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The current flowing from a superconductor to a two-terminal setup describing a nanostructure connected to
normal-metal leads is studied. We provide an example of scattering matrix giving ideal splitting off electrons
from a Cooper pair by means of Cauchy-Bunyakovsky-Schwarz inequality. The proposal of the junction and its
possible variants are discussed in a context of possible experiments.
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I. INTRODUCTION

For more than a decade it has been accepted that the phe-
nomena of quantum transport in mesoscopic systems are in-
timately connected with the fermionic nature of carriers, both
electrons and holes. The simplest fingerprint of statistical
interaction is the sub-Poissonian shot noise measured in the
quantum point contact.1 The electronic Hanbury Brown–
Twiss2 experiment performed in the quantum Hall regime3,4

demonstrates strong anticorrelation of current fluctuations,
the effect known as antibunching, characteristic for fermi-
onic particles obeying the Pauli exclusion principle.

Quantum transport in a hybrid normal-metal-supercon-
ductor �NS� junction involves yet another quasiparticle: the
Cooper pair carrying an effective charge 2e. In the Andreev
reflection regime5 eV�� �where V is the applied bias and �
is the superconducting gap� the electron incident from the
normal part of the junction is reflected as a hole. The remain-
ing charge 2e is absorbed into the superconductor region as a
single Cooper pair. The effective charge of Cooper pairs
leads to doubling of NS junction conductance1 and also
doubles the Fano factor of a tunneling barrier at the NS
interface.6

It has been proposed few years ago7 that the statistical
properties of Cooper pairs can be investigated in the hybrid
NS junction in a way analogous to the Hanbury Brown–
Twiss experiment. Fermionic antibunching still gives nega-
tive particle cross-correlations but the charge reversal in An-
dreev reflection may lead to positive charge or current
correlations. The possibility to detect positive cross-
correlation in the NS junction7–12 is by no means a trivial
prospect, as charge Andreev reflection is limited to energies
within the superconducting gap. Still, the cartoon picture one
keeps in mind is that of two Cooper-pair partners undergoing
a separation into different leads and then subject to a corre-
lation measurement.

The cross-correlations are limited by Cauchy-Bunya-
kovsky-Schwarz �CBS� inequality which states that cross-
correlations never exceed autocorrelation. We shall call ideal
splitting the situation when CBS inequality is saturated. The-
oretical analysis of positive cross-correlations in NS junc-
tions has addressed two simple geometries so far. In particu-
lar, in the presence of many modes in the leads chaotic mode
mixing dominates so that random matrix theory �RMT� can

be employed.13 The magnitude of positive correlations is
much smaller than CBS limit in this regime. The experimen-
tal realization reported in Ref. 14 is believed to be in the
RMT regime and so the effect remains elusive. Another ge-
ometry is the original proposal of the Y-shaped junction sup-
porting only a single mode in the normal leads. Theoretical
predictions for this geometry do not give ideal splitting.15 In
the recent paper,16 it has been shown that the CBS limit can
be indeed realized at the edge of topological insulator. The
limit can be interpreted as an ideal splitting off electrons
from a Cooper pair.

We look for a general condition for the CBS limit, in
particular, in the case of single-mode terminal. We also point
out that correlations can be positive also at finite temperature
without voltage bias. An example of ideal splitting is attain-
able in a simple setup, X junction, without any bound states16

or external filters.17–20 The junction has two branches
coupled to the superconductor, where all the branches sup-
port only a single mode. At first sight it might seem that this
geometry consists of just two Y junctions. However, by tun-
ing parameters �width or length� in the middle part of the X
junction, it is possible to find a Ramsauer-Townsend �RT�
resonance.21 We show that the cross-correlations are maxi-
mized in the superconducting case and vanish in the normal
case, provided the junction is tuned at the resonance.

With the progress in gating and with the advent of tech-
nology resulting in smooth interfaces,22 nanostructures con-
taining a small and controllable number of modes, which is
required in the X junction should become available in the
near future. The positive cross-correlations being a coherent
quantum effect are expected to be more pronounced in these
devices.

We begin by defining ideal splitting off a Cooper pair—
maximal cross-correlations. Next, we look for the condition
of ideal splitting in the case of two normal terminals. The
case of zero-temperature limit is highlighted. We provide
general expressions for the current and noise for single-mode
terminals. Then the X junction is presented as a realization of
ideal splitting. Finally we show numerical results for trans-
port in the ideal junction and discuss possible modifications.

II. IDEAL SPLITTING

The average current and zero-frequency correlation func-
tion in a many-terminal junction can be written as long time
averages of transferred charge,
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Īi = �Ii�t�� = �
��i

q��N��/t0,

Sij = 2� dt��Ii�t��Ij�0�� = �
��i

��j

2q�q���N��N��/t0,

�2.1�

for �I= I− Ī. Here N� denotes the number of particles with
the charge q� transferred to the mode � in time t0. The sum-
mations are performed over all modes and particle types at
the given terminal �i or j�. The dependence of the long-time
particle transfer on the scattering matrix can be derived using
full counting statistics,23,24 generalized to the case of NS
interface,25,26 presented in detail in Appendix A.

In both cases, normal and superconducting, the noise
magnitude satisfies the CBS inequality �Eq. �A6��, which
yields

S12
2 � S11S22. �2.2�

Additionally, at zero temperature and equal bias voltage at 1
and 2, we have the total noise magnitude 2S0=S11+S12
+S21+S22 satisfying

2S0�kBT = 0� �	
e�Ī1 + Ī2�
 in normal case

2
e�Ī1 + Ī2�
 in superconducting case
� ,

�2.3�

which follows from Eq. �A8�, as we show in Appendix A.
We shall call ideal splitting the case when S12=S11=S22.

Additionally, one can maximize S12 / �Ī1+ Ī2� which is limited
by e at zero temperature.

III. SCATTERING MATRIX OF AN NS JUNCTION

The use standard scattering formalism for dynamics of
charged quasiparticles.1 Fermionic operators for incoming
and outgoing states, �in and �out, respectively, are decom-
posed into modes, �=�n�ncn, where �n is the normalized
wave function of the mode and cn is the mode annihilation
operator. The modes are related by unitary scattering matrix
s with cn

out=�msnmcm
in.

We shall consider a junction between superconductor
�ground� and two normal terminals at the same voltage V in
the way presented in Fig. 1. The reference point for energies
is the middle of the superconducting gap. We include holes

and Andreev reflection that converts electrons into holes and
vice versa.27

Electrons and holes move independently far from the su-
perconductor. Accordingly, if the electron wave function is
�, the corresponding one for holes is ��. Hence, in the nor-
mal region, the scattering matrix for electrons, s0 determines
the one for holes, s0

�.
The superconductor mixes, however, electrons and holes.

The resulting scattering matrix can be written in the form

s = �see seh

she shh

 . �3.1�

In the normal region �no transitions between holes and elec-
trons�,

sN = �s0 0

0 s0
� 
 . �3.2�

On the other hand, the pure effect of superconductor-
Andreev reflection, ignoring dynamics in the normal part, is

sA = − i� 0 ei	

e−i	 0

 , �3.3�

where 	 is the macroscopic phase of the superconductor and
we assume energies E��, where 2� is the superconducting
gap and is counted for the middle of the gap.

We decompose normal scattering matrix,

s0 = � r t

tT r�

 , �3.4�

where the submatrix r describes reflection for normal leads,
r�—for the leads connected to the superconductor while t
and tT—transmission between normal and superconducting
leads. Ignoring energy dependence and taking into account
unitarity of s0, we obtain1,6,28

see = �1 + rr†�−1�r + rT + rr†�r − rT�� ,

seh = − iei	�1 + rr†�−1�1 − rr†� ,

she = − ie−i	�1 + r†r�−1�1 − r†r� ,

shh = �1 + r†r�−1�r� + r† + r†r�r� − r†�� . �3.5�

Hence, the whole transport properties are described by r. We
show in Appendix B that the ideal splitting is possible only at
zero temperature.

IV. SINGLE MODE TERMINALS

Looking for ideal splitting, we restrict ourselves to the
case of symmetric single-mode terminals so that r depends
only on two complex parameters,

r = �A B

B A

 . �4.1�

In this case at zero temperature the ideal splitting yields the
condition A=0, as we show in Appendix B. A similar matrix

FIG. 1. The NS junction connected to the superconductor �s�
and two normal terminals 1 and 2.
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has been used in the previous calculations.7 However, the
authors could not get ideal splitting since it is not possible in
a three-mode Y junction �see Appendix B�.

For A=0, the matrix in the superconducting case has the
simple form

see = shh
� =

2B

1 + 
B
2
�0 1

1 0

 ,

seh = − she
� = − iei	1 − 
B
2

1 + 
B
2
I . �4.2�

The form of the scattering matrix s given by Eqs. �3.1� and
�4.2� describes a process of either transmitting an electron to
the neighboring terminal or reflecting it as a hole. We will
use this simple interpretation later. In this case, using Eqs.
�2.1� and �A4�, we have

Ī1 =
4e2V

h
�1 − 
B
2�2/�1 + 
B
2�2,

S11 = S12 =
32e2
eV


h

B
2�1 − 
B
2�2/�1 + 
B
2�4. �4.3�

The magnitude of cross-correlation is positive and maximal
with respect to the CBS inequality in this case. In the limit


B
→1 we have S12→2
eĪ1
. The maximum value of S12 is
2e2
eV
 /h for 
B
2=3−�8. Importantly, cross noise vanishes
in the normal case.

A transparent interpretation of our results can be given in
terms of full counting statistics. We can use the event count-
ing �Eq. �A5�� for the scattering matrix �Eq. �4.2��, keeping
in mind that incoming charge has to be subtracted while
outgoing charge has to be added. Each electron incoming to
the terminal 1 can be either sent to the terminal 2 or back-
scattered to 1 as a hole. For electrons incoming to 2, one has
only to exchange the role of terminals. So, for each pair of
electrons at 1 and 2, there are three possibilities, depicted in
Fig. 2: �A� both electrons are sent to the neighbor terminal
with zero charge flow. �B� One of electrons is converted into
a hole with charges +e going out of the junction at each side.

�C� Both electrons are converted into holes with charges +2e
at each side. The cross-correlations are certainly positive.

In general, there could be other examples of ideal split-
ting, involving many-mode terminals. In principle, starting
from the condition �B2� one can find the constraints for r.
However, the procedure becomes lengthy for large matrices.

V. AVERAGE AND SHOT NOISE

We shall derive the general formulas for the current and
noise in the case of the junction described by reflection sub-
matrix �Eq. �4.1��. We begin with the junction with all nor-
mal terminals, 1 and 2 at voltage V while the superconductor
is replaced by ground. We assume that the scattering matrix
is constant for energies in �EF ,EF+eV� and eV�EF. We
consider only electrons �without holes�. For each mode, there
are two spin orientations. We shall use parameters A and B
defined in Eq. �4.1�, C= 
A
2+ 
B
2, D=1−C, w�x�=xcth�x�,
and v=eV /kBT. Using Eqs. �A4� and �2.1� we obtain

Ī1 = Ī2 = 2e2VD/h ,

S12 = S21 = −
8e2kBT

h
�
B
2 + 4�w�v/2� − 1�Re2 AB�� ,

S11 = S22 =
8e2kBT

h
�D2 + 
B
2 + w�v/2�CD� . �5.1�

In the case of NS junction two spin orientations will be
replaced by two particle types—electrons and holes. The bias
voltage V is counted in reference to the middle of the super-
conductor gap and it has the opposite effect on electrons and
holes. We assume 
eV
, kBT��. We shall express mean cur-
rent and noise by elements of matrices r and R=rr�. In our
special case of the symmetric junction, we have r=rT and
matrices r, r�, and R commute. From Eqs. �3.5� and �A4� we
have

Ī1 = Ī2 =
4e2V

h
� �1 − R�2

�1 + R�2�
11

,

S11 = S22 =
8kBT

h
�a + b�w�v� − 1�� ,

S12 = S21 =
8kBT

h
�c + d�w�v� − 1�� . �5.2�

Here

a = 1 − 4�� r

1 + R



11
�2

+ ��1 − R

1 + R



11
�2

,

b = � 4R

�1 + R�2�
11
� �1 − R�2

�1 + R�2�
11

+ 4�� r�1 − R�
�1 + R�2�

11
�2

,

c = ��1 − R

1 + R



12
�2

− 4�� r

1 + R



12
�2

,

d = 4�� r�1 − R�
�1 + R�2�

12
�2

− 16	� R

�1 + R�2�
12
�2

. �5.3�

(a) (b)

(c)

FIG. 2. The three transport events at ideal splitting. Electrons
are black and holes are white. �a� Both electrons pass. �b� One
electron is converted into a hole. �c� Both electrons are converted.

MAXIMAL POSITIVE CROSS-CORRELATION OF CURRENT… PHYSICAL REVIEW B 79, 245408 �2009�

245408-3



Denoting conductance by G= Ī1 /V, the total noise has the
form

S0 = 4kBTG�1 + F�w�ṽ� − 1�� �5.4�

with ṽ=v /2 and ṽ=v in the normal and superconducting
cases, respectively. The conductance G and Fano factor F
� �0,1� are different in both cases.

The values of cross-correlation S12 are always negative in
the normal case but they can be either negative or positive in
the superconducting case. Interestingly, S12 will be positive
even at V=0 for positive c. This happens at A=exp�i	��3
−�3� /2 and B=exp�i	��1−�3� /2 giving c=+1 /8. This is
possible for a Y junction. However, this possibility is not
mentioned in Ref. 7 as only zero-temperature case is there
considered.

VI. RESONANCE IN THE X JUNCTION

Now, we would like to find a realistic geometry leading to
the reflection submatrix �Eq. �4.1�� with A=0. We need at
least two modes to be later connected to the superconductor,
which is realized by the X junction presented below.

Let us consider the following problem: how to find a po-
tential that for a four-terminal junction and suitable geometry
gives the scattering matrix without backscattering, i.e., with
zero reflection amplitudes? This special case of scattering is
often �mostly in three dimensions� referred to as RT
resonance.21

We shall present such an example, starting from the usual
two-dimensional Schrödinger equation

EF� = −

2

2m
�� + V� �6.1�

and the potential

V = 	+ � for y � �0,W� or y = W/2, x � �0,D�
0 otherwise

�
�6.2�

for the junction presented in Fig. 3. The symmetry helps to
reduce the number of parameters describing the junction. For
the considered values of the Fermi energy EF=
2kF

2 /2m only
single modes in the terminals and only two modes in the
middle part of the junction are occupied, kF
� �2� /W ,3� /W�. It is convenient to introduce the wave
numbers k1=�kF

2 −�2 /W2 and k2=�kF
2 −4�2 /W2, which are

real and positive in the considered range of kF values. Far

from the junction the wave function has the form

��x,y� = �
j

�aj� j
in�x,y� + bj� j

out�x,y�� . �6.3�

Here � j
in=ei
jk1x
sin�2�y /W�
� j�y� with 
1,3=+1, 
2,4=−1,

�1,2�y�=��y���W /2−y�, �3,4�y�=�1,2�W−y�, and �out= ��in�†.
The Heaviside function � reflects the vanishing of the wave
function at the potential walls. The relation between ampli-
tudes for ingoing and outgoing modes is given by

�
b1

b2

b3

b4

� = s0�
a1

a2

a3

a4

� , �6.4�

which defines the scattering matrix s, satisfying unitarity
condition s0

†s0= I. Due to the geometric symmetry of the
model, the scattering matrix can be expressed as

s0 =
1

2�
1 0 1 0

0 1 0 1

1 0 − 1 0

0 1 0 − 1
��ss 0

0 sa

�

1 0 1 0

0 1 0 1

1 0 − 1 0

0 1 0 − 1
� . �6.5�

Here ss and sa are scattering submatrices for symmetric �1
+3,2+4� and antisymmetric modes �1−3,2−4�, respec-
tively. Since �a�y=W /2�=0, the antisymmetric modes prop-
agate unperturbed along the junction, which implies sa= I.

The expected form of ss is

ss = ei�� i� �1 − �2

�1 − �2 i�

 , �6.6�

where �� �−1,1� and � is a phase value.
Our final form matrix of the s0 is then

�
A B A C

B A C A

A C A B

C A B A
� �6.7�

with 2A= i� exp�i��, 2B=�1−�2 exp�i��+1, and 2C
=�1−�2 exp�i��−1. It is clear that the requirement of ab-
sence backscattering implies �=0.

An appropriately long X junction can be seen as two Y
junctions depicted in Fig. 4�a� connected by a two mode
channel, as shown in Fig. 4�b�. We can express the corre-
sponding values of � and � by elements of the scattering
matrix for the symmetric mode in the Y junction

FIG. 3. X-wire geometry with four modes: symmetric �s� and
antisymmetric �a� modes are depicted. The upper, lower, and middle
horizontal lines mark the infinite potential which pins down the
wave function.

(a) (b)

FIG. 4. �a� The Y wire. �b� X wire made of two Y wires. Note
that the symmetry allows the antisymmetric modes to propagate
freely.
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�a b

b c

 , �6.8�

where c=−ba� /b�. From unitarity, we have 
a
2+ 
b
2=1. The
dependence of a and b on kFW can be determined numeri-
cally by properly matching propagating and evanescent
modes, as explained in Appendix C. The parameters � and �
in the limit D�W are given by

� =
�

�1 + �2
, ei� =


b
4ei�k1−k2�D�1 + �2

�b��2 − b2�a��2e2ik1D , �6.9�

with

� = 2 Im
ae−ik1D

b2 . �6.10�

Now, the RT resonance ��=0� is determined by

a�b��2 = b2a�e2ik1D, �6.11�

and occurs at

D/W = �m� − arg�b2/a��/k1W �6.12�

for m=1,2 ,3. . .. Then

� = �k1 − k2�D + 2 arg b . �6.13�

We present a few lines of resonances for kFW /�� �2,3� in
Fig. 5. We stress that actual lines differ a little from Eq.

�6.12� due to the approximation D�W. In general, in order
to determine the exact positions of resonances, a residual
contribution of evanescent modes in the middle part has to
be taken into account.

The junction is connected to the superconductor as shown
in Fig. 6. The predicted magnitudes of the cross-shot noise
�Eq. �5.2�� along the RT resonances given by Eq. �6.12� are
presented in Fig. 7. Note that the noise magnitude reaches
the maximum values given in Eq. �2.3�.

VII. FURTHER MODIFICATIONS

The maximal cross-shot noise shown in Fig. 7 requires
not only ideal geometry and transparency but also tuning
both kFW and D /W according to Eq. �6.12�. Moreover, non-
zero temperature also usually decreases cross-correlations.
Accordingly, we have considered the scattering problem for
a more realistic device shown in Fig. 8, assuming an imper-
fect interface, taken into account within the Blonder,
Tinkham, and Klapwijk �BTK� �Ref. 29� model, varying the
distance L between the superconductor and the junction
and/or allowing for a nonzero width H of the internal gate
between the terminals.

The scattering problem is solved by mode matching,
taking into account not completely vanishing evanescent
modes in the middle region. A single contact supports one
mode for kFW� �2� ,4��. The transparency of nonideal
superconductor-normal-metal interface in the BTK model
reads �=1 / �1+Z2�.

We present the results in Fig. 9 for H=W /10, D=L=W,
Z=0, and Z=0.5. The resonance seems to be wider and more
robust for kFW�3� but large L can turn it into several local

maxima. However, S12 still exceed eĪ1 for some range of
parameters in contrast to previous results.7
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FIG. 5. Geometric ratios for resonances—absence of back-
scattering—given by Eq. �6.12�.

FIG. 6. The geometry of an X junction connected to a coherent
superconductor �s�.
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FIG. 7. The cross-shot noise along the resonances given in
Fig. 5.

FIG. 8. The realistic junction with superconductor.
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It is clear that to get strong positive cross-shot noise one
should be able to tune the parameters of the junction since
the noise is highly sensitive to changes. However, the general
tendency is that the narrower the junction is, the more stable
the noise magnitude is.

The presented X junction may be difficult to realize ex-
perimentally. Therefore, we have analyzed also the case of T
junction with two modes going into the superconductor and
single modes in normal terminals �Fig. 10�. As shown in Fig.

11, the cross noise cannot reach the maximum 2eĪ1 in such a
geometry but still, for a certain range of parameters, it is

larger than eĪ1. This large magnitude cannot be attained for
any three-single-mode junction,7 in chaotic cavity,13 or semi-
classical regime.30

VIII. SUMMARY

We have proposed examples of X junctions that exhibit,
according to our theoretical results, large magnitudes of posi-
tive cross-shot noise. Such a large magnitude could not be
attained in the previously studied cases, such as three termi-
nal devices with single modes in each leg or chaotic cavities
containing many modes. The presented examples require
separate connections to the phase-coherent superconductor.
One can, however, consider another example—simple Y or T
junction, in which the leg connected to the superconductor
contains at least two modes. The cross noise in this case can
be also positive but not so large as in the X junction. Never-
theless, in principle one should always be able to modify
every four-mode junction in order to get maximal noise—
ideal splitting of electrons. Hence, narrow wires are promis-
ing when searching for considerable positive cross-
correlations. Lastly, we would like to mention that some

experiments to measure the cross-shot noise in junctions dis-
cussed here are in preparation.
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APPENDIX A

The long-time properties of electronic transport are well
described by full counting statistics23,24 with a generalization
to the normal-metal-superconductor interface.25 We consider
the particle transfer statistics through a mesoscopic junction
at given temperature T and voltage bias V without interac-
tions. The junction has m terminal/modes and a particle de-
tector can be placed at each of them. During the measure-
ment process a detector at the terminal/mode � registers the
difference between numbers of particles outgoing from and
ingoing to the junction N�. Here � denotes terminal, mode,
spin, and particle type �electron or hole�. A set of registered
numbers N= �N1 , . . . ,Nm� occurs with a probability p�N�. In-
stead of probability, a very convenient tool to describe sta-
tistical properties of a probability distribution is the generat-
ing function

eS��� = �ei�·N� = �
N

p�N�ei�·N. �A1�

Here �= ��1 , . . . ,�m� is the vector of counting variables ��.
Using this form, it is straightforward to express averages and
correlation functions as

�N�� = − i
�S

���

, ��N��N�� = −
�2S

��� � ��

�A2�

for �N�=N�− �N��. On the other hand, the generating func-
tion at long times, t0�h / �
eV
+kBT� is given by Levitov-
Lesovik formula23
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FIG. 11. The cross-shot noise of T junction for some range of
parameters. Note that the curve exceeds 1—the maximal value for
all single modes.
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FIG. 9. The cross-shot noise for ideal and nonideal
superconducting-normal interface for D=L=W=10H as described
in Fig. 8 for Z=0 and 0.5. Note that in both cases S12 can exceed

maximal value eĪ1 for a single-mode superconductor.

FIG. 10. The T junction. Superconductor is attached from above
to a normal quantum point contact.
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S =
t0

h
� dE ln det�1 + n�s†ei�se−i� − 1�� . �A3�

Here �, n, s, and s† are m�m matrices. The first two are
diagonal with ���=�� and n��=n�. The latter describes oc-
cupation numbers, n�= �1+exp��E−q�V�� /kBT��−1 with q�

=−e for electrons and +e for holes and V� is the bias voltage.
Exploiting the identity tr ln=ln det the averages and correla-
tions can be written as

�N�� =
t0

h
� dE tr P��sns† − n� ,

��N��N�� =
t0

h
� dE tr�sns†P��1 − sns†�P�

+ n�1 − n��P�P� − s†P�sP� − s†P�sP���

=
t0

h
� dE tr�n�s†P�s − P���1 − n��s†P�s − P��� ,

�A4�

where P� denotes the projection on the mode � so that P�

commutes with n.
In this limit transport can be interpreted in terms of a

series of elementary transport events. At time period h /�E,
detectors at each terminal can register an incoming particle,
�N�=−1, and/or an outgoing particle, �N�=+1, or nothing.
The probability value of the event that the set I of ingoing
particles is converted to the set O of outgoing particles is
given by

p�I → O� = 
det�PIsPO�
2�
��I

n��
��I

�1 − n�� , �A5�

where PI and PO denote the projections on the given set of
modes/terminals. As the long-time statistics can be inter-
preted classically, it also satisfies CBS inequality

��QA�QB�2 � ���QA�2����QB�2� �A6�

for �QX=���Xq��N� and arbitrary sets A and B. To prove
the inequality �Eq. �A6�� it is enough to show that ���QA
−z�QB�2��0 for z= ��QA�QB� / ���QB�2�. Let us define Pz
=���Aq�P�−z���Bq�P�. Then

���QA − z�QB�2� =
t0

h
� dE tr�n�s†Pzs − Pz��1 − n�

��s†Pzs − Pz�� =
t0

h
� dE tr K†K

�A7�

for K=�n�s†Pzs− Pz��1−n since n†=n. The trace of a Her-
mitian square is always positive, which completes the proof.
Moreover, at zero temperature in the normal case, the noise
is always sub-Poissonian if every terminal is either grounded
or at the same voltage V,

���QV�2� � 
e�QV�
 �A8�

for QV=���Vq�N� with summation over all terminals at V.
To prove it, we use the fact that n=��−E� or n=��eV−E� for

terminals at 0 or V, respectively. Then, using Eq. �A4� we get

�QV� =
t0

h
�

0

eV

edE tr ss†,

���QV�2� =
t0

h
�

0

eV

e2dE tr�ss† − �ss†�2� . �A9�

We get Eq. �A8� since tr�ss†�2�0. In the case of the ground
replaced by the superconductor, the problem reduces to the
normal case if NS surface is treated as a mirror, doubling the
number of terminals for different quasiparticles. The total
noise is

���Q�2� = ���Q+�2� + ���Q−�2� + 2��Q+�Q−� , �A10�

where + and − denote real and mirrored terminals, respec-
tively. From CBS inequality �Eq. �A6�� we get

���Q�2� � 2����Q+�2� + ���Q−�2�� . �A11�

Using Eq. �A8� we get

���Q�2� � 2�
e�Q+�
 + 
e�Q−�
� = 2
e�Q�
 �A12�

because �Q+�=−�Q−�.

APPENDIX B

The CBS inequality �Eq. �A6�� becomes equality only
when K=0 in Eq. �A7�. For a finite temperature the ideal
splitting gives the condition s†Pz=1s= Pz=1. The only possible
scattering matrix in the basis �1e ,2e ,1h ,2h� has the block
structure

s =�
� 0 0 �

0 � � 0

0 � � 0

� 0 0 �
� . �B1�

This means that the trace of seh must vanish. However, from
Eq. �3.5�, it implies tr�2−T�T=0 for T= tt†=1−rr†. For the
fact that eigenvalues of T lie between 0 and 1, the only
possibility would be t=0 but this excludes superconductor
completely and gives zero noise.

At zero temperature and finite voltage the condition K
=0 has other solutions because ne�nh. The new requirement
is

�s†Pz=1s�eh = 0. �B2�

In our special case �Eq. �4.1��, using Eq. �3.5� we get the
condition

A��B2 − A2� = A . �B3�

The unitarity of s0 imposes conditions 
A+B
�1 and 
A
−B
�1. Together with Eq. �B3� it implies either A=0 or

A+B
=1= 
A−B
. The latter possibility again gives t=0 so
we are left with the former one.

In the case of three-mode junction we have
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t = �t1

t2

 . �B4�

The unitarity condition yields tt† proportional to identity ma-
trix if A=0 in r. Hence, 
t1
2= 
t2
2 and t1

�t2=0 so t1= t2=0 and
the superconductor decouples.

APPENDIX C

The symmetric wave function can be reduced to the inter-
val y� �0,W /2� since

��x,y� = ��x,W − y� . �C1�

For y� �0,W /2� we have the following decomposition into
N+1→� evanescent modes

�L = sin�2�y/W��Aeik2x + Be−ik2x�

+ �
j=2

N+1

�− 1� jsin�2j�y/W�E2je
�2jx,

�R = sin��y/W�Ceik1x

+ �
l=1

N

�− 1�lsin��2l + 1��y/W�E2l+1e−�2l+1x, �C2�

where

�nW = �n2�2 − �kFW�2, n = 3,4, . . . . �C3�

The boundary conditions, integration with �2j�y�, y
� �0,W /2�, are

�
0

W/2

dy sin�2j�y

W

��L�0,y� − �R�0,y�� = 0,

�
0

W/2

dy sin�2j�y

W

�x��L�0,y� − �R�0,y�� = 0.

We make use of trigonometric identities and integrals

�
0

W/2

dy sin2�2j�y/W� = W/4,

�
0

W/2

dy sin�2j�y/W�sin��2l + 1��y/W�

=
W

2�
�− 1�l+j 4j

�2l + 1�2 − 4j2 . �C4�

We get the following equations for A=1,B,C,E3,
E4 , . . . ,E2N+2, and j=2, . . . ,N+1,

A + B =
8

3�
C − �

l=1

N
8

�

E2l+1

�2l + 1�2 − 4
,

E2j =
8j

�

C

1 − 4j2 + �
l=1

N
8j

�

E2l+1

�2l + 1�2 − 4j2 ,

ik2�A − B� =
8

3�
ik1C + �

l=1

N
8

�

�2l+1E2l+1

�2l + 1�2 − 4
,

�2jE2j =
8j

�

ik1C

1 − 4j2 − �
l=1

N
8j

�

�2l+1E2l+1

�2l + 1�2 − 4j2 . �C5�

The elements of the matrix �Eq. �6.8�� are given by

a =
B

A
, b =�k1

k2

C

A
. �C6�

Note that for finite N the unitarity condition 
a
2+ 
b
2=1 may
not be exactly satisfied.
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