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Excitonic and biexcitonic properties of single GaN quantum dots modeled by 8-band k-p theory
and configuration-interaction method
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Excitons and biexcitons in GaN/AIN quantum dots (QD) were investigated with special emphasis on the use
of these QDs for single-photon source applications. The theoretical methodology for the calculation of single-
particle states was based on 8-band strain-dependent envelope function Hamiltonian, with the effects of spin-
orbit interaction, crystal-field splitting, and piezoelectric and spontaneous polarizations taken into account.
Exciton and biexciton states were found using the configuration-interaction method. Optimal QD heights for
their use in single-photon emitters were determined for various diameter to height ratios. The competition
between strong confinement in GaN QDs and internal electric field, generally reported in wurtzite GaN, was
also discussed, as well as its effect on appearance of bound biexcitons.
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I. INTRODUCTION

For further improvements in the operation of optoelec-
tronic devices based on GaN/AIN quantum dots (QD), it is
important to better understand the excitonic structure of the
dots, and, in particular, its inter-relationship with QD geom-
etry. This is a challenging task since in addition to the effects
of quantum confinement, strain, band mixing, and electron-
hole Coulomb interaction present in any quantum-dot sys-
tem, wurtzite GaN/AIN quantum dots exhibit strong built-in
electric fields induced due to spontaneous and piezoelectric
polarizations.'-?

Modern optoelectronic devices like triggered single-
photon sources (“photon on demand™) are highly desired for
applications in quantum-cryptography and quantum-
information processing.> One of the routes for realization of
compact single-photon devices is to use an excitonic transi-
tion in a single QD. Such devices were initially realized
based on InAs/GaAs quantum-dot material system.*>
Sources of triggered entangled photons emitted from the
biexcitonic cascade decay were also realized.>’ Moreover,
theoretical proposals suggest that an exciton state in a GaN
quantum dot could be used as a qubit in quantum computer
architectures.’

GaN/AIN quantum dots’'! offer certain advantages for
realization of single-photon sources. Larger band offsets and
effective masses lead to strong quantum-confinement effects
which should enable the operation of single-photon sources
at higher temperatures. Several single IlI-nitride quantum-
dot spectroscopy experiments were therefore performed,'>!3
which indeed led to the realization of a GaN/AIN single-
photon source operating at 200 K.'® Recent studies also con-
sider polarization properties of single GaN/AIN QDs.!”13 It
is interesting to note the variety of other possible applica-
tions of GaN quantum dots: wide band gap of II-nitrides
leads to the emission in the blue and ultraviolet spectral
range,'>?® which is not accessible with most of the other
materials and also provides for room-temperature emitters at
telecommunication wavelengths.”!
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For single-photon source applications it is desirable to
have as large as possible the value of biexcitonic shift de-
fined as the difference between the energy of the transition
line from the biexciton to exciton state and the energy of the
exciton transition line. This is required to enable good spec-
tral separation of the two lines.'® It is known'!?? that the
built-in electric field acts to localize the electrons at the top
of the dot and holes at the bottom of the dot. Consequently,
the interaction between two excitons forming a biexciton is
mostly determined by repulsive electron-electron and hole-
hole interactions which are stronger than the attractive inter-
action between spatially separated electron and hole.!>?3 For
quantum dots with larger heights the biexciton is therefore
certainly unbound and biexcitonic shift increases as the
height increases due to a decreasing attractive part of the
interaction. From that perspective, it is desirable to have a
large QD height. On the other hand, one should also have the
optical transition matrix element of the exciton transition as
large as possible.!® For large quantum dots, this element is
small due to spatial separation of electron and hole wave
functions,?? and it is therefore desirable to have a small
quantum-dot height from this perspective. This discussion
therefore indicates that the appropriate quantum-dot geom-
etry for single-photon-source applications should be deter-
mined as a compromise between the two opposite require-
ments, which requires detailed knowledge of the excitonic
properties of these dots.

The biexcitonic shift is a sensitive probe of QD geometry,
the nature of electron-hole, and exchange interaction.?* In a
recent single GaN/AIN dot spectroscopy experiment,'> the
existence of bound biexcitons (that appear when the energy
of the biexciton ground state is lower than twice the energy
of the exciton ground state) for small dots was observed.
Similar effect was found in the case of disk shaped GaN/AIN
quantum dots in GaN nanowires.?> The appearance of bound
biexcitons can not be described in the framework of the Har-
tree approximation which does not include the effect of
electron-exchange-correlation  interaction.!>?®  Theoretical
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studies of excitons and biexcitons in nitride quantum dots
were usually based on Hartree approximation,'®327 while
several works?®-3 that use the full configuration-interaction
method (in combination with tight-binding calculation of
single-particle states) did not address the issue of the sign of
the biexcitonic shift and treat different material system, i.e.,
InN/GaN.

Motivated to understand the physics of single-photon
source devices'® and the spectroscopic signatures of single
GaN/AIN dots,'> we present theoretical calculations of the
exciton and biexciton states. We identified the reasons why
optimal GaN single-photon source devices emit around 3.5
eV. We found that the appearance of bound biexcitons in
small GaN/AIN quantum dots can only be explained if the
coefficients of the spontaneous and piezoelectric polariza-
tion, widely accepted for the bulk or wide quantum-well
structures' are strongly reduced in such small dots. Indeed,
recent experimental findings suggest that the small size of
the QDs seems to prevent the carriers from being affected by
the strong built-in electric fields generally reported for III-
nitrides wurtzite materials, which could be an alternative so-
lution to nonpolar nitride QDs.?!

The paper is organized as follows: in Sec. II, we review a
theoretical model developed for the calculation of the elec-
tronic and excitonic structure of the single GaN/AIN QDs in
wurtzite (hexagonal) crystal structure. In Sec. III we present
our results and discuss: the optimal size of hexagonal super-
cell used in the calculation of the Coulomb integrals in GaN
QDs, Sec. IIT A; the influence of spin-orbit interaction on the
excitonic structure of the GaN QDs, Sec. III B; the optimi-
zation procedure for design of the single-photon sources
based on GaN QDs, Sec. III C; and the influence of the in-
ternal built-in electric fields on the exciton binding in small
GaN QDs, Sec. IIT D. In Sec. IV we draw conclusions.

II. THEORETICAL CONSIDERATIONS

To gain insight into the excitonic properties of single GaN
quantum dots, we have performed calculations using the
methodology that is described below. Quantum dots in the
shape of hexagonal truncated pyramid were considered.'® It
is assumed that the QD is positioned on the wetting layer
(WL) and embedded in three nested hexagonal prisms, (Fig.
1) which were introduced for the single QD calculation pur-
pose, as will be described. The dimensions of the QD are
controlled by two independent parameters: the diameter D of
the circumscribed circle around the hexagon at the WL-QD
interface at z=0, and the angle «a between pyramid base and
pyramid side edges. The size of the QDs was controlled by
D/h aspect ratio, where & is the QD height. Dimensions of
the two nested embedding boxes in the form of hexagonal
prisms are defined by the base diameter D,, the height H,,
and the volume (). The subscript v=e is related to a smaller
supercell used in the expansion of the kinetic part of the
Hamiltonian; and subscript v=s is related to large supercell
on which the strain, spontaneous, and piezoelectric polariza-
tions were calculated. The third embedding box used in cal-
culation of the Coulomb integrals, (v=c), is made to be of a
more isotropic shape to better capture the isotropy of the
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FIG. 1. (Color online) Schematic diagram of GaN/AIN QD in
the shape of a truncated hexagonal pyramid, embedded in three
“Russian doll” type nested embedding boxes that are used for elec-
tronic structure, strain, and Coulomb integral calculations as de-
scribed in the main text.

Coulomb interaction. We discuss its shape and size in more
detail in Sec. IIT A.

Single-particle electron and hole states of GaN QDs were
modeled using the 8-band k-p Hamiltonian,*” consisting of
the kinetic part that includes spin-orbit interaction, the
crystal-field splitting, the strain part, and additional terms
arising from the presence of spontaneous and piezoelectric
polarization. Material parameters in the Hamiltonian were
taken from Ref. 33.

In many works,'!3* the 8-band k-p Hamiltonian is sim-
plified by neglecting the spin-orbit interaction. Although it
has relatively small values in Ill-nitrides (~10-20 meV)
when compared to the fundamental energy gap at the I" point
(>2 eV), the spin-orbit interaction splits the fourfold-
degenerate top valence band (' symmetry) into two
twofold-degenerate bands (I'y and I';).33-3¢ Consequently this
simplification leads to block diagonalization of the Hamil-
tonian into two identical 4-band Hamiltonians. For the
present work we choose the more sophisticated 8-band
Hamiltonian. The main reason is that in hexagonal quantum
dots the 4-band Hamiltonian leads to a doubly degenerate
ground hole state** which is split by the spin-orbit interaction
in 8-band Hamiltonian.?” Since the main focus of the paper
will be on ground exciton and biexciton states, we find it
very important to correctly predict the degeneracies of
ground electron and hole state since these states largely de-
termine the ground (bi)exciton properties.

The eigenvalue problem of the single-particle Hamil-
tonian was solved using the plane-wave (PW) method.!
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While there are quite a few advantages in using the plane-
wave method,'!*® we emphasize that there are several issues
that need to be resolved if one wants to apply the method to
single GaN/AIN quantum-dot calculations. Within the
straightforward PW approach, due to the presence of large
built-in electric fields that decay slowly away from the dot, a
very large supercell would be required to correctly describe
the potential due to these fields. This is undesirable since a
very large plane-wave basis set would then be required to
describe the wave functions which are well localized to the
dot region.

A better approximation for strain distribution of a single
dot is obtained if a box () larger than (), is used for calcu-
lating the Fourier transform of the strain dlstrlbutlon € S)(K)
for which analytic expressions!! exist. These quantmes are
then renormalized to a small supercell, {),, by interpolation
in inverse space,

=0 3

Qx Keinv

(v)(K)f t(K k)- rd3 (1)

It means also that one will use two sets of PWs: the aug-
mented set (n; ®) y N f)) related to the box (), and denoted
as K and conventlonal set (n(e) (6),n£‘))) related to the box

), and denoted as k. The piezoelectric field is described with

Vig(k) = - z—{z[k 9(K) + k) (K)]d;5

B 4 yTyz

+k[(K) + e(e)(k)]dB +k.€9(K)dss} + SV (k),
(2)

where term 5V§fz)(k) is obtained by replacing QD piezoelec-
tric coefficients d;; with the difference between QD and bar-
rier value of the p1ezoelectr1c coefficients, d;;— Ad,;, an
strain elements with its convolution with characterlstlc QD
shape function, e(")(k)—>2 x(k- k')e("’)(k’) Since piezo-
electric field, Eq. (2) is the function of the strain tensor
elements, 61(;)(k) given by Eq. (1), only, its effect automati-
cally follows the one of the strain. The long-range potential
due to spontaneous polarization is also calculated by using
interpolation in the inverse space,

V() = —lA(PSP/S)X(k)<Q > % i(K_k)‘rdSr),
sKeinv ) Q,
3)

where A(Pgp/¢) is the difference between values of QD and
barrier material spontaneous polarization coefficient divided
by permittivity and y(k) is the characteristic QD shape func-
tion in the k space. Expressions (1)—(3) gives better approxi-
mation for €;(k), Vpz(k), and Vgp(k), of a single QD struc-
ture, and can be systematically improved by making ()
sufficiently large to eliminate the strain, piezoelectric, and
spontaneous polarization fields propagation from neighbor-
ing dots that are artificially introduced due to periodic
boundary conditions. As such they are used in the construc-
tion of the PW representation of the single QD Hamiltonian.
This leads to a much smaller plane-wave basis set, k, than
the one that would be required if the kinetic part of the

PHYSICAL REVIEW B 79, 245330 (2009)

Hamiltonian were expanded using K. More elaborate discus-
sion of the method can be found in Ref. 38.

In the previous works,'"183% a cubic embedding box was
used for wurtzite QD structures. The symmetry of the model
is defined by the highest symmetry subgroup that is common
to the symmetries of the QD shape, the embedding box, and
the symmetry of the model k- p Hamiltonian. When the sym-
metry of the QD shape is Cg, for hexagonally shaped QDs,
and the symmetry of the cubic embedding box is Oy, the
common subgroup is C,,. Consequently, the numerical solu-
tions do not capture the right symmetry of the k-p Hamil-
tonian for wurtzite QD structures (which is Cg, instead of
C,,). Such a set of single-particle states can lead to addi-
tional artifacts once imported in excitonic-structure calcula-
tions. Therefore, a hexagonally shaped embedding box is
used in our calculations and plane waves adapted to such box
are implemented.** Our numerical solutions therefore cap-
ture the right Cg, symmetry of the model 8-band k-p Hamil-
tonian even with limited basis sets. In the Appendix, we have
shown how symmetry of the model can be exploited to sig-
nificantly reduce computational costs without losing on ac-
curacy.

We also note that the actual symmetry of a hexagonally
shaped wurtzite GaN/AIN quantum dot is Cs, (Refs. 28 and
40) and can be captured either by modeling the strain using
the atomistic valence force-field (VFF) model or by taking
more bands in the k-p Hamiltonian.*! We will therefore dis-
cuss the consequences of using the model with a higher Cg,
symmetry on the results, in Sec. III B.

After the single-particle states were found, the (bi)exciton
states were obtained using the configuration-interaction
method, 34> ie., by direct diagonalization of the
Hamiltonian**

A PP
At A + At ata A
=2 el — 2 eihth+ > > Vaué; €

1 PP PP
+5 > Vijihi b by — > (Vi - Vig)éi i hé;, (4)

where é(¢é*) are electron annihilation (creation) operators,

ﬁ(ﬁ*) are the same operators for holes, and ¢; are the single-
particle energies. The summation over each index takes place
over electron or hole states only depending whether that in-
dex corresponds to electron or hole operator. Coulomb inte-
grals, Vi, required for the diagonalization of the
configuration-interaction (CI) Hamiltonian were evaluated in
reciprocal space and then corrected using the Makov-Payne
method®¥#434® by adding the first few terms (monopole, di-
pole, and quadrupole) in the multipole expansion to compen-
sate for the effect of the mirror charges induced by periodic
boundary conditions. These read as

2

e
Vi = Vi () = [ql]qklamad +———d,.-dy
d1re

7T
30, 7

2
- EWC(CIUQM + leQij):| , (5)

245330-3



STANKO TOMIC AND NENAD VUKMIROVIC

where V;;,(€2.) is uncorrected Coulomb integral calculated
on ), and ¢;(Q,)=6;, d;;(2,), and Q;;({),) are the mono-
pole, dipole, and quadrupole corrections, respectively, that
acquire analytic form in the PW representation. The Made-
lung term in Eq. (5), @,q, is defined via Ewald sums in real

and inverse space, and self-interaction correction term as

erfc(R9'?) 4m exp(— k*/47)
s SRy dm o enpl-Kidn)

2
RedirQ, R ‘Q’L‘ keinvQ),. k
R#0 k#0

The Ewald parameter 7 controls the rate of convergence of
the sums. It was set in all calculations to 7
=m/[3V3(D,./2)*/2]. Depending on order of indices in Eq.
(5) those integrals represent direct Coulomb integrals J,,
=V, b Or exchange Coulomb integrals K, ,=V ;.- An effi-
cient and accurate method to evaluate these expressions in
reciprocal space was described in Ref. 38.

Additionally, symmetry considerations imply that only
Coulomb integrals V,;; whose wave functions satisfy the
conservation of the total quasiangular momentum,

(mod 6)} (7)

Amad =

{mj+mZEm,~+mk

are nonzero. These are therefore the only ones that need to be
evaluated, which reduces the number of integrals that need to
be calculated by a factor of 6.

The whole methodology presented here was implemented
in the kppw code.*’

III. RESULTS AND DISCUSSION

To support our statements in next two subsections, Secs.
IIT A and III B, we consider a model GaN/AIN QD with D
=10 nm, =2 nm, and «=30° embedded in the boxes in the
shape of hexagonal prisms with the dimensions D,=50 nm
and H,=10 nm, D;=150 nm, and H;=180 nm. The lateral
size of . is D.=50 nm while its vertical dimension is dis-
cussed in Sec. IIT A and adopted in the rest of the analysis.

A. Optimal supercell size for Coulomb integral calculation
in a hexagonal QD

While the value of error between corrected and uncor-
rected expression for the direct Coulomb integrals, V;;,
~Viu(Q,), has «1/L asymptotic behavior* in a cubic em-
bedding box,3%4>40 this is not necessarily the case when one
treats hexagonally shaped embedding boxes. To identify the
optimal size of the (). box, the influence of the embedding
box elongation in the z direction on the convergence of the
Coulomb integral J, o is shown in Fig. 2(a). It can be seen
that the corrected value of J, 0, calculated according to Eq.
(5), monotonically approaches the actual value, calculated in
real space, as H.. is increased. On the other hand, uncorrected
value of J,0(€).) (the trend would be the same if one as-
sumes ,.=(},, i.e., that ). coincides with box used for
expansion of the kinetic part of the Hamiltonian as in con-
ventional PW methods), exhibits a nonmonotonic behavior.
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FIG. 2. (Color online) (a) The dependence of J,g  integral on
the H,. dimension of the ().: calculated without multipole correc-
tions (dashed line), with monopole correction only (solid line), with
all multipole corrections included (solid line with symbols), and
actual value calculated in direct space (dotted line). (b) Dependence
of the Madelung constant (solid line with symbols) and its compo-
nents: the short range (solid line), long range (dashed line), and
self-interaction (dotted line).

It decreases up to some critical point beyond which J,
—Jo0.10(€).) again acquires the o«1/L trend. We have identi-
fied that the main correction to the direct Coulomb integrals
calculated according to Eq. (5), is due to the monopole term
which is proportional to %q;iqamag. It should be noted fur-
ther, that for direct Coulomb integrals, such as J,y 0. the
effective charges g,9.0=1 and g, 0=1. It means that the
monopole correction is entirely determined by a,,,q4 which
depends on the (). box dimensions only and not on the over-
lap of the wave functions. The individual components of the
Ewald sum, Eq. (6), are plotted in Fig. 2(b), as a function of
H,. It can be seen that the nonmonotonic shape of a,,,q is
actually determined by the interplay between short-ranged
interaction component calculated in real space and self-
energy interaction term. We conclude that the optimal value
of the H, at which direct Coulomb integrals approach actual
values within <0.4% is 25 nm.

B. Symmetries of exciton states in GaN QDs and the effect
of spin-orbit interaction

To explain the origin of the excitonic structure and to
understand the possible differences of the results of our
model and other models, we classify the single-particle
states, exciton, and biexciton states according to symmetry.
We follow the notation in Ref. 49. In the case when spin-
orbit interaction is not included, the 8-band k- p Hamiltonian
splits into two identical 4-band Hamiltonians. The eigen-
states of each of these are represented by single-valued irre-
ducible representations (IRs) of the Cg, group. Our calcula-
tion shows that the highest state in the valence band (h0)
transforms according to two-dimensional IR E| and the low-
est state in the conduction band (e0) transforms according to
one-dimensional representation A;. Therefore, including the
twofold spin degeneracy, 40 is fourfold degenerate and €0 is
twofold degenerate.
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In the case when spin-orbit interaction is included, the
eigenstates of the Hamiltonian transform according to
double-valued IRs of the Cy, group. We find that 40 trans-

forms as E; and €0 transforms as E,. Therefore both of them
are twofold degenerate, indicating that spin-orbit interaction
has split the fourfold degenerate #0. This demonstrates the
importance of including spin-orbit interaction despite its
relatively small value. The spin-orbit interaction is often ne-
glected in k-p (Refs. 11 and 34) and tight-binding
calculations?>>* which automatically then leads to the wrong
dimensionality of ground exciton and biexciton manifolds.

We note that the Cs, symmetry (which is present if the
strain is modeled using VFF within k- p, the k-p model that
includes a larger number of bands,*' or if tight-binding or
empirical pseudopotential model is used) would yield the
same degree of degeneracy of all the mentioned states, as
one can easily check that the subduction procedure of each of
the IRs of the Cg, group to the C3, subgroup yields the IR of
the same dimensionality.

We now proceed with the discussion of the excitonic
structure. Exciton states transform according to single-valued
IRs of the symmetry group.*’ The IRs corresponding to the
states of the ground exciton manifold can be determined
from the direct product of the IR of ¢0 and complex conju-
gated IR of £0.%0 In the case when spin-orbit interaction is
not included, this gives A;® E{=E;. Therefore, the orbital
part of the exciton state transforms as E;. The spins of an
electron and a hole forming an exciton can form either the
singlet or the triplet state. Therefore the ground eight-
dimensional manifold consists of the doubly degenerate
ground state (stemming from E; symmetry of the orbital part
and the singlet of the spin part) and sixfold degenerate ex-
cited state (stemming from E; symmetry of the orbital part
and the triplet of the spin part). An E; exciton is allowed to
emit xy-polarized radiation while it is not allowed to emit
z-polarized radiation. On the other hand, due to conservation
of spin in the optical transition, the singlet state is dark,
while in the triplet two states are bright and one is dark. This
implies that the twofold-degenerate ground exciton state is
dark while the sixfold degenerate excited state consists of
four bright and two dark states. We note again that the con-
siderations of the full C;, would yield exactly the same con-
clusions related to the degeneracy of states and allowed op-
tical transitions.

In the case when spin-orbit interaction is included, the
symmetry of states in the four-dimensional exciton manifold

is determined from E; ® Ey=E, +E,. Therefore it consists of
the twofold-degenerate E, exciton and the twofold-
degenerate E; exciton. E, exciton is dark while E; exciton
can emit xy-polarized radiation. Our calculation yields that
E, exciton has a lower energy than E;. The subduction of E,
representation to the C;, subgroup yields the E representa-
tion which allows for emission of xy-polarized radiation.
Consequently, the ground exciton state that we find to be
dark may become weakly bright if the full C;, symmetry is
considered.

Next, we discuss the allowed optical transitions for all
exciton states. The Cg, group has six single-valued IRs A;,
B,, A,, By, E|, and E,. The A, excitons are allowed to emit
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z-polarized radiation, E; excitons are allowed to emit
xy-polarized radiation, while the rest are dark. Therefore, all
lines in Figs. 3(a) and 3(b) correspond to A, or E; excitons.
When the symmetry is lowered from Cg, to Cs,, E; and E,
become E which allows the emission of xy-polarized radia-
tion, A, and B; become A, which is dark, while A| and B,
become A; which allows the emission of z-polarized radia-
tion. Therefore, the reduction in symmetry from Cg, to Cs,
can transform dark excitons E, and B, into optically active
ones.

Finally, we also discuss the degeneracy of the biexciton
states. These are also represented by single-valued IRs of the
symmetry group.*® In the case when spin-orbit interaction is
included, the biexciton state can have single or double de-
generacy, as can be seen in Fig. 3(c). When it is not included,
additional degeneracies exist due to spin part of the biexciton
state, Fig. 3(d).

C. Optimization of single GaN QDs for the single-photon
sources applications

In this section, we present the calculations aimed to pro-
vide insight into the physical factors determining the perfor-
mance of single-photon sources based on GaN/AIN quantum
dots in general and, in particular, those reported in Ref. 16.
The calculations of the single-particle electron and hole
states and of the excitonic structure have been performed for
a set of quantum dots satisfying the following conditions.
The quantum-dot height was varied in the range of A=1.5
—5 nm with a step of 0.5 nm. The diameter to height ratio
D/h was varied from 4 to 10 with a step of 1, and dots with
the diameter larger than 30 nm were discarded. The truncated
pyramid base angle of a=30° was assumed and the wetting-
layer width of 0.5185 nm. The embedding box for electronic
states with the diameter of D,=50 nm and height of H,
=10 nm was used with the number of plane waves deter-
mined from (|n'")],[n{)],|n{])=(6,6,12). The corresponding
box for evaluation of Fourier components of the strain and
the potential arising from internal electric fields had the di-
ameter D;=150 nm and the height H ;=180 nm. The num-
ber of plane waves used to represent them was estimated by
linear scaling as nfs)z(D(s)/D(e))n(-e), i={1,2}, and ngs)
=(HOYTHOY, ie. (nP]|n$).[nP)=(18,18,216). The
necessity of employing such a large box is illustrated in Fig.
4. The dependences of energy levels on D, and H, [shown in
Figs. 4(a) and 4(b)] enter saturation only when the chosen
values of 150 and 180 nm, respectively, are reached. One can
see from Figs. 4(c) and 4(d) that the internal-field-induced
potentials dramatically differ if the values of D, and H, are
chosen for D, and H,. The difference between the converged
energies of eigenstates and the unconverged ones is mostly
pronounced when the height of the embedding box is con-
cerned [Fig. 4(b)]. The eigenvalues then differ by as much as
100 meV in the case of the electron ground state e0 and 75
meV in the case of the hole ground state 20. We have also
found that the values of all eigenenergies are more sensitive
to the change in the size of the embedding box in the z
direction than in the xy plane.

To ensure the convergence of Coulomb integral calcula-
tions, a box with the dimensions D.=D,=50 nm, and
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FIG. 3. (Color online) Influence of the spin-orbit interaction on the excitonic dipole elements [upper row: (a) and (b)] and biexcitonic
structure [lower row: (c) and (d)] calculated by the CI method. In (a) and (c) the spin-orbit interaction is included while in (b) and (d) is
ignored. Numbers in graphs for biexcitonic structure show the degree of degeneracy of a particular line. In some cases, these are closely

spaced and can not be distinguished on the graphs.

slightly elongated along z direction to H.=D,/2, was used as
described in Sec. IIT A. All CI calculations used the basis set
consisting of N,=8 electron and N,,=14 hole states (includ-
ing the states of both spin). For all D/h ratios we get an
expected result that the exciton energy Ex decreases as the
quantum-dot height is increased, see Fig. 5(a). The same is
the case when the energies of biexcitons Exy are concerned,
as can also be seen in Fig. 5(b).
The dependence of biexciton shift defined as

Bxx = Exx —2Ex (8)

on exciton energy is presented in Fig. 6(a). It can be seen
from this figure that for maximizing the biexciton shift
smaller values of D/h ratio are required in agreement with
the conclusion of Ref. 16. Within the fixed value of D/h,
bigger dots tend to have larger values of the biexciton shift
due to reduction in the attractive part of the Coulomb inter-
action, as explained in Sec. L.

On the other hand it is also important to have large values
of optical dipole matrix elements on the exciton transition.
These are presented in Fig. 6(b). Due to symmetry, the dipole
matrix elements for the interaction with x- and y-polarized
radiation are identical. One can conclude from this figure
that larger D/h ratios are more desirable and that for a fixed
D/ h ratio, small quantum dots have much larger optical ma-
trix elements. Unfortunately, the trends in dipole matrix ele-
ments are opposite to the trends in exciton shifts. Therefore,
a compromise between these trends has to be made to find
the optimal quantum-dot geometry.

To achieve this, we define the optimization function as

b
E = (EXX - 2Ex) . ln<m) . (9)
X

pgf) is the value of the x component of the dipole matrix

element of the exciton transition, pgg) is equal to 10‘4p§§)’m3x,
and p{Y"™™ is the maximal value of pgf) for all quantum dots

considered. While the choice of p§?> is somewhat arbitrary,
we find that the positions of maxima of the optimization
function are weakly dependent on its value, when it is
changed within reasonable limits. The dependence of the op-
timization function on exciton energy for different D/h ratios
is presented in Fig. 7. For D/h=4 and D/h=5 the optimiza-
tion function is nonmonotonous with a maximum at 7=2.5
and h=2.0 nm, respectively. For larger D/h the largest value
of optimization function is reached for the smallest dots
among those investigated with the height of #=1.5 nm. The
most optimal dots emit in the range of 3.2-3.8 eV, as can be
seen in Fig. 7. Experimental results on single-photon sources
operating at 200 K reported in Ref. 16 show the emission
energy of around 3.5 eV and are in very good agreement
with our theoretical predictions presented here. This also
suggests that their QD geometry is most likely very close to
an optimal one. It was reported in Ref. 16 that the estimated
dimensions of the dots based on atomic-force microscopy
(AFM) measurements are: the height of 4 nm and the diam-
eter of 25 nm. Our calculation for these dimensions of QDs
yields an emission energy of 1.5 eV only, as well as very low
values of the optimization function. However, AFM is a sur-
face technique that measures the uncapped dots. Significant
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FIG. 4. (Color online) The dependence of electron and hole
energies on (a) the diameter D, of the box used for the calculation
of strain; (b) the height H; of the box used for the calculation of
strain. (c) The effective electron and hole [from top of the valence
band: crystal-field split-off hole (CH) band, light-hole (LH) band
and heavy-hole (HH) band] potential when D,=150 nm and H,
=180 nm (solid line) and D;=D,=50 nm and H,=H,=10 nm
(dashed-dotted line). CH and LH almost overlap each other. (d) The
contributions of spontaneous and piezoelectric polarization-induced
potentials in these two cases. QD dimensions are D=25 nm, h
=5 nm, and a=30".

changes in the geometry of the dots after capping are pos-
sible and we believe that the dots measured in Ref. 16 actu-
ally have a much smaller height (i.e., reduced effective con-
finement region) than reported based on AFM measurements.

D. Effect of bound biexcitons in single GaN QDs

Another fundamental question related to the excitonic
structure in GaN/AIN quantum dots, raised by the recent
experiments'>> is the sign of the biexciton shift, i.e.,
whether the biexcitons are bound or unbound. For all calcu-
lations reported so far in this paper and in several earlier
experiments'>!® biexcitons are unbound. In recent single-dot
spectroscopy experiments,'>? bound biexcitons have been
measured as well for small quantum dots. While theoretical
approaches based on Hartree approximation'®?? are not ca-
pable of describing bound biexcitons due to lack of the elec-
tron correlation effects in the model,'>2° the CI based ap-
proach should be, in principle, capable of doing that. In small
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FIG. 8. (Color online) The dependence of biexciton shift on
exciton energy for quantum dots with D/h=3, h
e(1,1.2,1.4,1.6,1.8,2,3,4) nm and spontaneous polarization
multiplied by a and piezoelectric polarization multiplied by b in the
cases: (a) a=1 and b=1; (b) a=1/3 and b=0; (¢c) a=0, b=1/3; (d)
a=0 and b=0. CI calculation with N,=8 electron and N;,=14 hole
states (solid lines) and N,=2 and N, =2 (dashed lines) correspond-
ing to the Hartree approximation is presented. In (c) the height of
the QD for the end points is specified and is the same for all four
graphs. The inset in (d) depicts topmost (eighth) electron and low-
ermost (14th) hole state used in CI calculations for the smallest QD
in the series (D=3 nm and =1 nm) that are still well localized to
the QD region.

QDs, the exchange-correlation effect might be sufficient to
compensate for the increase in the direct Coulomb energy of
two excitons in a QD. In those QDs the exchange-correlation
effect could be potentially pronounced since one might ex-
pect that piezoelectric and spontaneous polarization effects
are reduced due to QD size effect and therefore not capable
of simultaneously reducing the electron-hole attraction (and
exchange-correlation) and increasing the pairwise Coulomb
repulsion.

There are however, several issues that one should con-
sider related to the calculations for small dots, such as
whether the models for polarizations work for such small
dots, whether the envelope function theory is reliable, and
whether there are enough bound states for convergent CI
calculation. Putting these issues aside for the moment, we
have calculated the excitons and biexcitons for a series of
small dots with D/h=3 since by looking at Fig. 6 and per-
forming an extrapolation one may expect that bound biexci-
tons might appear then. The QD height was changed in the
range of he(1,1.2,14,1.6,1.8,2,3,4) nm, D/h=3, and
the shape was controlled by tan(«)=24/(D—-1 nm). The re-
sults that are presented in Fig. 8(a) show biexcitons are
strongly unbound if coefficients of the spontaneous polariza-
tion Pgp are —0.034 and -0.090 C/ m? for GaN and AIN,
respectively, and piezoelectric constants that enter the for-
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mula for strain-induced polarizations are d;5=0.326 and
0.418 C/m?, d;3=-0.527 and -0.536 C/m? and ds;
=0.895 and 1.561 C/m? for GaN and AIN, respectively.’?

We have checked that all states (N,=8,N,=14) used for
CI calculations, even in the smallest QD considered, are
bound states [see Fig. 8(d)]. In contrast to InAs/GaAs where
there are not enough bound states to perform convergent CI
calculations,?® much larger band offsets and effective masses
of GaN/AIN system allow for enough bound states even for
small dots.

We also expect that the envelope function approximation
is still reliable as the heights of the dots presented in Fig. 8
are all larger than four monolayers. To gain insight into what
would be the effect on changes in polarizations on biexciton
shifts, we have calculated the excitons and biexcitons with
artificially reduced values of spontaneous and piezoelectric
polarization. The cases where the polarizations have been
completely turned off or reduced to one third were consid-
ered. As can be seen from Figs. 8(b)-8(d), bound biexcitons
were obtained only with both polarizations turned off or with
one of the polarizations reduced to a third and the other one
turned off. In all other cases the biexcitons are still not
bound. The results of the calculation in the Hartree approxi-
mation are also shown in Fig. 8, (dashed line) to verify that
the bound biexcitons cannot be obtained then. Our theoreti-
cal predictions of the bound biexciton appearance in the vi-
cinity of the excitonic energy of ~4 eV are in very good
agreement with recent experimental findings.'> These results
suggest that it might be possible that the values of polariza-
tions are reduced in comparison to what is expected from the
existing theoretical models applied to such small dots. A
more elaborate theory of the group Ill-nitrides material
parameters®' =3 and nanostructures based on them, in particu-
lar, would be probably required to safely resolve these issues.
Such theory should be based on ab initio calculations of
polarizations in nitride nanostructures and is an interesting
topic for future studies.

IV. CONCLUSIONS

In conclusion, the excitonic structure of GaN/AIN quan-
tum dots was investigated and optimal-dot dimensions for
single-photon source applications were found. For diameter
to height ratios in the range of 6—10 the dots should be as
small as possible while for smaller ratios there exist an op-
timal quantum-dot height. Our predictions that the optimal
dots emit in the range of 3.2-3.8 eV are in very good agree-
ment with the experimental results on existing single GaN
quantum-dot sources, underpinning the validity of the model
described here and QD morphology extracted from it. The
importance of including the effect of spin-orbit interaction
was demonstrated and shown that the models with C3, and
Ce, symmetry yield exactly the same degeneracies of single-
particle and (multi)exciton states. The lower symmetry of the
C5, group is only manifested via some optical transitions that
become weakly allowed. We also show that the existence of
bound biexcitons in small GaN/AIN quantum dots cannot be
reliably described with current approaches and parameter
sets, which led us to question the use of the models for
internal electric fields in such small dots.
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APPENDIX

Further reduction in the computational cost is achieved by
exploiting the symmetry of the system.>*3* The use of sym-
metry leads to block diagonalization of the Hamiltonian ma-
trix, expanded in the PW basis, to M smaller matrices of
approximately equal size and therefore to a reduction in the
computational cost and memory requirements by a factor of
M?. This is achieved by making a unitary transformation
from the plane-wave basis |k,b) (denoting the basis state
where the envelope function of band b is equal to ¢’ and the
other envelope functions are zero) to the basis of the states
characterized by a given value of the z component of the
total quasiangular momentum my. In the case of M-fold sym-
metry, the elements of this basis are given as

M-1

l —
mpk,by = —= >, DR, Kk b)
VM 1=

(AD)

with k vectors satisfying k> +k§ >0 and 0=k, <tan(¢)k,,
and
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|myk,b) = k,b) (A2)

with k vectors satisfying k,=k,=0 and the band b satisfying
{J.(b)=m;=0(mod M)}. In previous equations ¢=27/M,
J.(b) is the z component of the total angular momentum of
the Bloch function of band b, Rhf,k:k’ is the vector obtained
by rotation of the vector k by an angle /¢ around the z axis

! .71 il .
ky + ik, = €' (k, + ik,),

kl=k,, (A3)

while angular momentum m; takes the values from the inter-
val [-(M—1)/2,(M-1)/2] with a step of one. Previous for-
mulas can be derived following the same approach as in
Refs. 34 and 54. The symmetry of the 8-band model applied
to highly symmetric hexagonal dot shapes embedded in hex-
agonal prism considered in this work is given by M =6. Since
the diagonalization cost of the Hamiltonian matrix is propor-
tional to third power of its rank, Nf, the total cost of the
diagonalization is then «M X (N,/M)?, which is 36 times
faster than if the symmetry were not exploited.
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