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We study three-dimensional systems where strong repulsion leads to an insulating state via spontaneously
generated spin-orbit interactions. We discuss a microscopic model where the resulting state is topological. Such
topological “Mott” insulators differ from their band-insulator counterparts in that they possess an additional
order parameter, a rotation matrix, which describes the spontaneous breaking of spin-rotation symmetry. We
show that line defects of this order are associated with protected one-dimensional modes in the strong topo-
logical Mott insulator that provides a bulk characterization of this phase. Possible physical realizations in
cold-atom systems are discussed.
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I. INTRODUCTION

Seminal work by Thouless and co-workers1 pointed out
that band insulators are not identical but can differ in funda-
mental respects that are characterized by a topological prop-
erty of the bands. The central example discussed was the
integer quantum-Hall state, whose topological properties are
characterized by an integer that is essentially the Hall con-
ductance. Realizing such a state naturally requires breaking
of time-reversal symmetry typically by the application of a
strong magnetic field on a two-dimensional �2D� system. The
topological nature of the integer quantum-Hall state is also
revealed by studying the edge of a two-dimensional sample,
where chiral �one way propagating� edge states occur at en-
ergies within the bulk energy gap.

Recently, it has been realized that band insulators with
spin-orbit interactions can also be characterized by their band
topology. In two dimensions, the quantum spin-Hall �QSH�
phase is closely analogous to the quantum-Hall state. How-
ever, since it preserves time-reversal symmetry, it has a pair
of counterpropagating one-dimensional modes at the edge.
Such a state can occur with spin-orbit interactions that pre-
serve spin-rotation symmetry �SRS� about an axis.2,3 It was
shown in Ref. 3 that even in the absence of such spin-
rotation invariance, the counterpropagating modes remain
protected by time-reversal symmetry. The topological prop-
erties of these insulators are characterized not by an integer
but by a Z2 number �0,1� so that all topologically nontrivial
insulators of this kind fall within the same topological class.
An experimental realization of this phase has been reported
in HgTe heterostructures.4,5

Turing to three dimensions, an insulator with nontrivial
band topology can be realized just by stacking such 2D QSH
states. These are called the weak topological insulators weak
TIs. However, a more surprising possibility, the strong TI,
has been predicted theoretically.6–8 Once again, the surface
physics is exotic, which provides a physical characterization
of this phase. Strong TI have an odd number of Dirac nodes
on their surface, which are stable against moderate perturba-
tions that preserve time-reversal symmetry.6 Such a band
structure cannot be realized in any two-dimensional system
with time-reversal invariance. There have been experimental

realizations of these predictions in bismuth antimony9–11 al-
loys and in bismuth selenium,12,13 which have been verified
by angle-resolved photoemission spectroscopy. Note, in con-
trast to the quantum spin-Hall state, that in order to realize
the TI the SRS must be completely broken.

The TI and QSH phases normally exist in systems with
strong spin-orbit interaction that explicitly breaks SRS.3,6,14

However, as pointed out in Ref. 15 an extended Hubbard
model on a 2D honeycomb lattice can have spontaneous SRS
breaking and result in a QSH phase, with the right kind of
repulsive interactions.15 SRS is only preserved about an axis
n̂, which is spontaneously chosen, leading to gapless Gold-
stone modes. This was termed as a topological “Mott”
insulator—the separation of energy scales between the low-
lying magnetic excitations and the gapped charge excitations
being typical of Mott insulators. We will also adopt this no-
menclature although it must be noted that local-moment
physics, often associated with Mott insulators, does not oc-
cur here. Subsequently, it was argued in Ref. 16 that skyrmi-
ons of n̂ carry charge 2e.

Here, we consider the analogous problem of a three-
dimensional �3D� system without bare spin-orbit couplings
and full SRS, being driven into a TI state by strong interac-
tions. The key difference from the two-dimensional case is
that in order to realize the strong TI, SRS must be completely
broken. Hence the order parameter in this case is a rotation
matrix RJ�O�3�, similar to superfluid helium-3 A and B
phases. Physically, this order parameter describes the orien-
tation of the spin-coordinate system, relative to the spatial
coordinates. Spatial variations in the order parameter lead to
a rich set of topological textures. We describe a microscopic
model, an extended Hubbard model on the diamond lattice
that, within a mean-field treatment, leads to this phase. The
order parameter supports a number of topological defects. In
particular, a vortexlike line defect occurs but with a Z2
charge. This line defect in the strong TI is found to be asso-
ciated with a pair of gapless fermionic excitations that travel
along its length. These modes are topologically stable against
moderate perturbations such as impurities and interactions as
long as time-reversal symmetry is intact. This is the main
result of the paper—an analytical derivation is provided,
which relies on the properties of the Dirac equation on a
two-dimensional curved surface.
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We now contrast our results with other recent work. Simi-
lar exotic behavior also occurs in TIs along with crystal de-
fects such as dislocations. Gapless fermionic excitations
emerge there when a Z2 parameter formed by the product of
the dislocation Burgers vector and three weak TI indices17 is
nonzero, which, in principle, can occur in both the weak and
strong TIs. In contrast, in the present paper, the fermionic
modes along the line defect are solely determined by the
more elusive strong index. They are absent in the case of the
weak TI. Thus far, the characterization of the TI phase has
relied on the surface behavior. This result provides a route to
identifying the strong topological Mott insulator via a bulk
property.

Similar modes have been identified propagating along a
solenoid of � flux, inserted into a strong TI.18 Here, the 2�
rotation of the electron spin around the line defect leads to a
Berry’s phase, providing a physical realization of the � flux.
Analogous phenomena occur in the context of line defects in
superfluid He3-B.19

The order parameter RJ also admits a skyrmionlike texture,
which is a point object in three dimensions �Shankar mono-
pole�. We find that in contrast to the skyrmion of the quan-
tum spin-Hall effect,16 these are uncharged.

Most solids where electron-electron interactions are im-
portant tend to have some degree of spin-orbit interactions,
which will confine the defects. Hence, we propose realiza-
tions of this physics in optical lattices of ultracold atoms,
utilizing molecules with multipole moments to obtain the
proposed extended Hubbard models. The two-dimensional
version15 is found to be naturally realized with electric di-
poles. Realizing the three-dimensional case is more challeng-
ing; however molecules with electric quadrupole moments
confined in optical lattice can realize some of the key ingre-
dients required.

This paper is organized as the following: In Sec. II, we
will present the order-parameter manifold and the line
modes’ Z2 dependence on the winding number; in Sec. III,
we will justify our claim with numerical and analytical re-
sults; another texture Shankar monopole will be discussed in
Sec. IV; in Sec. V, we will establish our model Hamiltonian
on a diamond lattice and show the mean-field stability of
topological Mott insulating �TMI� phases; we give two pos-
sible experimental realizations in cold-atom systems in Sec.
VI; and we conclude the main result of this paper in Sec. VII.
Hereafter we use � and � for the spin and sublattice degree
of freedom, respectively.

II. TOPOLOGICAL MOTT INSULATORS AND ORDER-
PARAMETER TEXTURES IN THREE DIMENSIONS

In order to describe the TMI phase, we consider a con-
crete example in the following. In Sec. V, we address the
question of how such a phase may be microscopically real-
ized. To contrast the TMI phase with the regular topological
insulator, consider the model Hamiltonians of a TI intro-
duced in Ref. 6. We consider nearest-neighbor hopping �tij�
on the sites of a diamond lattice and spin-orbit-induced hop-
ping on next-neighbor sites,

HTI = Hhop + HSO,

Hhop = �
�ij�

tijci
†cj ,

HSO = i�8�SO/a2� �
��ij��

ci
†�� · �d� ij

1 � d� ij
2 �cj , �1�

where c†= �c↑
† ,c↓

†� is the electron-creation operator and �� is
the spin Pauli matrix. The spin-orbit interaction for a pair of
second-neighbor sites ij depends on dij

p �p=1,2�, the two
nearest-neighbor bond vectors connecting the second-
neighbor sites ij. The spin-orbit interactions are thus deter-
mined by the crystal structure. Note that the SU�2� SRS is
completely broken, which is required to realize the strong TI
in three dimensions.

In contrast, in the TMI phase discussed here, the underly-
ing Hamiltonian possesses full SU�2� SRS that is spontane-

ously broken. The order parameter RJ then is a rotation matrix
that describes the relative orientation between the real-space
coordinate system and the spin axes. The spin-orbit term then
takes the form

HSO
TMI = i�8�SO/a2� �

��ij��
ci

†�� · Rl
J · �d� ij

1 � d� ij
2 �cj . �2�

There is one important difference between the TI and

TMI: since in the latter RJ arises from symmetry breaking it
can vary spatially to give rise to a topologically nontrivial
texture. To identify the topologically stable defects, we first
note that the order-parameter manifold is a three-dimensional

orthogonal matrix RJ�O�3�. It can be represented by RJ

= �ê1 , ê2 , ê3�, where êi are orthogonal unit vectors represent-
ing the basis vectors of the spin-coordinate system. An ex-
ample is shown in Fig. 1.

The target manifold of this order parameter is O�3�
=SO�3��Z2 and Z2 determines the chirality det�RJ�= �1 or
whether the rotation is proper or improper. Hereafter we
mainly focus on the continuous SO�3� part of the order pa-
rameter for it has nontrivial homotopy groups in two and
three dimensions. Then, each proper rotation can be de-
scribed by the parameters �n̂ ,	�, where n̂ is the direction of
the rotation axis and 	� �0,�� is the rotation angle around it.
To visualize it we can map all proper rotation matrices to a
solid ball with radius �, where n̂ maps to the radial direction

FIG. 1. An illustration of order parameter R of a nontrivial line
defect in the x-y plane and ẑ direction is translation invariant. The
hollow and solid arrows are the x̂ and ŷ axes of local coordinate; the
ẑ axis points out of the paper for proper rotation.
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and rotation angle maps to the radius of the image point.
Note that a rotation of � about n̂ is the same as that of �
about −n̂, so opposite points on the spherical surface are
identified. The resulting geometry is a three-dimensional pro-
jective plane P3.20

We now discuss the topological defects of this order-
parameter space. The discrete Z2 symmetry breaking implied
by the Z2�SO�3� order parameter leads to domain walls in
three dimensions. More interestingly, line defects also exist
�we assume three spatial dimensions in the following�. These
can be captured by considering the order parameter along a
closed curve in real space, which encircles the line defect.
This defines a closed loop in the order-parameter space and
distinct classes of such closed loops correspond to the topo-
logical line defects. There are two classes of closed loops for
the SO�3� space described above. In addition to the trivial
closed loop, which can be shrunk continuously to a point,
there exists a nontrivial loop that connects the antipodal
points �n̂ ,�� and �−n̂ ,��. Since these represent the same
rotation, this is, in fact, a closed loop. Thus there is a non-
trivial line defect characterized just by a Z2 topological
charge. Technically �1�SO�3��=Z2.20 An example is shown
in Fig. 1 with translational invariance along z direction al-
though generically the line can be of arbitrary shape and
direction. The electronic properties of such a line defect are
studied in Sec. III—protected one-dimensional modes that
propagate along the defect are found in the case of the strong
TMI but not in the case of the weak TMI. We also note that
since �2�SO�3��=0, no nontrivial point defects exist in three
dimensions. However, since �3�SO�3��=Z, “skyrmionlike”
textures �called Shankar monopoles21� exist in three dimen-
sions. In contrast to topological defects, they are smooth tex-
tures without a singular core. We investigate the electronic
structure of these objects and find that they are neutral in the
large size limit, in contrast to skyrmions in the two-
dimensional quantum spin-Hall state, which carry charge
2e.16

III. ELECTRONIC STRUCTURE OF A LINE DEFECT:
NUMERICAL AND ANALYTICAL RESULTS

We study the electronic structure of the Z2 line defect in
the diamond-lattice model of a TMI discussed before. We
choose the nearest-neighbor hopping in three directions to be
equal, tij = t
0, while the fourth is different, tij = t+�t. A
strong �weak� TI phase occurs if �t
0 ��t�0�.6 We choose
an order-parameter texture that incorporates line defects,

H = �
�ij�

tijci
†cj + i�8�SO/a2� �

��ij��
ci

†s� · Rl
J · �d� ij

1 � d� ij
2 �cj , �3�

with

Rl
J�� = � cos�l� sin�l� 0

− sin�l� cos�l� 0

0 0 1
	 ,

where Rl
J depends only on the azimuthal angle of the atom

connecting sites i and j. Note that only the parity of l is
topologically stable. Here we study a system of 24�24 with

a maximally separated vortex �l=1� and antivortex �l=−1�
and with periodic boundary condition in x-y plane and trans-
lational invariance in z direction. Note that time-reversal
symmetry is preserved by this Hamiltonian.

For a �t
0 strong TMI system with l= �1, two pairs of
conducting line modes are found in the bulk gap. These
states’ density profiles are strongly localized at the cores or
the two defects �Fig. 2 �top� shows only one of them for
clarity�. Therefore a Kramer pair of modes is localized along
the thread of core. Given the particle-hole symmetry that
happens to be present in this model, they cross at zero energy
�Fig. 2 �bottom��. In contrast, these modes are absent in the
cases of the weak TMI �t�0 or if l=0, �2 in either type of
TMI and the band structure remains fully gapped. This is
direct evidence that these Z2-dependent line modes within
the bulk identify the strong TMI.

An analytical argument for these modes can be developed
in several ways. We can derive these modes based on the 3D
Dirac continuum limit of Hamiltonian �3�; however, below
we consider deriving these modes using the known proper-
ties of surface states of strong TI. Consider a bulk sample
with a infinitely long cylindrical hole of radius R drilled
through its center. We consider the low-energy states on the
cylindrical surface, both without and with a line defect in-
serted in the cylindrical hole �Fig. 3�. We show that in the

FIG. 2. �Color online� Up: the density distribution of a midgap
mode �k=1.05,E=0.25� in the a�1 ,a�2 plane, the mode is well local-
ized at the l=1 vortex and the other state �k=1.05,E=−0.25� is well
localized at the l=−1 antivortex. Down: electronic spectrum of dia-
mond lattice strong TMI along pz in the presence of a pair of de-
fects. The parameters used in the Hamiltonian are t=1.0, �t=1.0,
and �SO=0.125.
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limit of R→0, a propagating midgap mode survives only
when the defect is present, otherwise a fully gapped insulator
results. Interestingly, the key ingredient here is the property
of the two-dimensional surface-Dirac state on a curved mani-
fold. In contrast to the states of a particle on a ring, where the
zero angular momentum eigenstate remains at low energy
even when the ring radius is shrunk to zero, here, the Dirac
particle acquires a Berry’s phase of � on rotating around the
cylinder surface, which excludes the zero angular momen-
tum state. Hence on shrinking the radius, no low-energy
states remain and the bulk insulator is recovered. However, if
a topological defect of the spin-orbit coupling matrix is in-
serted through the cylinder, an additional Berry’s phase of �
is now acquired by the electrons. This ultimately results from
the rotation of the electron’s spin by 2� on following the
texture. With this additional phase, the zero angular momen-
tum mode is allowed and a low-energy propagating mode
results when the cylinder radius is shrunk to zero. These are
the topologically protected one-dimensional modes in the
core of the defect. Note that since we are establishing the
presence of topologically protected excitations, it is suffi-
cient to use a simple Dirac dispersion for the surface states of
the strong TI since a general surface state can always be
adiabatically mapped to it. We first describe the surface-
Dirac Hamiltonian in the presence of curvature and apply
this to the case of a cylinder with a defect inserted through it.

Dirac theory on a curved surface. On a flat surface,
spanned by the unit vectors n̂1 , n̂2, the surface-Dirac Hamil-
tonian for a strong TI can be taken as

Hflat = �1̃n̂1 · p� + �2̃n̂2 · p� , �4�

where we assume for simplicity that the spin lies in the same
plane, with a relative angle of 	 to the momentum, hence
�1̃= �n̂1 cos 	+ n̂2 sin 	� ·�� and �2̃= �n̂2 cos 	− n̂1 sin 	� ·�� .
Note that for 	=0 this reduces to H= p� ·�� , as in Ref. 22. In
general, the � matrices involve both spin and sublattice de-
grees of freedom but the essential physics is captured by
taking them to be simply spin matrices.

On a curved surface there should be additional terms due
to the curvature. The effective Hamiltonian can be system-
atically derived,23 as described in the Appendix. Here we just
present the result in the general case when the radii of cur-
vature along the two tangent directions n̂1 , n̂2 are R1 ,R2, re-
spectively �which are defined via �n̂i · p��n̂j = i��ijn̂1� n̂2 /Ri
for i=1,2�,

Hcurved = �1̃n̂1 · p� + �2̃n̂2 · p�

+
�

2

 1

R1
+

1

R2
��sin 	 + i cos 	�n̂1 � n̂2� · �� � .

�5�

We now apply this result to the problem of surface states
on the cylindrical surface of radius R with axis along ẑ and
radius R with strong TMI outside and vacuum inside �see
Fig. 3�. We use cylindrical coordinates z ,�, hence n̂z
= �0,0 ,1�, n̂�= �−sin � , cos � ,0�, n̂r=−n̂z� n̂�, and the two
radii of curvature are R1=� ,R2=R. For simplicity we con-
sider 	=0. The effective Hamiltonian in the absence of a
defect is

H0 = �n̂z · �� �pz + �n̂ · �� �p +
�

2R
i�� · n̂r, �6�

where pz=−i��z and p�=−i �

R��. We can solve for the ener-
gies H0�=E� by first performing the unitary transformation
�=Uz�����, where Uz���=e−i��z/2. Note that since Uz��
+2��=−Uz���, the new wave functions �� satisfy antiperi-
odic boundary conditions. The transformed Hamiltonian H0�
= pz�z+ p��y has eigenvectors ��=eikzein��, where � is a
fixed spinor. The energy eigenvalue E then satisfies

En
2�k� = �2�k2 + n2/R2� . �7�

Now, due to the antiperiodicity of the ��, we require n+ 1
2 to

be integer. Hence, En�k� in Eq. �7� above all correspond to
massive Dirac dispersions whose mass increases as R→0.

We now consider introducing a texture in the order pa-
rameter. A strength l is readily introduced by the spin rotation
Uz�l��. The Hamiltonian then is

Hl = Uz
†�l��H0Uz�l�� . �8�

The eigenstates � of Hl can be obtained by the unitary trans-
formation �=Uz��l−1����� and the transformed Hamil-
tonian for the wave functions �� is identical to H0� above.
The energy eigenvalues are then given by Eq. �7�. However,
the crucial difference is that the single valuedness property
of the wave function now requires n+ l−1

2 to be an integer.
Hence, for odd values of l, when the topologically nontrivial
defect is present, an n=0 solution is allowed. The dispersion
of this mode is E0�k�= �k; hence there are up and down
moving modes, which survive at low energies even when
R→0.

The physical picture is on the surface of a cylinder the
momentum p is quantized according to boundary condition
and the interlevel spacing is proportional to R−1. Also, be-
cause of the spin-momentum relation, when electron circles
about the line defect it picks up a Berry phase of �l+1��
when the vortex winding number is l. When the total phase is

FIG. 3. Illustration for the model on an effective Hamiltonian on
a curved surface we study. The radius of the cylinder is R with
strong TMI outside and vacuum inside. pz and p are momentum
along ẑ and the azimuthal direction, respectively. 	 is the angle
between �� � and p� .
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an integer multiple of 2� it enforces periodic boundary con-
dition, otherwise antiperiodic boundary condition is applied
and the quantized p will miss the origin. As we shrink the
cylinder radius to zero, all quantized p will diverge except
p=0. Therefore, with time-reversal symmetry a Kramers
pair of line modes exists when l is odd and its dispersion
only depends on pz. Also, the distinction between the strong
TMI and weak TMI can be made clear by the number of
surface modes. For a weak TMI, there are even numbers of
surface modes, leading to even number pairs of line modes
with the above reasoning. However, they are unstable against
internode scattering. In contrast, a strong TMI always has an
odd number pairs of surface modes.

IV. SHANKAR MONOPOLE IN THREE DIMENSIONS

The line vortex is not the only nontrivial texture in three
dimensions. The other texture we study is the Shankar mono-
pole, a mapping S3→SO�3� characterized by the homotopy
classification �3�SO�3��=Z.21 Imagine an identical phase
faraway from the monopole, where matrix RJ�n̂ ,� is inde-
pendent of r̂; we can identify the infinity of real space R3 and

thus obtain S3. As an specific example here the RJ matrix

connecting p� and �� is RJ�r̂ ,r�=exp�i	�r�r̂ · Ĵ�, where r̂ and r
are the directional vector and distance from the origin to the

site linking i and j and Ĵ are classical rotation generators in
three dimensions. The rotation axis n̂= r̂ and the rotation
angle is 	�r�, a function 0 at the origin and smoothly in-
creases to 2l� �l�Z� at infinity. The homotopy class
�3�SO�3�� is described by integer l, suggesting the base
manifold wraps the target manifold l times. It is protected
against any continuous deformation. This is a zero-
dimensional defect so the localized states should be localized
charge at the monopole if any.

However, numerical results show that this topological de-
fect does not carry localized states even in the strong TMI
phase. We studied a single monopole at the center of a 323

unit-cell system. To treat the large system size we found a
way to sidestep a complete diagonalization of the spectrum.
Instead, we estimate the boundaries of the energy eigenstates
using ARPACK �Arnoldi package� and shift the spectrum so
that all states below �above� the band gap are at negative
�positive� energies. Then, we only need to look at the differ-
ence in the number of negative- and positive-energy eigen-
values to determine the monopole charge. This can be done
via an efficient LDLT factorization, where the Hamiltonian is
factorized into a lower triangular matrix L and a diagonal
matrix D. The entries of the diagonal matrix preserve the
sign of the eigenvalues but not their magnitude. Counting the
number of positive and negative eigenvalues is then readily
accomplished. While smaller system sizes sometimes show
charged monopoles, at the largest sizes, they are found to be
neutral. We conclude that the Shankar monopole texture does
not carry charge in the TMI phase.

V. TOPOLOGICAL MOTT INSULATOR IN A
MICROSCOPIC MODEL-EXTENDED HUBBARD MODEL

ON THE DIAMOND LATTICE

We now discuss the question of realizing the 3D-TMI
phase beginning with a microscopic model with full SRS.

We consider an extended Hubbard model on the diamond
lattice within mean-field theory. As always, the results of
such a mean-field treatment should be treated with caution
especially since strong interactions are involved. Neverthe-
less, we use this analytically tractable approach to obtain a
range of parameters where the TMI phase is stabilized over
the other obvious candidate phases—the disordered semi-
metal antiferromagnetic insulator �or spin-density wave
�SDW�� and the charge-density wave �CDW�. Realizing the
3D-TMI, which completely breaks SRS spontaneously, re-
quires, in mean-field theory, further neighbor repulsion �be-
tween second- and third-nearest neighbors� as well as a small
antiferromagnetic coupling between second neighbors, as
shown in Fig. 5.

We now discuss the details of this mean-field treatment.
The model Hamiltonian we study is an extended Hubbard
model on a 3D diamond lattice at half filling �Fig. 4�,

H = − �
�ij�,�

t�ci�
† cj� + H.c.� + U�

i

ni↑ni↓ + �
ij

Vij�i� j

+ J �
��ij��

S� i · S� j ,

where t is the nearest-neighbor hopping strength, J is the
second-nearest-neighbor antiferromagnetic coupling strength
between spins S� i=ci

†�� ci, Vij =V2 for second-nearest-neighbor
repulsion, Vij =V3 for third nearest-neighbor repulsion, and U
is the on-site repulsion strength. All of these operate within
the same sublattice as can be seen from Fig. 4. For simplic-
ity, we assume no nearest-neighbor interaction, V1=0, how-
ever, as long as V1 �or fourth-nearest-neighbor repulsion V4�
is not so large that a nearest-neighbor charge-density wave
becomes energetically favored, they can be included but will
be irrelevant to our mean-field results. We neglect further
neighbor interactions. ni�=ci�

† ci� is the number operator on
site i for spin � and �i=ni↑+ni↓−1. Note that the Hamil-
tonian has full SU�2� SRS.

Without repulsive interaction the system is in a semimetal
phase with gapless excitations along lines in the Brillouin
zone �“Dirac lines”� and a vanishing density of states at the
Fermi level. We turn on interactions and investigate possible

FIG. 4. �Color online� A 3D plot of diamond lattice. Each unit
cell contains two sublattices, denoted by A and B, respectively,
which each forms an fcc crystal. The repulsive interactions V2 and
V3 between the second neighbor and third neighbor are shown.
They are both between the atoms of the same sublattice.
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phases including the TMI, second- and third nearest-
neighbor CDW insulators, and nearest-neighbor SDW insu-
lator. Note that the diamond lattice is composed of a fcc
Bravais lattice plus a two-site basis that forms the two sub-
lattices. The natural SDW phase has alternating spin densi-
ties on two sublattices, resulting from the effective antiferro-
magnetic coupling from nearest-neighbor hopping and U.
Note that this is a q=0 order, i.e., preserves lattice transla-
tions. In contrast, the likely CDW orders resulting from
second- and third-neighbor repulsions break translation sym-
metry within each sublattice. The phases can be mapped to a
3D Ising model on an fcc lattice24 and both the second- and
the third-nearest-neighbor CDWs have the same charge-
density distribution for two sublattices but nonuniform dis-
tribution from unit cell to unit cell. Finally, in the TMI phase
one develops second-nearest-neighbor correlations �ci�

† cj���
� i�� ��� ·RJ · �d� i�d� j� that mimic the spin-orbit interaction and
break the SU�2� symmetry completely. Within the mean-field
approximation we solve the ground-state energy for each
phases in the following and the resulting phase diagram with
fixed J=0.3t is shown in Fig. 5. Note that there is a TMI
phase in the center.

We now discuss the mean-field energetics of these phases
in more detail.

�i� Semimetal. For relatively weak interactions, the semi-
metal phase arising from the nearest-neighbor hopping
model on the diamond lattice remains stable due to the van-
ishing density of states at the Fermi energy. This phase re-
tains all symmetries of the Hamiltonian.

�ii� Spin-density wave. In the limit of large on-site repul-
sion U the SDW phase with opposite spin on the two sublat-
tices is stabilized. More precisely, if U−24J�V2, the SDW
phase becomes energetically favorable. Define the order pa-
rameter 	,

�ci↑
† ci↑� = �cj↓

† cj↓� = cos2 	,�ci↓
† ci↓� = �cj↑

† cj↑� = sin2 	 .

The ground-state energy per unit cell is calculated using
mean-field approximation

ESDW =
U

2
+ 
U

2
− 12J�� −

1

L3�
k

�U − 24J�2� + 4�t�k��2.

Here �=cos2 2	. �=0 denotes the semimetal phase. t�k�
= t�n=1

4 eik�·t�n, tn=1,2 ,3 ,4, are the vector from one atom to its
nearest neighbor. L is the number of points along each direc-
tion within the first Brillouin zone.

�iii� Charge-density wave. In the limit of strong further
neighbor repulsion V2 ,V3, a CDW is expected. The problem
with just the density repulsion can be mapped to the fcc
lattice Ising model. In that context it is known that V2 will
favor what is called a type-III CDW phase while V3 will
favor a type-II CDW phase,24 as will be described below.
The type-III CDW phase has Néel state in the �100� plane
and frustrated arrangement between neighboring planes,
which leads to a Z2 degeneracy per plane; the type-II CDW
phase can be described as a combination of four independent
simple cubic CDWs. The CDW phase is important despite
the frustration. As a matter of fact, in Ref. 15 the second-
nearest-neighbor CDW phase, which the authors neglected,
will dominate the large V2 region and the quantum anoma-
lous Hall phase can be realized only with inclusion of U. To
suppress the CDW phases, we choose the ratio of V3 /V2 to
be 1/2 so the system is close to the transition between type-II
and type-III CDW phases.24 Hereafter we fix V3=V2 /2 and
point out that the phase diagram is similar without V3 but the
TMI phase will generally occur at a larger U region.

Assuming that inversion symmetry and SRS are intact, we
define order parameter � for type-III CDW phase,

�c1�
† c1�� = �c2�

† c2�� =
1 + �

2
, �c3�

† c3�� = �c4�
† c4�� =

1 − �

2
,

where subscripts 1 and 3 are on the first sublattice of two
neighboring unit cells, subscripts 2 and 4 are on the second
sublattice, and � is the spin index. The energy per original
unit cell is

ECDW

= 3V2�2 + U�1 − �2�/2

−
2

L3�
k

g1
2 + �g2�2 + �g3�2 � 4g1

2�g2�2 + �g2g3
� + g2

�g3�2,

where g1= �3V2−U /2��, g2= t�1+eik�·a�1�, g3= t�eik�·a�2 +eik�·a�3�,
and a� i are the lattice vectors for the fcc lattice. The momen-
tum summation that is over L2 /2 points of the unit cell
doubles. The CDW instability is signaled by a nonzero �.

�iv� Topological Mott insulator. More importantly, similar
to the QSH phase in two dimensions,15 at intermediate cou-
plings the TMI phase is favored, with order parameters

�cis
† cjs�� = i��� ij · �� �ss� = i���
 cos 	ij sin 	ije

−iij

sin 	ije
iij − cos 	ij

� ,

where i , j are second-nearest neighbors. Our mean-field an-
satz assumes, for simplicity, that all �� ij have the same mag-
nitude but their directions are arbitrary and described by the
angles 	ij and ij. Note �� ij =−�� ji for hermiticity. Lattice

FIG. 5. Phase diagram for an extended Hubbard model on 3D
diamond lattice. The phase transitions from semimetal to SDW,
CDW, and TMI are all second-order transitions. Other parameters
are V3=V2 /2 and J=0.3t. The system size is L=40 for calculation.
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translation, rotation, and inversion symmetries are also con-
sidered to be intact. This implies that the order parameters on
the other sublattice are the negative of these. We decouple
the Hamiltonian

H =
UL3

2
+ 24L3�V2 − J����2 − �

k

�t�k�ck
†I� � �−ck + H.c.�

− �
k,d� ij

2�V2 − J����sin�k� · d� ij��cos 	ij�ck
†�z

� �zck�

+ sin 	ij�ei�ijck
†�+

� �zck + H.c.�� ,

where the summation is over the two occupied bands. d� ij are
the vectors from on site to its six second-nearest neighbors
�one for each opposite pair�. We then obtain the ground-state
energy per unit cell,

ETMI =
U

2
+ 24�V2 − J����2

−
2

L3�
k
�t�k��2 + 4�V2 − J�2���2� �

��ij��
sin�k� · d� ij��̂ij�2

,

where �̂ij = �sin 	ij cos �ij , sin 	ij sin �ij , cos 	ij�.
It is straightforward to see that the energy only depends

on ��� and the relative angles between �� ij. Under global ro-
tation to all �� ij the energy remains invariant and directly
leads to an SU�2� degeneracy.

This is not a TMI phase in the strict sense since there are
Dirac nodes at the Fermi level. However, an arbitrarily small
distortion of the lattice will introduce anisotropy of nearest-
neighbor hopping strengths tdist�k�=�n=1

4 tneik�·t�n and an effec-
tive mass that leads to a gap of size �t.6 In the simplest case
that one nearest-neighbor hopping strength is different from
the other three tdist�k�= t�k�+�t, a stronger bond �t
0 will
lead to a strong TMI phase while a weaker bond �t�0 will
lead to a weak TMI phase.

Phase diagram. For each phase, we search for the global
minimum with respect to its order parameters and compare
different phases. Numerical evaluation of energies was done
on a Brillouin zone with 40�40�40 k space points. For
simplicity we present the phase diagram with a fixed next-
nearest antiferromagnetic coupling strength J=0.3t and V3
=0.5V2 �Fig. 5�. The semimetal phase exists at small U and
V2 region; the CDW phase occurs at large V2; and the SDW
phase occurs at large U. Most importantly, there is a TMI
phase in the center of the phase diagram.

This TMI phase has second-nearest-neighbor correlation
similar to that arising from spin-orbit interactions in the Fu-
Kane-Mele model6 on the same lattice except, of course, for

an arbitrary SU�2� spin rotation, �̂ij �RJ · �d� i�d� j�, for each
second-nearest-neighbor pair i and j, where d� i and d� j are
nearest-neighbor bond vectors connecting this pair of sites

and RJ is an arbitrary constant three-dimensional rotation ma-
trix.

If we further increase J the stability of the TMI phase is
enhanced and it has now a wider parameter range. However,
at still larger values, a different TMI phase, which breaks
lattice symmetries, is realized via a continuous transition.

However, since this occurs in the very large U regime, where
mean-field theory may not be accurate, we do not present
further details of this phase.

VI. TOWARD EXPERIMENTAL REALIZATIONS

An experimental realization of the TMI phase must con-
tend with two challenges. First, the system should have weak
intrinsic spin-orbit coupling but strong interactions. Next, the
further neighbor repulsion should be substantial compared to
the nearest-neighbor interactions. We believe that these dif-
ficulties can be overcome in cold-atom system, where intrin-
sic spin-orbit couplings are irrelevant if particles with elec-
tric multipole moments are confined to optical lattice sites.
We first discuss a two-dimensional example involving elec-
tric dipoles for which a fairly definite experimental setup can
be constructed. Although the phase realized here is two di-
mensional and does not break SRS completely �a U�1� spin
rotation remains unbroken�, it illustrates how the necessary
ingredients can be assembled. Subsequently we discuss ideas
for realizing the three-dimensional TMI, the main subject of
this paper, using electric quadrupole moments.

2D case: Electric dipoles on a diamond lattice layer.
Dipole-dipole interactions between heteronuclear polar mol-
ecules, such as Rb87 and K40, have already been shown to be
strong.25 Consider a fermionic spin-1/2 molecule, with an
electric dipole moment �which is independent of the spin�
confined to the sites of an optical lattice. We note here that
the diamond lattice has a special property that if the dipole
moment is along the �100� directions then the nearest-
neighbor interaction V1 vanishes. Thus, the second-nearest-
neighbor interaction V2 becomes dominant. However, the
difficulty is that within the 12 second-nearest neighbors, only
interactions between neighbors within a plane perpendicular
to the dipole moment are repulsive. This problem can be
solved if we restrict the molecules within a two-dimensional
�111� layer of the diamond lattice �still contain both sublat-
tices and essentially two layers of triangular lattices� as the
sites circled in Fig. 4. Then if the dipole moment is perpen-
dicular to the plane all possible nearest-neighbor interactions
are repulsive.

We solve for the mean-field phase diagram of this model,
as was done previously for the 3D case. Note that since the
lattice is essentially the honeycomb lattice, this is essentially
the model studied in Ref. 15. There exists a 2D-TMI phase at
the center of the U-V2 phase diagram �Fig. 6�. Note that this
phase diagram differs from the same model in Ref. 15, which
has an extended 2D-TMI phase. This is because we also
allow for the second-nearest-neighbor CDW that the authors
neglected. Though frustrated, this order will dominate at
large V2.

The resulting TMI phase in our case has a second-nearest-
neighbor correlation resembling that of a quantum spin-Hall
state and SU�2� SRS is only broken down to U�1�. The re-
sulting order parameter will be SU�2� /U�1�=S2 instead of
SU�2�. Since �1�S2�=0 there are no point topological de-
fects, however skyrmions acquire a charge 2e in this phase.
Note that the parameters in the phase diagram seem rather
accessible for dipolar molecular systems in this setup, as-
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suming that the on-site U, which results from a combination
of dipolar and microscopic interactions, is not too large.

3D-TMI: Electric quadrupoles on a distorted diamond
lattice. We now discuss some ideas for realizing the 3D-TMI.
While these are not as straightforward as the ones discussed
earlier, we nevertheless offer them as one avenue that pre-
sents itself at the current time. Another possible origin of
repulsive interaction is the quadrupole-quadrupole interac-
tion. One can show that for two parallel uniaxial quadrupoles
�quadrupole tensors are identical and diagonal�, the interac-
tion is

E =
3Q2

r5 �3 − 30 cos2 	 + 35 cos4 	� ,

where Q is the electric quadrupole moment, r is the distance
between two quadrupoles, and 	 is the angle between the
quadrupole symmetry axis and the direction between the
quadrupoles.

From this expression if cos2 	�0.742 the quadrupole-
quadrupole interaction will vanish. Therefore, assume that
the quadrupole moment is along the crystal unit-cell ẑ axis to
retain as many symmetries as possible; if we elongate the
lattice along one direction to make the nearest neighbors
satisfy this condition, we will obtain a system where second-
nearest-neighbor interaction dominates. This gives c /a
�2.40. Note the distortion brings no change to the Hamil-
tonian we started with. Within this lattice, the ratio between
the repulsive interaction from the second-nearest neighbor
out of the quadrupole perpendicular plane and that from
those in plane is E� /E�=0.945. The V2 anisotropy is reason-
ably small, thus we believe that the physics we discussed
with an isotropic V2 is unchanged. However, in this arrange-
ment, V3 is rather small.

To give a reasonable estimate of the quadrupole strength
necessary to drive the system into a TMI phase, we notice
that the typical nearest-neighbor hopping strength in a cold-
atom system is of order 10−8�10−6 K, limited by the cool-
ing temperature, and the typical lattice dimension is about
the laser wavelength 0.5�10−6 m. This leads to a quadru-
pole of �10−18�10−17�e m2, where e is unit charge. This is

rather large but maybe realizable in multielectron molecules.
Also, the critical quadrupole moment can be further reduced
by lowering the temperature or using lasers with shorter
wavelength. Finally, a moderate second-nearest-neighbor an-
tiferromagnetic coupling may result from second-nearest-
neighbor hopping superexchange effect. We leave for future
work construction of a more realistic setting that can realize
the 3D-TMI phase.

VII. CONCLUSION

We have argued that appropriate repulsive interactions
can induce a spontaneous SRS breaking state, the TMI,
where spin-orbit couplings are induced by interactions.

In addition to exotic surface states, line defects of the
order parameter are found to carry protected one-
dimensional modes along their length in the strong TMI,
which provides a bulk signature of this phase. Also, potential
experimental directions toward creating these phases in cold-
atom system are discussed. An interesting open question is
whether the form of the spin-orbit interactions near a line
defect and hence these protected line modes can be realized
by suitably modifying the atomic structure in a strong topo-
logical band insulator.
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APPENDIX: EFFECTIVE HAMILTONIAN ON A CURVED
TI SURFACE

It is known that the effective Hamiltonian for a TI surface
has the form of a Dirac equation H= p� ·�� when the spin and
momentum are parallel and H= n̂ · �p� ��� � when they are per-
pendicular, where n̂ is the normal direction of the surface.
Both the momentum and spin are confined to the surface.
More generally, when the angle between spin and momen-
tum is 	 the effective Hamiltonian is

H = �n̂1 · �� cos 	 + n̂2 · �� sin 	��n̂1 · p��

+ �n̂2 · �� cos 	 − n̂1 · �� sin 	��n̂2 · p�� ,

where n̂1 and n̂2 are orthogonal directions in plane.
One would tend to apply the same Hamiltonian to a

curved surface. However, here we claim that the effective
Hamiltonian on an arbitrary shaped TI surface is

H = �n̂1 · �� cos 	 + n̂2 · �� sin 	��n̂1 · p��

+ �n̂2 · �� cos 	 − n̂1 · �� sin 	��n̂2 · p��

+
�

2

 1

R1
+

1

R2
�sin 	 +

i�

2
��� · n̂3�
 1

R1
+

1

R2
�cos 	 ,

where n̂1 and n̂2 are tangent vectors of the surface with ra-
dius of curvature R1 and R2, respectively, and n̂3 is the nor-
mal vector. 	 is the constant angle between spin and momen-
tum in the corresponding flat surface effective theory. Note

FIG. 6. Phase diagram for an extended Hubbard model on 2D
diamond-lattice layer including both sublattices �essentially honey-
comb lattice�. Note its difference from Ref. 15. The TMI is limited
to the center of the phase diagram and only partially breaks the
SU�2� SRS. The system size is L=40 for calculation.
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that when the surface is flat, the last two terms vanish and the
Hamiltonian goes back to the one describing the flat surface
mode.

This Hamiltonian can be systematically derived from the
inclusion of the connection form for a curved space,20,23 but
an alternative method we used is to ensure hermiticity and
anticommutation relation �H ,�� · n̂3�=0 since the spin is in the

surface plane,26 with the help of the relations �n̂i · p��n̂j

= i��ijn̂3 /Ri, �n̂i · p��n̂3=−i�n̂i /Ri for i=1,2 and ��� · Â���� · B̂�
= Â · B̂+ i�̂ · �Â� B̂�.

The additional terms arising from the space curvature are
canceled by the inclusion of the connection form. Thus, the
above effective Hamiltonian well describes a curved TI sur-
face.
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