very low and, as will become appar-
ent below, does not affect our discussion and conclusions.
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C. Derivation of lateral interaction parameters

It has been shown that the lateral interaction parameters
(or effective cluster interactions in the CE language) can be
interpreted as lattice averages of interatomic potentials.*®
Even though they have a well-defined physical meaning,
their value can only be obtained as a statistical average.
Thus, when dealing with the linear system of equations de-
scribed at the end of Sec. II, one should compute more DFT
energies E than the ECIs V being considered [see Eq. (5)]. In
this way, one optimizes the value of the ECIs by reducing the
error (least-squares method) between the DFT energies and
the corresponding energy value given by the Hamiltonian in
Eq. (4).

Thus, the problem of extracting lateral interactions from
first-principles calculations can be formulated as a regression
problem, i.e., one can apply the statistical methods used to
investigate the relationship between a dependent or response
variable y and one or more independent variables x. The
independent variables (in this case, V) are usually called re-
gressor variables or predictor variables (see, e.g., Ref. 47).

The problem, then, consists of selecting an appropriate set
of lateral interactions (regressors) from a set that quite likely
includes all the important variables.*® In such a situation, one
is interested in variable selection, that is, screening the can-
didate variables to obtain a regression model that contains
the “best” subset of regression variables with respect to the
intended use of the model (e.g., prediction). An effective
approach to search the parameter space for the best model is
based on genetic algorithms,*>° and we shall use this ap-
proach to screen the parameter space of the O/Ni(111)
Hamiltonian.

Several criteria may be used to evaluate competing re-
gression models. A commonly used criterion is based on
minimizing the cross-validation score (CV),?®>! which is de-
fined as the average of the sum of the squares of the differ-
ences between each observation y; and the corresponding
predicted value based on a least-squares fit to the remaining
n—1 points, say y(;. Thus, CV provides a measure of how
well the model is likely to perform when predicting new data
or data that were not used to fit the regression model. The
computing formula for CV is

1 n
(CV)Z = ;E (i )3(1'))2~ )
i=1

The optimal subset of regression variables found using the
CV score frequently includes long-range or multisite cluster
figures without including shorter ones.”® This is an undesir-
able feature since cluster expansions constructed in that way
imply that the ECI are void of any physical meaning and are
treated as stochastic variables only.52 Thus, other statistical
criteria that directly assess the explanatory effect of every
individual cluster figure might be helpful in evaluating com-
peting regression models.

Mallow’s C, statistics*” is a direct function of the residual
sum of squares that incorporates a penalty for each variable
added to the model to protect against overfitting. The com-
puting formula for Mallow’s C, statistics is
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SSe(p)
Cp = T -n

where n is the number of observations, p is the number of
parameters in the reduced model, SSz(p) is the residual sum
of squares for the reduced model with p parameters, and 6°
is the estimate of the mean square error of the full model.
The regression equations that have negligible bias will have
values of C » that are close to p, while those with significant
bias will have values of C, that are significantly greater than
p- One then chooses as the best regression equation either a
model with minimum C,, or a model with a slightly larger C,
that does not contain as much bias (i.e., C,= p). The inter-
pretation of the C, approach is given by Gilmour.>

Another common criterion for evaluating and comparing
the different regression models obtained is the adjusted R>
statistics, ¥’

+2p, (10)

SSg/(n—p)

R =1- ,
adj SS/(n—1)

(11)
where n is the number of observations, p is the number of
unknown regressors, SSy is the residual sum of squares, and
SSy is the total sum of squares. Ridj is just a correlation
coefficient adjusted for the degrees of freedom. Because
SSi/(n—-p) is the error or residual mean square and
SSy/(n—1) is a constant, Ridj will only increase when a vari-
able is added to the model if the new variable reduces the
error mean square. The Ridj statistics essentially penalizes for
adding terms to the model. It is an easy way to guard against
overfitting, i.e., including regressors that are not really use-
ful. Consequently, it is very useful in comparing and evalu-
ating competing regression models. Usually, the model that
maximizes Ridj, ie., Ridjs 1, is considered to be a good can-
didate for the best regression equation.

No single algorithm will always produce an optimum so-
lution to the variable selection problem. In practice, the al-
ternatives can lead to different model choices. We shall con-
sider the three criteria listed above, coupled with a genetic-
algorithm searching strategy, in order to find optimal models.
We shall also assess how our results depend on the chosen
criteria. Note that it is possible that none of the fits can be
considered the best one, i.e., all or some of them could lead

to acceptable results.

D. Monte Carlo simulations

The thermodynamics of the O/Ni(111) lattice-gas model
are calculated numerically by Metropolis Monte Carlo
simulations.’>* The simulations were performed in the ca-
nonical (temperature 7 and coverage O constant) and grand
canonical (temperature T and chemical potential u constant)
ensembles, using Kawasaki and Glauber samplings,>* respec-
tively.

To measure continuous order-disorder phase transitions in
canonical Monte Carlo simulations, order parameters are de-
fined according to the symmetry broken during the transition.
We use two order parameters @ and ¢ as defined in
Refs. 55 and 56, which are nonzero for the p(2X2) and the
(V3% \3)R30° phases, respectively.
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To measure the p(2X2) phase, the triangular lattice
formed by the fcc sites of the Ni(111) surface is decomposed
into four triangular p(2 X 2) sublattices. Defining the popu-
lation on the pth (2X2) sublattice by N, (p=1,2,3,4), the
order parameter is

1
= E\/Wﬁ B+ 03), (12)

where

=Ny +Ny—N3— Ny,
=Ny =N+ N3— Ny,

=Ny —=N,—N3+N,,

and N=N;+N,+N3;+N, is the total number of adsorbed at-
oms present. _

To measure the (3 X y3)R30° phase, the triangular lattice
formed by the fcc sites of the Ni(111) surface is decomposed
into three sublattices made up of sites connected by next-
nearest-neighbor bonds. Defining the population of the pth
(\3 X y3)R30° sublattice by N, (p=1,2,3), the order param-
eter is

—_
=i+ &3, (13)
where

3

1
¢ = 5\[(1\,] - 5(N2+N3)>,

3@
=—=(N,-Ny),
b, 4N(2 3)

and, as before, N=N;+N,+N; is the total number of ad-
sorbed atoms present.

The order parameters given by Egs. (12) and (13) do not
converge precisely to zero as the order to disorder transition
is crossed due to the finite size of the system. The transition
temperature T, at a given coverage is given by the inflection
point in the calculated graph of order parameter versus tem-
perature. For that purpose, one performs scans on the system
at constant ® varying T (alternatively, the order-disorder 7,
can also be determined by finding the temperature at which
the heat capacity of the system peaks>?).

In case of first-order transitions, simulations in the ca-
nonical ensemble can lead to wrong results due to finite size
effects and phase coexistence. The thermodynamic properties
of the system are affected by non-negligible energy contri-
butions from the boundaries of every coexisting phase.%>* In
order to avoid this problem, one lets the system to exchange
energy and particles with a reservoir, i.e., one carries out
simulations in the grand canonical ensemble.

Thus, in order to locate first-order phase transitions, we
carried out simulations in the grand canonical ensemble and
performed scans at constant 7 varying w. For that purpose,
the only modification needed in the Hamiltonian H of Eq.
(4) is to subtract the term uXn; from the right-hand side of
the equation.®
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From the chemical-potential versus number of atoms data
(u,N) obtained from the simulations, the grand canonical
potential @ is calculated by integrating the thermodynamic

relation

b

(—G) =—N. (14)
/v

The integration was performed numerically by fitting cubic
splines to the data points.

The integration of Eq. (14) was carried out separately for
the two phases participating in the transition (in order to
avoid inaccuracies of the simulation data at the phase transi-
tion). The interception of the two grand potential curves (in a
®; versus w plot) determines the location of the chemical
potential of the transition (u*). The coverage of every phase
present at the phase-coexistence region can then be obtained
by determining the two values of {(N) (in the hysteresis loops
of the transition) corresponding to w*.

Suitable reference states’’ have to be used in order to
integrate Eq. (14) for every coexisting phase. To obtain ®
at the constant temperature of integration 7" in Eq. (14), we
integrated 7 versus U data from canonical Monte Carlo
simulations in order to obtain the entropy S from the rela-

tionship
a8 aUu
N —| =\—7 (15)
T/ yy \IT /) yy

[the reference state of the entropy for the integration of Eq.
(15) can be conveniently taken as zero for nondegenerate
ground states at 7=0 K].>* Once S(T") is known, the Helm-
holtz free energy F(T') is calculated from Eq. (1) and the
initial grand potential for the integration of Eq. (14) is ob-
tained from

®L=F(T' V' .N') - u'N' . (16)

Thus, Egs. (14) and (15) were integrated along horizontal
and vertical paths, respectively, in (®,T) space, in order to
locate first-order transitions.

The Metropolis Monte Carlo simulations were carried out
on a honeycomb (60X 60) two-dimensional lattice with pe-
riodic boundary conditions. This lattice allows the inclusion
of fcc and hep sites. The shape of the unit cell was a rhom-
bus. Convergence studies of the phase diagram with respect
to increased lattice sizes lead essentially to the same transi-
tion temperatures. Two thousand Monte Carlo steps per site
are used for equilibration, followed by 10 000 Monte Carlo
steps for sampling at each (7,0) and (7, ) sampling point
(one Monte Carlo step correspond to randomly picking N
sites and thus generating N trial states; where N denotes the
total number of sites in the lattice).

Additionally, we carried out Wang-Landau®*-** Monte
Carlo simulations in the canonical ensemble to study the
nature of the phase transitions at ®=1/4 and 1/3 ML. By
shifting the acceptance rule from energy to entropy space,
the Wang-Landau algorithm is able to surmount the problem
posed by hysteresis at first-order phase transitions and criti-
cal slowing down at continuous phase transitions. From
Wang-Landau Monte Carlo simulations, one obtains the con-
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TABLE I. Structural, magnetic, and energetic properties of bulk
Ni and the Ni(111) surface. Lattice constant a, bulk magnetic mo-
ment Mp, top layer relaxation as percent change with respect to the
bulk value Aj,, work function ®, magnetic moment in the surface
M, and surface energy o. FP denotes the full-potential DFT-GGA
results of this work and PP denotes the pseudopotential DFT-GGA
results of Ref. 58.

a MB AIZ ] MS o
(A (mp) (%) (V) (up)  (eV/atom)
FP 3.54 0.63 -1.6 5.12 0.75 0.66
PP? 3.53 0.61 -0.9 5.11 0.68 0.65

Expt. 352 0.61 <20 535 0.82

4Reference 58.
PReferences 59-62.

figurational density of states, {)(E) and with it all thermody-
namic information about the system (see Ref. 34 for details).

The Wang-Landau Monte Carlo simulations are carried
out on a honeycomb (60X 60) two-dimensional lattice with
periodic boundary conditions. To calculate ()(E), the energy
is discretized into 7000 equal size intervals (i.e., of the same
order of magnitude as the total number of sites’#). Parallel
runs are performed for different energy ranges and the result-
ing parts of the configurational density of states are pieced
together in order to obtain the total ()(E).>* Further param-
eters in the algorithm (initial and final modification factors,
modification factor reduction schedule, and histogram flat-
ness criterion) are selected according to the standard specifi-
cations of the algorithm.3*

IV. RESULTS
A. DFT calculations

The results of the calculations for the bulk Ni and the
clean Ni(111) surface are presented in Table I. The bulk lat-
tice constant ¢ and the bulk magnetic moment My are in
excellent agreement with pseudopotential (PP) DFT-GGA
calculations from the literature and experimental results.>8-62
The Ni(111) clean surface exhibits only a marginal inward
relaxation of —1.6% in the first layer with respect to the Ni
bulk interlayer spacing. The work function ® and the surface
energy o match the PP values but they noticeably deviate
from experiments by 4.3% and 19.5%, respectively.

Adsorbed atomic oxygen on Ni(111) was calculated on
several high-symmetry sites (see Fig. 4) for a p(2 X 2) super-
structure. For this set of calculations it was necessary to re-
duce the muffin-tin radius of oxygen to 1.1 bohr in order to
calculate the energy of the O, molecule and to allow for
O-Ni relaxations in all high-symmetry sites [the O-Ni dis-
tance of O at the top site is much shorter than O at the
threefold hollow sites (see Table II)]. Since RI(\),IT: 1.1 bohr is
smaller compared to the value used for the convergence test
illustrated in Fig. 3, the kinetic energy cutoff for the plane-
wave basis needed for the interstitial region is larger
(E¥ =25 Ry, after a similar test as the one in Fig. 3,

max

other parameters as in Sec. III B). The energy of the O,
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FIG. 4. High symmetric adsorption sites of the Ni(111) surface.
fcc and hep denote the threefold on-surface sites. Top denotes the
on-top site above a surface atom and br is the bridge site between
the fcc and hep sites. Directly below the hep site and above a metal
atom in the second layer is the tetrahedral subsurface (tetra) site.
Directly below the fcc site and above a metal atom in the third layer
is the octahedral subsurface (octa) site.

molecule was calculated using a rectangular cell of dimen-
sion 15X 16X 17 bohr® with I'-point sampling.

The subsurface configurations [octa and tetra (see Fig. 4)]
were calculated using supercell geometries containing seven
layers of Ni(111). Correspondingly, the fcc p(2X2) super-
structure was additionally calculated using seven layers of
Ni(111) to obtain the energy differences of the subsurface
sites reported in Table II.

For the fcc site, we obtained E,=-2.88 eV, which signifi-
cantly differs from the calorimetry experimental® value of
—2.28 eV. This overbinding is in the range of current DFT
functionals. For a discussion of this point, see, e.g., Refs.
66-68. In case of strong dispersive interactions, often a too

TABLE II. Calculated properties of O at the high-symmetry
sites of Ni(111) (see Fig. 4) for ®=1/4 ML in a (2 X 2) surface unit
cell. AE, is the E, difference with respect to the E, of the fcc site
(-2.88 eV from our calculations), dy;.o is the distance to the near-
est Ni atom (for the subsurface positions also the distance to the
nearest Ni atom in the subsurface layer is given in parentheses), and
A, is the top layer relaxation as percentage change with respect to
the bulk value (the center of mass of the Ni top layer is used in this
definition).

AE, dxi-o Ap AE,® AE,®

Sites (eV) (A) (%) (eV) (eV)
fee 0.00 1.85 0.0 0.00 0.00
hep 0.13 1.84 0.5 0.12 0.08
br 0.61 1.80 -0.1 0.55 0.82
top 2.06 1.69 -1.8 1.84 1.86
octa 2.48 1.86(1.97) 8.6

tetra 2.58 1.76(1.81) 10.9

“Results taken from Eichler ef al. using the PW91 exchange-
correlation functional (Ref. 63).

PResults taken from Li et al. using the PW91 exchange-correlation
functional (Ref. 64).
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TABLE III._Calculated and experimental (from the literature) structural parameters in A for the
p(2x2) and (V3 X y3)R30° configurations of O in the fcc-hollow sites of Ni(111). For the interlayer dis-
tances d, the center of mass of each Ni layer is used. dy;.g is the O-Ni bond length, Az, is the buckling of the
first layer, and Ax; is the adsorbate-induced lateral shift of the Ni atoms in the first layer.

Structure dni.o dy; dp, Az, Ax,

p(2%2) DFT 1.85 115 2.02 0.09 0.01
Expt. (Ref. 21) 1.83 111 2.05 0.09 0.02+0.04
Expt. (Ref. 73)  1.83+0.03 1.10=0.03 2.04+0.03 0.12=0.03 0.07+0.03
Expt. (Ref. 70)  1.85+0.05 2.18+0.10

(V3% \3)R30° DFT 1.84 113 2.06 0 0
Expt. (Ref. 20) 1.80+0.02 1.08=0.02 2.05+0.02 0 0
Expt. (Ref. 70)  1.85+0.05 2.18+0.10

small E, has been observed (e.g., Ref. 69). However, as is
evident from the discussion regarding Eqgs. (7) and (8), the
quantities that govern the phase-transition behavior of adsor-
bates on surfaces are the differences in E, energies and not
their absolute values. Thus, the E, energies reported in this
study correspond to converged energy differences.

E, differences, AE,, of O adsorbed in the high-symmetry
sites of the Ni(111) surface are reported in Table II. The fcc
adsorption site is the most stable, in agreement with experi-
mental findings.”® The fcc site is only slightly more favorable
than the hcp site (0.13 eV difference), while adsorption at
bridge, top, and subsurface sites has less favorable E, ener-
gies. This confirms the usual trend of oxygen to occupy high
coordinated sites. The oxygen distance to the nearest Ni
atom, dy;.o, and the top layer relaxation, A,,, are in very
good agreement with previous DFT calculations.5%%4

There is some disagreement when comparing our on-
surface E, differences (full-potential LAPW/APW +1o) with
the results from Eichler et al.%® and Li et al.* based on
pseudopotentials. Even though the trends are the same, the
absolute value of the E, differences varies from set to set.
Similar unsatisfactory scattering of published DFT energy
results has already been documented and systematically stud-
ied for the adsorption of O and CO at RuO,(110).”" For that
case, it was concluded that tiny imprecisions appearing in the
scattering properties of f-like waves in the frozen-core ap-
proximation lead to significant differences with respect to
results obtained from full-potential LAPW/APW +lo calcu-
lations.

In general, the replacement of core electrons by an effec-
tive core potential in a PP calculation is done to reduce com-
putational cost and should, ideally, give results identical to
those of an all-electron (AE) calculation using the same
functional. However, the replacement of the full AE potential
with a PP is a delicate undertaking that involves an inherent
tension between optimal transferability (faithful reproduction
of AE atom behavior) and improved computational effi-
ciency (slowest possible spatial variability). Whenever pos-
sible, one should carry out comparison tests with AE calcu-
lations to ensure that the PP results are correct within the
DFT level of approximation used.”” The quality of PP and
AE calculations, properly executed, should be nearly the
same.”!

Based on the results presented in Table II, one would
expect O to occupy mostly fcc and hep sites on the Ni(111)
surface at temperatures near the order-disorder phase transi-
tion. Thus, those are the adsorption sites that we will con-
sider in our lattice-gas model for the O/Ni(111) system. The
energy results in Table II indicate that adsorption on subsur-
face sites is clearly unfavorable with respect to adsorption on
the threefold hollow sites. Consequently, we shall not include
subsurface sites in the lattice model for O/Ni(111).

O on Ni(111) is known to be a magnetic system’*”> and,
consequently, the DFT results in this study are the result of
spin-polarized calculations. We have not carried out nonmag-
netic ca_lculations. However, previous calculations” for the
(\6 X \3)R30° structure have shown that different results are
obtained for AE, depending on the magnetization of the sys-
tem. According to the results in Ref. 75, the difference in
AE, for the fcc and hep sites for the nonmagnetic case is
0.34 eV, while for the magnetic case is 0.16 eV. As we will
see below, the difference between both sets of results (0.18
eV) is of the same order of magnitude as the lateral interac-
tions derived from DFT data. Thus, we expect that nonmag-
netic calculations would lead to different interaction than
magnetic ones.

The calculated and the experimental (from the literature)
atomic _ geometry data for the p(2X2) and the
(V3 X \3)R30° structures of O in the fcc-hollow sites are
summarized in Table III. Good agreement (within the experi-
mental error bars) between the data is observed. In the
p(2X2) structure, oxygen pushes its three Ni neighbors ra-
dially away (Ax;=0.01 A) and lifts them up. This is coun-
teracted by a downward movement of the non-O-coordinated
Ni atom, leading to a modest first layer buckling of
Az,;=0.09 A. Lateral shifts and vertical buckling in the first
Ni layer of the (V3 X \3)R30° structure are excluded by
symmetry.?0

Vibrational frequencies for the p(2X2) configuration of
O on Ni are calculated by numerical differentiation of the
forces using a second-order finite-difference approach with a
step size of 0.02 A. The Ni atoms are fixed in their relaxed
geometries; only the oxygen atoms are explicitly moved.
This approximation is not expected to introduce significant
error into the results since the O and Ni vibrations modes are
reasonably decoupled (7. =295 cm™!).7® The Hessian ma-

max
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TABLE IV. Symmetric stretching ¥ , asymmetric stretching ,,
and asymmetric stretching ¥, for 1/4 and 1/3 ML of O adsorbed on
the fcc and hep sites of Ni. The corresponding ZPEs are also given.

0 7 T W,  ZPE
(ML) Sites (ecm™) (cm™) (cm™) (meV)
1/42 fcc 550 456 449 90
hcp 545 435 451 89
1/3° fcc 538 400 413 84
hep 524 410 424 84

“Calculations using a (2X2) unit cell.
bCalculations using a (\‘”3 X \E)RSO" unit cell.

trix is mass weighted and diagonalized to yield the frequen-
cies and the normal modes of the system. The results pre-
sented in Table IV are in reasonable agreement with
experimentally measured’” p(2 X 2)O/Ni(111) frequencies:
5373, 540, and 452 cm~!; however, a definite assignment is
not possible.

The zero-point energies (ZPE) are also reported in Table
IV for both sites: fcc and hep. The energies are almost the
same for both sites. This is reasonable since, geometrically,
the two adsorption sites (fcc and hep) are very similar (see
Fig. 4). As a consequence, the energy differences between
the fcc and the hep p(2 X 2) structures are not affected by
their ZPEs.

Furthermore, Table IV shows the vibrational frequencies
and the ZPE for the (\/5 X x/g)R30° ®=1/3 ML configura-
tion. The values are close to those for the p(2X2) configu-
ration. The ZPEs differ by only =5 meV. Thus, within the
harmonic approximation, the effects of the vibrational en-
tropy of O atoms on Ni(111) are small and we shall neglect
it.

The DFT calculations used to derive the lateral interaction
parameters were carried out using the surface unit cells de-
picted in Fig. 5. Their choice was dictated by technical com-
puting limitations (bigger cells demand too much computa-

FIG. 5. Schematic illustration of the Ni(111) surface showing
the different unit cells used to carry out DFT calculations for the
O/Ni(111) system. The black and white letters identify the fcc and
hep sites, respectively, and are used to label each configuration in
Tables V and VL

PHYSICAL REVIEW B 79, 245418 (2009)

tional resources) and compatible results among different unit
cells (the unit cells k-mesh grids have to be integer multiples
of each other). As can be seen in Fig. 5, the biggest unit cell
used is a (3 X4) cell, which (at the present) demands a lot
of computational resources.

Since we are interested in the phase diagram of O/Ni(111)
for the range 0 <O <0.40 ML (at higher oxygen exposures,
oxide islands form?°), most of the calculations have been
carried out for this coverage range. Furthermore, since the
fcc sites are the most stable sites, we carried out more cal-
culations for fcc configurations than for hcp configurations.
In this way, we save some computing time by excluding
some configurations of the less energetically stable hcp sites.

There are many different configurations that can be calcu-
lated using the unit cells illustrated in Fig. 5. The configura-
tions presented in Tables V and VI are a small subset of the
possible configurations. This subset was selected by includ-
ing the configurations predicted by the cluster expansion to
be close to the ground-state line. Thus, we carried out a
ground-state search based on direct enumeration*' of the dif-
ferent configurations that are possible to calculate within the
unit cells of Fig. 5.

For the case of O/Ni(111), the ground-state search using
a reduced number of configurations (10-12) led to the
p(2X2) and the (\/§ X \3)R30° configurations as ground
states for @=1/4 ML and ©®=1/3 ML, respectively. With
the lateral interaction parameters derived at this stage, one
then calculates the energy of all possible structures in the
unit cells of Fig. 5, i.e., one carries out a direct enumeration.
Those structures close to the ground-state line are then iden-
tified and calculated from first-principles. With this increased
set of configurations, a new set of interaction parameters is
derived and the latter procedure is repeated until no new
structures appear close to the ground-state line.

The DFT energies of the configurations used to obtain the
lateral interactions are given in Tables V and VI. Table V
contains fcc and hcp configurations, while Table VI contain
fcc-hep configurations, i.e., O occupies both types of sites.
To identify a specific configuration, letters have been used in
Tables V and VI, which refer to the positions denoted in Fig.
5.

A close examination of the energetic data in Table V
shows that £, augments with increasing coverage. This is an
indication of increasing repulsion among O atoms with in-
creasing coverages. Table V also shows that the fcc configu-
rations are always more favorable that the hcp configura-
tions. However, the stability of the mixed fcc-hep
configurations (Table VI) with respect to fcc configurations
increases as the coverage increases. An example of that ten-
dency is (3 X 3) afh (Table V), i.e., the (@X \/§)R30° con-
figuration, and (2 X 3) ab (Table VI), which only differ by 8
meV. In fact, for @=1/2 ML, (2X4) afgd in Table VI is
energetically more favorable than all fcc configurations in
Table V.

Thus, as the coverage increases (and with it, the repulsive
interaction), the O atoms try to diminish their repulsive in-
teractions by partially occupying hcp sites. Energetically, the
occupation of hcp sites instead of fcc sites is unfavorable;
however, the reduction in repulsive lateral interactions makes
it possible. We shall see that this fact has significant effects
on the O/Ni(111) phase diagram.
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TABLE V. E, per atom for different fcc and hep configurations
of O atoms on Ni(111) obtained from DFT calculations. The letters
denote the position of O atoms in every unit cell according to the
nomenclature illustrated in Fig. 5.

PHYSICAL REVIEW B 79, 245418 (2009)

TABLE VI. E, per atom for different fcc-hcp configurations of
O atoms on Ni(111) obtained from DFT calculations. The letters
denote the position of O atoms in every unit cell according to the
nomenclature illustrated in Fig. 5.

0 £ £ o Efecter
Unit cell (ML) Config. (eV) (eV) Unit cell (ML) fce hep (eV)
(2X%2) 1/4 a -2.877 -2.750 (2X%x2) 172 a -2.392
172 ab -2.404 -2.274 172 a +3.521
3/4 abc -1.955 —-1.804
1 abcd —-1.423 -1.273 (2X%3) 1/3 a b -2.742
1/3 a f -2.641
(2x3)® 1/6 a -2.853 -2.740 172 ae f —2.445
1/3 ab -2.666 172 ab f -2.379
1/3 ae -2.635
173 ad -2.393 2x4) 1/4 a f -2.773
172 abf -2.391 1/4 a g -2.768
172 abe -2.307 172 af ed -2.476
2/3 abde -2.092
2/3 abcd -2.083 (3%3) 2/9 a h -2.746
2/3 abef -2.064 1/3 af h -2.768
5/6 abcde -1.766
(3%4) 1/4 ag b -2.781
(2x4) 1/8 a -2.854 -2.758 1/4 ak i -2.750
1/4 af -2.817 -2.700 1/3 ah bi -2.720
1/4 ac -2.673
(3x3) 19 a Z7833 22709 The E, energies gf th.e different conﬁgurgtions in Tables'V
2/9 of 5785 5,660 and VI are plotted in Fig. 6. The E, energies decrease with
coverage and level off at low coverages (0 <1/6) ML—an
219 ae —2.666 —2.548 indication that after some distance the O atoms do not appre-
173 afh -2.750 —2.625 ciably interact. This fact leads us to conclude that we do not
1/3 aef -2.558 need long distance interactions in our Hamiltonian [Eq. (4)].
2/3 acefgh -2.082 -1.943 The formation energies are plotted in Fig. 6. The DFT
ground-state line is shown for 0=0 =<1/2 ML, which is the
(3% 4) 112 a —0.843 2728 coverage range for which most Of the DFT calculations have
6 ah 2804 2704 begn c?_rrled out. As note.d in Fig. 6, the p(2X?2) and the
(V3 X \3)R30° configurations are the ground states at ©
29 ac ~2.666 —2.548 =1/4 and 1/3 ML, respectively, in agreement with
2/9 af -2.820 experiments.!7-18
1/4 ath -2.793

aThe configurations calculated in the (2 X 3) unit cell for which ®
=1/2 ML were carried out using R&Tz 1.3 bohr and Eﬁgx
=16 Ry, because, after relaxing those structures, the muffin-tin
spheres overlap if RSH: 1.4. The formation energies of those struc-
tures were calculated from Eq. (7). From those results, the E, ener-

gies reported above were obtained from Eq. (8).

Despite the fact that Ni oxide is formed for ® > 0.4 ML,
the set of configurations in Tables V and VI does comprise
structures with coverages up to 1 ML, since these structures
are required during the derivation of lateral interactions to
determine, in particular, the higher-order many-body interac-
tions occurring in (locally) denser adatom arrangements. A
similar inclusion of structures has been done to calculate
lateral interaction parameters for O/Pd(100), where at
®>0.5 ML, O readily incorporates inside the substrate.”®

B. Lateral interaction parameters

The values of the EClIs for different genetic-algorithm op-
timizations are depicted in Table VII under cases II-1V. The
candidate ECIs have been chosen using the maximal cluster
concept.?”*® Interactions beyond trios (e.g., quartets and
quintets) are not included. At the low-coverage range of the
O/Ni(111) phase diagram (0<® <0.40) ML, we do not ex-
pect the O atoms to frequently form dense clusters, i.e., the
frequency of multisite interactions should be low.

Statistical data are given for every case in Table VII. The
statistics reported are the average of the absolute value of the
residuals [y;—;|,ve (Where y; is the DFT E, and ¥, is E, given
by the Hamiltonian), an estimator of the error variance 6°
(also known as the mean square error), cross-validation score
CV, Mallow’s C, statistics, coefficient of determination R2,
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FIG. 6. (a) DFT E, energies (per atom) plotted against coverage ®. The E, data levels off at the zero coverage limit for low coverages.
A total of 56 different configurations have been calculated and are listed in Tables V and VI. (b) DFT formation energies AE; (per site)
plotted against coverage ©, and the DFT ground-state line for 0=® = 1/2. The configurations corresponding to the ground-state structures

at ®=1/4 and 1/3 ML are annotated with arrows.

adjusted coefficient of determination R, and the number of
parameters.

No optimization criterion was used in the parameter set of
case I. This set shows the interaction energies corresponding
to the “obvious” EClIs, i.e., close range interactions. The
same interactions were used in Refs. 14 and 16. They include
the pair and trio interactions depicted in Fig. 2 plus three pair
fcc-hep interactions. Case I also shows 95% confidence in-
tervals (Cls) for the energy parameters.”” Cases II, III, and
IV are the result of optimizing CV, C, statistics, and R?
respectively.

The values of the parameters are very similar from case to
case. The pair interactions tend to decrease with distance and
are mostly positive (indicating mostly repulsive interactions).
The value of the fcc V)3 parameter is always negative. This
is an indication that the p(2X2) is very stable, since that is
the pair interaction present in that phase. The value of the
fce-hep V), parameter is very large and indicates that O at-
oms repel each other very strongly at short distances.

The trio interactions are of the same order of magnitude
as the pair interactions. In particular, V,3 has a very high
negative (attractive) value. This high value is mostly a coun-
terbalance of the high positive (repulsive) value of V,,
(which is always present whenever V5 is present). Case II
(CV) shows that the fcc triangular trio interactions V3 (near-
est neighbors), V,, (second-nearest neighbors), and V,s (third-
nearest neighbors), when included, tend to decrease with in-
teraction distance.

The energy difference between fcc and hcp adsorption
sites (=100 meV; see fcc V and hep V) is in the same
energy range of the pairs and trios. This is another indication
that O can occupy hcp sites when trying to minimize the
repulsive interactions at increased coverages.

The parameter set obtained from the CV optimization
does not include fcc V,,,. This is counterintuitive since one
would expect fcc V,, to play an important role in the (\3
X \3)R30° phase at @ 1/3 ML (where the interactions are
given by second-nearest neighbors). That interaction, how-
ever, is partially accounted for in case II (CV) by including
V., (the triangular trio formed by second-nearest neighbors).
The omission of a physically important interaction parameter

adj’

adj?

illustrates the tendency of the CV score to render the opti-
mized ECIs as purely stochastic variables.”> The other two
optimizing criteria, C, statistics and Rad, include V,,

The p(2X2) order-disorder phase transitions calculated
from the interaction parameters in Table VII are illustrated in
Fig. 7. The phase transitions were identified by canonical
Monte Carlo simulations as the inflection point of the
p(2X2) order parameter [Eq. (12)] plotted against the tem-
perature for constant coverage.

The phase transition corresponding to the fcc only param-
eters of case I has been included in Fig. 7 as well. For this
set, i.e., case I: fcc parameters, we obtain the highest transi-
tion temperatures. Including the corresponding hcp param-
eters, i.e., case I, decreases the transition temperatures by
about 150 K. This is reasonable since by additionally includ-
ing the hcp sites in the lattice, the configuration space of the
O atoms increase (the configurational entropy increases).
Thus, the tendency to disorder of the O atoms increases, i.e.,
the order-disorder transition temperatures decrease.

The transition temperatures resulting from the extreme
values of the 95% confidence intervals of case I are also
illustrated in Fig. 7. The transition temperatures vary within
a range of AT=100 K. Thus, the statistical uncertainty of
the ECI parameters of case I leads to a fairly small variation
range for the transition temperatures of O/Ni(111). Conse-
quently, one can reasonably expect that the ideal phase dia-
gram (obtained from a direct coupling of DFT energies with
Monte Carlo) would lie very close to the phase diagram cal-
culated by the cluster expansion Hamiltonian.%°

The optimized parameter sets, i.e., cases II-1V, lead to
essentially the same transition temperatures for @=1/4 ML.
Those critical temperatures lie in the lower extreme of the
95% confidence interval of case I. Small variations are
present in the transition temperatures of cases II-IV for ©
<1/4 ML.

The different ECI sets of Table VII lead to very similar
p(2 X 2) transition temperatures for O/Ni(111). We have not
tested the different ECI sets with respect to other transitions
[testing of the (v 3 3)R30° transition at ®=1/3 ML would
require lengthy Wang-Landau simulations for every set be-
cause of the strong first-order nature of this transition]. How-
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TABLE VII. ECIs and scores obtained from genetic-algorithm fits of the cluster expansion [Eq. (4)] to the
DFT energies in Tables V and VI. The ECIs are given in (meV). The cluster figures corresponding to each
ECI are denoted by letters referred to the (3X4) unit cell in Fig. 5.

Cases
Site ECTI* Position I I (CV) 11 (C,) v (Ridj)
fcc Vo a -2832.3+10.7 -2833.1 —2837.8 —2847.0
Vo ab 348.5%16.7 328.1 351.2 329.2
Vo af 26.5+7.5 29.0 26.6
Vi3 ac -148*74 -259 -10.5 -7.8
Vs ak 17.6 7.4
Vps aj 5.9 4.8
Va abc 91.0x18.4 81.9 102.0 101.0
Vi abf 59.1x11.1 54.4 69.4 68.8
Vi abe -158.0*=33.7 -153.9 -172.8 -170.8
Vi ath 323
Vis aig 19.6
Vie afi -7.3 -5.7
hep Vo a -2720.5+13.2 -2742.9 -2743.4 -2742.7
Vo ab 343.2£39.8 340.6 340.3 340.3
Vo af 31.2+8.8 32.7 322 322
Vi3 ac -11.9+93
Vs ak
Vps aj 9.0 9.5 9.2
Vi abc 96.2+47.6
Vi abf 61.5+244 15.2 15.1 15.3
Vi abe -150.9=83.6
Vi ath
Vis aig
Vi afi 19.2 19.4 19.3
fce-hep® Vi € aa 12616.2*+61.1 12561.4 12563.1 12563.9
Vo ab 282.3%13.7 276.2 276.7 275.5
Vi3 af 29.4+10.1 20.8 24.6 22.7
Vs ac 26.6 21.2 22.9
Vps ak
Vp6 aj
|yi—)7i|avg 8.4 8.1 7.4 7.0
&2 160.1 155.6 114.6 111.9
CvV 21.9 15.2 16.6 16.3
C, statistics 24.2 254 11.9 13.5
R? 0.99915 0.99924 0.99941 0.99945
Ridj 0.99883 0.99886 0.99916 0.99918
No. param. 17 20 18 20

#The fcc, hep and fec-hep ECIs were fitted simultaneously to the E, results reported in Tables V and VI. Thus,
we did not decouple the system of equations as was done in Ref. 14.

bfce-hep denotes cluster figures containing both fcc and hep sites. Formally, one should consider the tensor
product of fcc and hep clusters (Refs. 27 and 39). However, we have only considered the pairs of that
product. Thus, the first and second letters in the column position for fcc-hep denote fcc and hep positions,
respectively, in the (3 X 4) unit cell in Fig. 5.

“The energetic value of the fcc-hep pair nearest-neighbor interaction is very high and can lead to numerical
instabilities in the genetic-algorithm optimizations. Thus, this parameter was not included in the optimiza-
tions. Once the other ECIs participating in the expansion were known, the value of fcc-hep V), was derived
from the (2 X 2)af-a"P configuration in Table VI.
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FIG. 7. p(2X2) order-disorder phase transition calculated for
the different parameter sets in Table VII. The acronym CI refers to
the 95% confidence intervals of case I.

ever, ECIs that are important to other phases are implicitly
considered in the p(2X2) transition. The ground state and
the specific location of the transition temperature for 1/4
<0<1/3 ML are the result of the relative stability of p(2
X2), (¥3 X y3)R30°, and any other stable phase [e.g., an-
tiphase p(2X2) domains'®]. The fact that the p(2 X 2) tran-
sition is very similar for the different fcc-hep sets of Fig. 7
means that the other transitions have a similar relative stabil-
ity for the different sets. This argument is plausible for
phases that coexist due to their coverages being close (e.g.,
like the phases at ®=1/4 and 1/3 ML).

The results depicted in Fig. 7 were obtained without in-
cluding mixed (fcc-hcp) multisite interactions (only mixed
pairs were included). One can reasonably expect that mixed
fcc-hcp multisite interactions would be important in the
Hamiltonian of a fcc-hcp adsorption system. However, their
inclusion would significantly complicate the calculations. In
view of the good reproducibility of the DFT energies by the
different parameter sets in Table VII (small residuals aver-
age) and the similarity of the phase-transition lines in Fig. 7,
we expect that our expansion reproduces fairly well the
phase diagram that one would obtain by directly coupling
Monte Carlo simulations with DFT calculations.

For the calculation of the thermodynamic properties and
the remaining parts of the O/Ni(111) phase diagram, we shall
use case III (C,) of Table VII, i.e., the parameter set obtained
from optimizing C,, statistics. Our choice is based on the fact
that the CV score tends to render the optimized ECIs as
purely stochastic variables (as has been discussed above),

and the C, criterion is statistically more meaningful than

2 47
adj*

C. Thermodynamic properties

Once the O/Ni(111) ECI parameters have been deter-
mined from first-principles, one can carry out Monte Carlo
simulations in order to study the thermal behavior of the
system. Figure 8 shows a selection of calculated thermody-
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FIG. 8. Thermodynamic properties of the O/Ni(111) system cal-
culated from Metropolis and Wang-Landau Monte Carlo simula-
tions. (a) Logarithm of the configurational density of states
In[Q(E)] against the energy per atom (N is the number of atoms) for
®=1/4 ML. The inset shows the normalized canonical distribution
at the transition temperature P(E,T*)=Q(E)e %57 (b) Configura-
tional density of states and canonical distribution for ®=1/3 ML.
(c) Helmholtz free energy F(T) and internal energy U(T) for O
=1/4 ML. (d) F(T) and U(T) for ®=1/3 ML. (e) Metropolis Monte
Carlo simulation results for the p(2 X 2) order parameter y{T), cal-
culated according to Eq. (12), for ®=1/4 ML and sigmoidal fit to
the data. The transition temperature 7" is given by the inflection
point of the sigmoidal fit. (f) Comparison of heat capacity Cy(T)
results from Metropolis and Wang-Landau Monte Carlo simulations
for ®=1/4 ML. (g) Dependence of the coverage ® on the chemical
potential u at 7=140 K as obtained from Metropolis Monte Carlo
simulations in the grand canonical ensemble. (h) Grand canonical
potential ® versus chemical potential u at T=140 K obtained
from integration of Eq. (14). The location of the chemical potential
of the transition, u*, is given by the discontinuity of the first de-
rivative of the ®;(u) curve.

namic properties for @=1/4 and 1/3 ML as obtained from
Metropolis and Wang-Landau simulations. Figures 8(a)-8(d)
are the result of Wang-Landau Monte Carlo simulations;
Figs. 8(e), 8(g), and 8(h) were obtained from Metropolis
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FIG. 9. (Color online) Snapshot of the (\SX \3§)R30° first-order
transition at ®=1/3 ML. Black (black) and gray (green) circles
indicates O atoms occupying fcc and hep sites, respectively.

Monte Carlo simulations; while Fig. 8(f) compares results
obtained from both algorithms.

The nature of the phase transitions (first order or continu-
ous) at ®=1/4 and 1/3 ML has been investigated by calcu-
lating their canonical distributions P(E,T")=Q(E)e EksT
where T is the temperature at the phase transition. The dis-
tributions have not been obtained from Metropolis Monte
Carlo simulations of the system close to the phase transition
(since, in doing so, previous results showed the failure®!' or
the inaccuracy®” of employing the calculated canonical dis-
tribution to determine the nature of the phase transition).
They have been calculated from the configurational density
of states, ()(E). Instead of trying to extract }(E) from the
probability distribution produced by “standard” Monte Carlo
simulations,?'8? the Wang-Landau algorithm (used here) es-
timates Q)(E) directly. By shifting the acceptance rule in the
Monte Carlo simulation from energy to entropy space, the
Wang-Landau algorithm is able to surmount the problem
posed by hysteresis at first-order phase transitions and criti-
cal slowing down at continuous phase transitions. The algo-
rithm has shown that it is able to sample very complex en-
ergy profiles accurately.33-34>4

The phase transition at ©=1/3 ML [that is, the
(V3 X \3)R30° transition] clearly exhibits all the characteris-
tics of a first-order transition: a double-peaked canonical
probability distribution at the transition temperature 7" indi-
cating the coexistence of two phases at the transition [Fig.
8(b)], a steplike change in the energy, and a discontinuity at
the Helmholtz free energy [Fig. 8(d)]. Experimental
studies'”"" have also found that O/Ni(111) exhibits a first-
order (\s’§>< V3)R30° transition.

A snapshot of the (13 X y3)R30° phase transition obtained
from Monte Carlo simulations is depicted in Fig. 9. Two
coexisting phases, (V3 X y3)R30° and a disordered phase,
can clearly be identified. The O atoms in the
(V3 X \3)R30° phase occupy only fcc sites; while in the dis-
ordered phase, they occupy both fcc and hcp sites. The in-
creased energetic stability of mixed fcc-hcp configurations
with increased coverage discussed in Sec. IV A plays already
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a role at ®=1/3 ML. Thus, the increased energetic compe-
tition of fee-hep configurations is the microscopic cause of
the (13 X V3)R30° phase exhibiting a first-order transition.
Because of the double-peaked structure at the first-order
(V3 X \3)R30° phase transition, Metropolis canonical Monte
Carlo simulations are not efficient because an extremely long
time is required for the system to travel from one peak to the
other in energy space. Thus, strong hysteresis effects are
present [LEED experiments also have found strong hyster-
esis at the (V3 X y3)R30° transition!”]. The Wang-Landau al-
gorithm allows the simulation to access all energy levels
with equal probability (random walk in energy space). So it
overcomes the barrier between the coexisting phases and al-
lows for an accurate evaluation of the transition temperature.

The nature of the p(2X?2) transition at ®=1/4 ML is
more subtle. To date, different experimental results about the
nature of this transition have disagreed. Roelofs et al.?
found the transition to be continuous Ising-like, Li et al.?*
found a continuous four-state Potts-like transition, while
Schwenger et al.?® and Voges and Pfniir®® found the transi-
tion to be weakly first order. Likewise, Monte Carlo simula-
tions have been inconclusive about the nature of this phase
transition.®!

A close look at the canonical distribution in Fig. 8(a) sug-
gests that the p(2 X 2) transition at ®=1/4 ML is of weakly
first-order character. The double peak structure is not as evi-
dent as was the case for the (V3 X V3)R30° transition [Fig.
8(b)]; however, the distribution shows two peaks instead of
one (as it would be the case of a continuous phase transi-
tion). This result about the nature of the p(2 X 2) transition is
by no means conclusive since we have not calculated the
critical exponents of the p(2 X 2) transition. This will be the
subject of a subsequent paper.

The p(2 X 2) transition can also be accurately determined
by Metropolis canonical Monte Carlo simulations. Figure
8(e) shows the results of Metropolis Monte Carlo simula-
tions for the p(2X2) order parameter and the sigmoidal fit
used to determine the transition temperature. Figure 8(f)
shows the results of both Monte Carlo methods for the heat
capacity. The results are in excellent agreement and also
show the same transition temperature (the peak of the curve)
as the p(2 X 2) order parameter. In fact, determining the tran-
sition temperature by the point of inflection in the order-
parameter curve and by the maximum in the heat capacity
curve are closely related.3*

Figure 8(g) shows an example of the Metropolis grand
canonical Monte Carlo simulation results used to determine
phase coexistence. The discontinuous jump in the ©O(u)
curve indicates a first-order transition. The location of the
chemical potential of the transition is carried out by finding
the discontinuity point (intersection point) in the grand ca-
nonical potential versus chemical-potential curve [Fig. 8(h)].
Scans similar to the one shown in Figs. 8(g) and 8(h) were
carried out in order to calculate the phase-coexistence bound-
aries in the simulated O/Ni(111) phase diagram of Fig. 10.

D. O/Ni(111) phase diagram

The calculated equilibrium phase diagram of O/Ni(111) as
calculated from Monte Carlo simulations is illustrated in Fig.
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FIG. 10. Phase diagram of O/Ni(111) as calculated from Monte
Carlo simulations. The dotted lines denote first-order phase transi-
tion while the dashed lines denote weakly first-order or continuous
phase transitions. Pure phases and phase-coexistence regions are
identified with letters that make reference to the snapshots in
Fig. 11.

10. The dotted lines denote first-order transitions and the
dashed lines denote weakly first-order or continuous transi-
tions (see discussion in the last section). Snapshots of the
different phases are illustrated in Fig. 11.

PHYSICAL REVIEW B 79, 245418 (2009)

All phases present in the experimental phase diagram
(Fig. 1) are present in our theoretical phase diagram. Besides,
we also obtained a p(2 X 2)+(y3 X V3)R30° coexistence re-
gion (denoted by A+C). This region has not been observed
in experiments yet (probably due to low mobility of oxygen
at low temperatures), but it has been postulated in an empiri-
cal fitting of interaction parameters to the experimental
O/Ni(111) phase diagram.'®

The so-called antiphase (phase B in Figs. 10 and 11) is
made of p(2X2) domains, with oxygen in fcc sites, sepa-
rated by a random distribution of domain walls in which hcp
sites are occupied. The antiphase is not a ground state of the
O/Ni(111) system but exists only as a thermally activated
phase. The ground states are the p(2X2) phase (either pure
or coexisting with a lattice gas), the (V3 X V3)R30° phase,
and a coexistence of p(2 X 2)+(\3 X V3)R30° phases. Those
ground states are the same states given by the DFT ground-
state line in Fig. 6(b).

Thus, qualitatively, our O/Ni(111) phase diagram from
first-principles closely matches the LEED experimental
phase diagram.!”!® Additionally, our Monte Carlo Simula-
tions based on first-principles are able to resolve the
ground state for 1/4>0>1/3 ML, ie., the p(2X2)
+ (V3 X \V3)R30° phase.

Differences arise in the transition temperature values. The
theoretical phase diagram predicts transition temperatures
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FIG. 11. (Color online) Snapshots of pure phases and phase-coexistence configurations of O/Ni(111). Black (black) and gray (green)

circles denote O adsorbed on fcc and hep sites, respectively. The letters denote stability regions in Fig. 10.
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TABLE VIII. Order-disorder transition temperatures for the
p(2X2) phase at 1/4 ML and the p(2 X 2)+(~'3 X V3)R30° phase at
1/3 ML obtained from LEED experiments (Ref. 18) and first-
principles Monte Carlo simulations. The same differences (100-200
K) between experimental and theoretical results have also been
found in the case of O/Ru(0001) (Ref. 12).

p(2x2) (V3% \3)R30° Ratio
Tiepr (K) 440 314 1.4
Tyc (K) 623 404 1.5

higher than the experimental ones (see Table VIII). However,
the ratio of the transition temperatures at @=1/4 and 1/3
ML is essentially the same, i.e., the relative thermal stability
of the p(2 X 2) and (\/ 3% 3)R30° phases in both diagrams is
very similar. This is one more indication of the excellent
qualitative agreement of both phase diagrams.

In our model of the O/Ni(111) system we neglected sub-
surface occupation and vibrational entropy. Those additional
degrees of freedom would further reduce the calculated tran-
sition temperatures. However, as explained in Sec. IV A, we
do not expect major changes in the transition temperatures
by including them in our model.

Further insight into the reasons behind the temperature
mismatch can be obtained by comparing spillover data for
®=1/4 ML from LEED experiments® and our calculations
(see Fig. 12). Our Monte Carlo simulations (case III in Fig.
12) predict a reduced spillover onto hcp sites when compared
to the experimental data. This leads to increased transition
temperatures because fcc adsorption, i.e., the p(2 X 2) phase,
is predicted to be more stable than what one observes in
experiments.

Schwennicke and Pfniir'® estimated the energy difference
between fcc and hcp sites and obtained a value of 46 meV. In
comparison, our cluster expansion predicts a E, difference of
94 meV (from Vfcc and Vth in Table VII) If we take
VAPV =46 meV, we obtam a better agreement with the
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fcc sites B
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FIG. 12. Experimental data points of coverage in fcc and hcp
sites for @=1/4 ML as a function of the reduced temperature (7
—T.)/T, obtained by analyzing LEED I(E) curves (Ref. 25). The
results of Monte Carlo simulations are shown for comparison. Both
experiment and simulations produce an S-shaped curve with a
maximum slope at the transition temperature.
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experimental data (see Fig. 12). In view of this result, one
could think that our DFT calculations predict an overbinding
to fcc sites; however, the value obtained by Schwennicke and
Pfniir and ours are not directly comparable because Schwen-
nicke and Pfniir used a completely different setup consider-
ing only pair interactions; in addition, only relative values
were determined and then fitted to experiment.'® The reduced
spillover onto hcp sites obtained from our simulations is the
result of the interplay among all ECIs we have considered in
the simulations and not only of the energy difference be-
tween fcc and hep sites. Thus, most probably, the overall
accuracy of DFT is responsible for this discrepancies.

All in all, the calculated O/Ni(111) phase diagram nicely
reproduces the qualitative features of the experimental one
and lead to transition temperatures in the same order of mag-
nitude of the experimental ones. Closer agreement seems to
depend on improvement in the accuracy of the exchange and
correlation functionals of DFT theory.

V. CONCLUSIONS

We have thoroughly studied the phase diagram of O ad-
sorbed on Ni(111) based only on input from DFT calcula-
tions. Different statistical criteria coupled with a genetic-
algorithm search have been used in order to derive the lateral
interactions from DFT calculations. We have chosen the C,
statistics which gave reasonable coefficients. We recommend
a comparison of the results from different statistical ap-
proaches as there is no general rule about which method is
the best. We showed that for the case of O/Ni(111), it is
necessary to include both fcc and hep adsorption sites in the
simulation of the phase diagram.

The thermodynamic properties and the surface phase dia-
gram of the O/Ni(111) system have been calculated from
Monte Carlo simulations using the Metropolis and Wang-
Landau algorithms. Canonical distributions, obtained from
Wang-Landau Monte Carlo simulations, clearly showed a
first-order phase transition at @=1/3 ML in agreement with
previous experiments and calculations. Our results for the
p(2X2) phase transition at ®=1/4 ML suggest a weakly
first order-transition. However, this result is by no means
conclusive and we still need to calculate the critical expo-
nents of the p(2 X ?2) transition in order to figure out its na-
ture. To date, there is no agreement in the literature about the
nature of this transition.

The calculated O/Ni(111) phase diagram agrees qualita-
tively very well with the experimental one. All phases that
have been experimentally determined are present in our
simulated phase diagram. Addltlonally we found a coexist-
ence region of p(2X2) and (V3 X \3)R30° phases at very
low temperatures. Due to adsorbate mobility, low-
temperature coexistence regions are very difficult to be de-
tected experimentally. The p(2X2) antiphase found in ex-
periments is, according to our results, not a ground-state
phase but a thermally activated one.

Differences arise in the values of the transition tempera-
tures. Our theoretical transition temperatures are 100-200 K
higher than the experimental ones. We were able to deter-
mine that our simulations predict a spillover onto hcp sites
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that is less than in the experimental data. This leads to in-
creased transition temperatures since fcc adsorption is pre-
dicted to be more stable than what one observes in experi-
ments. The reduced spillover obtained in our results is a
consequence of the interplay among all interactions consid-
ered in the simulations. Most probably, the overall accuracy
of DFT is responsible for this discrepancies. Thus, improve-
ment in the calculation of O/Ni(111) transition temperatures
based on DFT calculations demands more accurate DFT ex-
change and correlation functionals.
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APPENDIX

Table IX shows formation energies [calculated by using
Eq. (8)] for ®=1/4 ML in a (2X2) unit cell. The energies
were calculated for different layers of Ni in the supercell and
for adsorption of O on fcc and hep sites. The vacuum be-
tween subsequent slabs was 15 A for every calculation. The
results show that a five layer slab model leads to well-
converged values of the formation energies. Since these are
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TABLE IX. Calculated formation energies AE? for ®=1/4 ML
in a (2X?2) unit cell. Both fcc and hep occupation sites have been
calculated.

Ni layers AE}(/;%L (meV) AE}MML (meV)

(hep)
3 -340 -334
5 -364 -332
7 -366 =335
9 -362 -337
11 -363 -334

the central quantities determining the stability of the differ-
ence phases present in the system, a five layer slab model is
fine for studying the phase diagram of O/Ni(111).

The number of layers in the slab necessary to study a
specific system varies from system to system. For example,
Stasevich et al.%® found that a seven layer slab (both sides
adsorption) was necessary to study the interactions of Cu on
Cu(111) and Cu(001), while Tiwary and Fichthorn® found
that a ten layer slab (one side adsorption) was essential to
study the interaction between Al atoms on Al(110). On the
other hand, Stampfl and Scheffler’” used a four layer slab
(one side adsorption) to study the interactions of O on
Ru(0001), Tang et al.'® used a three layers slab (one side
adsorption) to study the phase diagram of O/Pt(111), and
Zhang et al.”® used a five layer slab (both sides adsorption) to
study the phase diagram of O/Pd(100).
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