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The dynamic dielectric function of a spherical semiconductor quantum dot �QD� is derived analytically
within the framework of the effective mass and Bohm-Pines’ random-phase approximations. The computa-
tional schemes are developed to investigate the single-particle-like charge-density excitations �SP-like CDEs�
in charged spherical QDs, which are observed in the resonant Raman scattering �C. Steinebach, C. Schüller,
and D. Heitmann, Phys. Rev. B 59, 10240 �1999��. The formulism in this study is established in terms of the
real-space representation, which is suitable for zero-dimensional systems. This study investigates the energy of
the SP-like CDE with the angular quantum number l, and discusses the relation between this excitation and the
single-particle excitation �SPE� energies. The selection rules of angular quantum numbers l play the important
role in determining the SP-like CDE energies, and the calculated results are consistent with measurements.
This study also presents the dependence of the energy shift in the SP-like CDE with respect to the SPE on the
size of a QD. The calculated results imply that SP-like CDEs will disappear in the limit of a QD with an
infinite large radius. The dependence of the energy shift on the relative permittivity �s is also discussed.
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I. INTRODUCTION

In recent years, the elementary electronic excitation
spectra of the semiconductor nanostructures have been
studied with extensive efforts both experimentally and
theoretically.1–11 For instance, resonant Raman-scattering
�RRS� technique3,4,12–16 provides rich experimental spectra
of these elementary electronic excitations in the nanostruc-
tures, such as single-particle excitations �SPEs�, charge-
density excitations �CDEs�, and spin-density excitations
�SDEs�. As is known, excitation spectra depend crucially on
the system dimensionality. Das Sarma and co-workers1,3–5

derived the dynamic dielectric functions for the quasi-one-
dimensional �Q1D� and two-dimensional �2D� graphene sys-
tems with dependence on frequency and wave number. The
results were used to find the dispersion of the collective ex-
citation mode and the electrostatic screening of the Coulomb
interaction.5 The linear-response theory17 for the screening
effect, tight-binding approximation �TBA�, and Bohm-Pines’
random-phase approximation �RPA� �Refs. 18 and 19� are
major theoretical foundations.7,8,11

Moreover, Steinebach et al.12–14 and Schüller16 observed
that, besides the strongly collective excitations, additional
modes close to the SPE become resonant for certain laser
energies in GaAs QDs. These additional modes display col-
lective effects weakly.12,16 These modes are subjected to a
small energy shift with respect to the SPEs, and termed as
single-particle-like �SP-like� modes.

In the present work, we specialize in the spherical QDs
made of semiconductor materials, CdS, CdSe, and CdTe. The
spatial confinement of carriers leads to some interesting
physical properties of the zero-dimensional �0D� system,
such as the energy shift in the SP-like CDE with respect to
the SPE becomes measurable. Meanwhile, system dimen-
sionality also brings about the difficulty in applying the ear-
lier scheme developed for 2D and one-dimensional �1D� sys-
tems to 0D. The Lindhard dielectric function can be obtained
for 2D and 1D systems, and the derivation can be found in

textbooks.20,21 Through the Fourier transformation, one can
deal with the problems in the momentum space for 2D and
1D systems, since both systems respect translational symme-
try. In the 0D system, such as an isolated QD without trans-
lational symmetry, one must address the issue in terms of the
real-space representation. We adopt the effective-mass ap-
proximation �EMA� �Refs. 22–24� to determine the elec-
tronic levels, and use the RPA to derive the dynamic dielec-
tric function. Instead of using plane waves for expansion in
2D and 1D systems, the functions constructed by the carrier
envelope functions serve as the appropriate expansion basis
for the 0D system. Due to spherical symmetry of CdS, CdSe,
and CdTe QDs, the angular dependence in the formulism is
expressed in terms of spherical harmonics.

In this work, Sec. II analytically derives the electron dy-
namic dielectric function and the dielectric matrix elements.
The single-band EMA is employed to obtain the electron
envelope functions in a spherical QD. With the aid of the
envelope functions, the RPA-based generalized polarization
function is attained. Section II also expands the radial and
angular parts of the Coulomb potential in terms of the spheri-
cal Bessel functions and spherical harmonics, respectively.
Then, one can acquire the dielectric function and the dielec-
tric matrix elements. Some details are presented in the Ap-
pendices. Section III numerically calculates the SP-like CDE
energies by searching for zeros of the determinants for the
dielectric matrix. The energy shift in the SP-like CDE with
respect to the SPE is discussed. The Fermi level can be ad-
justed to control the number of occupied conduction states,
i.e., the QD is charged or electron-doped. The dependence of
the SP-like CDE energy on QD sizes of different materials is
investigated, and the relation between the energy shift and
the relative permittivity �s is also presented. Section IV sum-
marizes our study and proposes the experiment, RRS, to
probe the SP-like CDEs.

II. DYNAMIC DIELECTRIC FUNCTION

The expression for the dielectric function of a spherical
quantum dot �QD� is derived analytically in this section. The
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formulism is based on both the single-band EMA �Refs.
22–24� and RPA.18,19,25,26 The former is employed to obtain
the electron �or hole� envelope wave functions in a spherical
QD, and the latter is adopted to determine the polarization
function required to evaluate the dielectric function. We use
spherical harmonics to expand the angular dependence in the
formulism because of spherical symmetry in the systems.

The dynamic dielectric function ��r ,r� ;�� is known to be
expressed as27–30

��r,r�;�� = �s��r − r�� −� d3r�v�r,r��P�r�,r�;�� , �1�

where r and r� are position vectors, ��r−r�� is the usual
Dirac delta function,31 v�r ,r�� is the Coulomb interaction,
and P�r� ,r� ;�� denotes the polarization function. The di-
electric constant �s is the permittivity of the semiconductor.20

In this calculation, we treat �s����� for different semicon-
ductors, and ���� is the relative permittivity due to core and
valence electrons.20,32 The value of �s influences the Cou-
lomb potential energy in semiconductors, which is relative to
the strength of the screening effect, and will be discussed in
Sec. III.

The essential feature of the calculation for the dielectric
function is to expand ��r ,r� ;�� by an appropriate complete
set of wave functions such as

��r,r�;�� = �
ij

�i
��r��ij���� j�r�� , �2�

and the same set of wave functions �i�r� and � j�r�� is used
for expanding v�r ,r�� and ��r−r��. The indices i and j de-
note the quantum numbers.

To obtain the appropriate complete set of wave functions,
one should calculate the electronic structures in a spherical
QD. According to the EMA, the stationary Schrödinger
equation for the electron �hole� envelope function is known
as33

�−
�2

2
� ·

1

m�
� + V�r�	��r� = E��r�, where V�r�

= 
0 if r � R ,

� otherwise,
� �3�

� Planck’s constant divided by 2	, E the energy eigenvalue,
��r� the corresponding eigenfunction, r the position vector,
R the radius of the QD, and m� the effective mass of the
semiconductor material. Because of spherical �or isotropic�
symmetry in the geometry of the QD, the confinement
potential depends only on the radius r, i.e., V�r�=V�r�,
where r= �r�. Then, the envelope function is written as
the product of functions with radial and angular coor-
dinates dependence:22–24 �lnm�r ,
 ,��=Nlnjl�klnr�Ylm�
 ,��

�ln�r�Ylm�
 ,��, where jl�klnr� is the spherical Bessel func-
tion, Ylm�
 ,�� is the so-called spherical harmonics, Nln is the
corresponding normalized constant, and

kln =�2m�Eln

�2 . �4�

The infinite energy barrier between the vacuum and QDs will
lead the wave function to vanish at r=R, which can deter-
mine kln. Here, the indices, l, n, and m, for the envelope
function �lnm�r ,
 ,�� are quantum numbers.

The polarization function will be calculated by neglecting
the vertex correction in the Hedin equations34,35 and using
the expression of a noninteracting particle Green’s function
within the framework of RPA. With the previously obtained
envelope function from EMA, the RPA-based generalized
polarization function P�r ,r� ;�� is attained as27–29,36

P�r,r�;�� = �
l1m1n1

occ

�
l2m2n2

unocc

�l1n1

� �r��l2n2
�r��l2n2

� �r���l1n1
�r��


Yl1m1

� �
,��Yl2m2
�
,��Yl2m2

� �
�,���Yl1m1
�
�,���



 1

�� − El2n2
+ El1n1

+ i�

−
1

�� + El2n2
− El1n1

− i�� , �5�

where � is the damping factor. In Eq. �5�, the first summation
stands for all occupied states, and the second one sums over
all unoccupied states. Note that the spin of carriers is not
considered in the calculations. Based on the EMA, the radial
envelope functions are real, which implies that ���r�=��r�.

Similarly, the Coulomb potential energy v�r ,r�� should be
expanded by the complete set of wave-functions �i

��r� and
� j�r�

v�r,r�� = �
ij

�i
��r�vij� j�r�� . �6�

In the system of a spherical QD, �i�r� should be chosen as
jl�klnr�Ylm�
 ,�� and the indices i and j stand for the abbre-
viations of the indices �l ,n ,m� and �l� ,n� ,m��, respectively.
Therefore, in SI37 units, the Coulomb potential energy be-
tween electrons and holes is expressed as v�r ,r��
=Q2 / �4	�0�r−r���, where Q denotes the charge quantity of
carriers and �0 is the permittivity of vacuum. Replacing the
factor �Q2 /4	�0� by the constant A, the potential energy can
also be expanded as

v�r,r�� = A�
l
� r�

l

r�
l+1� 4	

2l + 1 �
m=−l

l

Ylm
� �
,��Ylm�
�,��� . �7�

One may notice that v�r ,r��=v�r� ,r�.
Fortunately, the radial part in Eq. �7� can be expanded by

the spherical Bessel functions jl as

r�
l

r�
l+1 = �

nn�

Clnn�jl�klnr�jl�kln�r�� , �8�

where the coefficient Clnn� takes the form of
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Clnn� =
2

R3�jl+1�klnR��2
2l + 1

kln
2 �nn�

+
2

R3�jl+1�kln�R��2

R3

klnkln�
jl+1�klnR�jl+1�kln�R�� .

�9�

Here, R is the radius of a QD and �nn� is the usual Kronecker
delta.31 The details of the derivation are presented in Appen-
dix A. Then, the Coulomb potential energy can be expanded
as Eq. �6�, and the matrix elements vij could be expressed in
a concise form

vln,l�n� = �ll�A
4	

2l + 1
Clnn�, �10�

which is independent of the quantum number m.
As mentioned before, ��r ,r� ;�� should be expanded in

terms of wave-functions �i
��r� and � j�r�� as Eq. �2�, where

quantum numbers i and j are the abbreviations of the indices

�l ,n ,m� and �l̄ , n̄ , m̄�, respectively. By collecting Eqs. �1�,
�5�, and �6� together, one can obtain the elements of dielec-
tric matrix �DM�, �ij��� in Eq. �2�, given by

�ln,l̄n̄��� = �s�ll̄
 2

R3�jl+1�klnR��2�nn̄

−
A

�s
�
n�

�
l1n1

occ

�
l2n2

unocc

Clnn�
2

R3�jl+1�kln̄R��2Jn�n1n2

ll1l2 Jn̄n1n2

l̄l1l2



�2l1 + 1��2l2 + 1�

2l + 1
�l1 l2 l

0 0 0
�2

W���l2,n2

l1,n1

� ,

�11�

where

Jn�n1n2

ll1l2 
� r�2dr�jl�kln�r���l1n1
�r���l2n2

�r�� , �12�

and

Jn̄n1n2

l̄l1l2 
� r�2dr�jl̄�kl̄n̄r���l1n1
�r���l2n2

�r�� . �13�

The notation W���
l1,n1

l2,n2 represents the terms inside the braces

of Eq. �5�, and the Wigner 3j symbol38,39 is introduced in Eq.
�11�. The detailed presentation can be found in AppendixB.
We should notice that the elements of DM are independent of
the quantum number m. Spherical symmetry possessed by
the QD implies the fact that the angular part of the polariza-
tion function P�r ,r� ;�� expressed in Eq. �5�, as well as the
dielectric function ��r ,r� ;��, depends only on the angle be-
tween vectors r and r�, which can be verified by the addition
theorem for spherical harmonics

Pl�cos �� =
4	

2l + 1 �
m=−l

l

Ylm
� �
,��Ylm�
�,��� ,

where � indicates the angle between �r ,
 ,�� and �r� ,
� ,���.

It will be useful for subsequent formulation to define the
energy level difference, �E

l1,n1

l2,n2 
El2n2

unocc−El1n1

occ . The real part

of W���
l1,n1

l2,n2 can be deduced as

Re�W���l2,n2

l1,n1

	 =

2��El2,n2

l1,n1

�
�2�2 − ��El2,n2

l1,n1

�2 . �14�

According to Eqs. �11� and �14�, the real part of the elements
in DM takes the block-matrix structure

Re������

=�
l = 0,n 
 n

block
0 0 0

0
l = 1,n 
 n

block
0 0

] ¯ � ]

0 0 ¯

l → �,n 
 n

block

� .

�15�

The elements in the nondiagonal blocks with l� l̄ in Eq. �15�
would be zeros, and the nonvanishing elements would be in

the n
n diagonal blocks with l= l̄. Since the values of n and
n̄ would be identical, the blocks will assume a square form.

III. SINGLE-PARTICLE-LIKE CHARGE DENSITY
EXCITATIONS

This section numerically calculates the SP-like CDEs
�Refs. 12 and 16� in charged or electron-doped spherical
QDs. We adjust the Fermi level to control the number of
occupied states and search for the excitations with angular
quantum number l. Finally, this section also discusses the
dependence of the excitation energy on the sizes of different
material QDs.

Section II above derives DM, which is the ratio of the
bare to the renormalized density-density correlation func-
tions. Since the excitation energies are indicated by the pole
of the renormalized density-density correlation function,40,41

these excitation energies can be obtained from the given fre-
quencies � or the energies �� to satisfy29,42

det�Re������� = 0. �16�

According to the block-matrix structure for Re������ in Eq.
�15�, the determinant of Re������ is the product of the deter-
minants of all l blocks. Therefore, one could search for ex-
citation energies in a QD throughout all l blocks.

In the calculations, the Fermi level is adjusted above the
conduction-band minimum to control the number of occu-
pied states, and the electron-doped spherical QDs are dis-
cussed. When the number of occupied conduction states in
Eq. �11� is set below 20, the summation over 80 terms of
unoccupied states is sufficient for obtaining accurate results.
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To obtain the sufficiently convergent results of the values of
zeros of the determinant shown in Eq. �16�, it is enough to
take the cutoffs of the numbers n and n̄, i.e., the dimensions
of the blocks, as 12. In addition, this study only examines the
QD systems with all degenerate states for each occupied
level. For convenience of the subsequent discussion, the cal-
culated electronic levels for QDs based on EMA are listed in
Table I and denoted by the index, �. For example, �=0 cor-
responds to the ground conduction state and �=1 corre-
sponds to the first-excited state, etc. The first three columns
of Table I depict the dependence of � on quantum numbers l
and n, and the degeneracy �i.e., 2l+1�, for the first 12 states,
which are identical for CdS, CdSe, and CdTe QDs with dif-
ferent radius. The rest of the columns in Table I illustrate the
energy levels in eV for QD systems with different composi-
tions and sizes. The level differences in the occupied and
unoccupied state energies indicated the single-particle exci-
tation �SPE� energies. These SPEs correspond to the inter-
level absorptions, i.e., the excitation energies of electron-
hole pairs around the Fermi level.

A. SP-like CDEs for the case of five occupied states (�=4)

For numerical analysis, begin by investigating the SP-like
CDE energies in a CdS QD with R=2.3 nm, whose effective
mass is me,CdS=0.2.43 For the sake of illustration, consider
the case of five occupied states, which contain 17 electrons.
Search for excitation energies by going through different l
blocks. Figures 1�a�–1�f� present the values of determinants
from the l=0 to l=5 block, respectively. For numerical con-
venience, this study multiplies the matrix elements in Eq.
�11� by R3. Figures 1�a�–1�f� show that the energies corre-
sponding to the poles of the determinants of the l blocks
represent the SPE energies. On the other hand, the energies
corresponding to zeros of the determinants are the SP-like
CDE energies. In Figs. 1�a�–1�f�, the points where the x axis
intercepts the vertical lines represent the SPE energies,
which are labeled by �E

l1,n1

l2,n2.

Figures 1�a�–1�f� show that the calculated SP-like CDE
energy is larger than the calculated SPE energy �E

l1,n1

l2,n2. In

general, a larger value of the relative permittivity �s leads to
a weaker interaction from the valence electrons, and makes
the excitation energy closer to the SPE energy. The depen-
dence of the SP-like CDEs on the relative permittivity �s will
be investigated further below.

From Eq. �11� one can verify that the indices l, l1, and l2
in the l block and �E

l1,n1

l2,n2 must obey the selection rules, such

as the triangular inequalities, and l+ l1+ l2 must be even.38,39

Referring to Table I, the lowest SPE energy for the �=4 case
is �E

3,1
1,2. This energy can be found in the l=2 and l=4

blocks, as indicated in Figs. 1�c� and 1�e�. Both figures show
that the energies of the SP-like CDEs around �E

3,1
1,2 with

angular quantum numbers l=2 and l=4 differ from each
other. Similarly, the SPE energy �E

3,1
4,1 arises in the l=1, l

=3, and l=5 blocks, as Figs. 1�b�, 1�d�, and 1�f� show, re-
spectively. However, the energies of the SP-like CDEs with
l=1, l=3, and l=5 close to �E

3,1
4,1 are 0.725, 0.674, and 0.663

eV, respectively. Consequently, these energy differences im-
ply that excitation energies depend on the angular quantum
number l even though they are close to the same SPE energy
�E

l1,n1

l2,n2.

It is interesting to note that Fig. 1�a� shows the behavior
of the determinant of the l=0 block around some lowest
SPEs. The energies of the second and third lowest SPEs are
almost the same. The determinant between these two close
SPEs assumes a negative value, and both corresponding SP-
like CDE energies can be determined with somewhat larger
values as shown in Fig. 1�a�.

Consequently, the behaviors of the l block determinants
are related to the energies of SPEs, �E

l1,n1

l2,n2, as implied in Eq.

�14�. After collecting contributions from all combinations be-
tween occupied and unoccupied states in Eq. �11�, those
terms with �E

l1,n1

l2,n2 close to the given energy �� become

dominant. Therefore, the SP-like CDEs emerge with energies
slightly larger than the SPEs especially in QD systems.12,13

TABLE I. The electronic structures for CdS, CdSe, and CdTe QDs with different radius. The index � denotes the electronic levels, �
=0 corresponds to the ground state, �=1 corresponds to the first-excited state, etc. The first three columns show the dependence of the
quantum numbers l and n, and the degeneracy on �. The remaining columns display the energy levels in eV for CdS, CdSe, and CdTe QDs
with different radius.

1.1� 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.110 1.111

l 0 1 2 0 3 1 4 2 5 0 3 6

n 1 1 1 2 1 2 1 2 1 3 2 1

degeneracy 1 3 5 1 7 3 9 5 11 1 7 13

1.5nm CdS 0.84 1.71 2.82 3.35 4.14 5.07 5.68 7.02 7.43 7.54 9.21 9.38

2.3nm CdS 0.36 0.73 1.20 1.43 1.76 2.15 2.42 2.99 3.16 3.21 3.92 3.99

3.1nm CdS 0.20 0.40 0.66 0.78 0.97 1.19 1.33 1.64 1.74 1.77 2.16 2.20

3.9nm CdS 0.12 0.25 0.42 0.50 0.61 0.75 0.84 1.04 1.10 1.12 1.36 1.39

4.7nm CdS 0.09 0.17 0.29 0.34 0.42 0.52 0.58 0.72 0.76 0.77 0.94 0.96

2.3nmCdSe 0.55 1.12 1.84 2.19 2.71 3.31 3.72 4.59 4.86 4.93 6.03 6.14

2.3nmCdTe 0.75 1.53 2.52 3.00 3.71 4.54 5.09 6.29 6.65 6.75 8.25 8.40
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Although these SP-like CDEs are known to be weakly col-
lective excitations, they are still observable.14–16 It is not an
easy task to analyze all SP-like CDE energies by going
through all l blocks in a QD system. The following study
focuses on the behavior of the SP-like CDEs with the lowest
energy subject to some given Fermi levels. Moreover, to
study the energy for the formation of a SP-like CDE, one can
define the energy shift from the SP-like CDE to the SPE as

�̄
l1,n1

l2,n2

l , and the shift ratio of �̄
l1,n1

l2,n2

l to the SPE energy as �
l1,n1

l2,n2

l .

They are given by

�̄l2,n2

l1,n1

l

 El2,n2

l1,n1

l
− �El2,n2

l1,n1

, �17�

and

�l2,n2

l1,n1

l



�̄l2,n2

l1,n1

l

�El2,n2

l1,n1

, �18�

where E
l1,n1

l2,n2

l is the calculated SP-like CDE energy with the

angular quantum number l and close to the SPE energy

�E
l1,n1

l2,n2. Here, the energy shift �̄
l1,n1

l2,n2

l is positive, which is con-

sistent with the measurement reported in Refs. 12 and 14.
The shift ratio �

l1,n1

l2,n2

l can reflect the relative change in ener-

gies of the SP-like CDE and the SPE. The dependence of the
shift ratio �

l1,n1

l2,n2

l on the radius and the relative permittivity �s

of QDs will be investigated in the following subsection.

B. SP-like CDEs in charged spherical quantum dots with
different sizes and compositions

The energy shift �̄
l1,n1

l2,n2

l and the shift ratio �
l1,n1

l2,n2

l are calcu-

lated in various QDs for some given Fermi levels in this
subsection. Table II shows the angular quantum numbers l of
the lowest SP-like CDEs for different Fermi levels �. The
lowest SPE energy �E

l1,n1

l2,n2 in a QD oscillates with the Fermi

level � due to the energy difference between every next lev-
els, and the calculated lowest SP-like CDE energies bear an
expected resemblance. Table III shows the calculated SP-like
CDEs with the lowest energies E

l1,n1

l2,n2

l , the corresponding SPE

energies �E
l1,n1

l2,n2, the energy shifts �̄
l1,n1

l2,n2

l of the SP-like CDEs

FIG. 1. �a�–�f� Determinants of the l=0 to l=5 block as a function of the energy in the case of five occupied states. The horizontal lines
label the points where the determinants are zero for reference. The vertical lines mark the SPE energies, which are labeled by �E

l1,n1

l2,n2. The

SP-like CDE with the lowest energy for �=4 is indicated in �e�.

TABLE II. The angular quantum numbers l of the lowest SP-like CDEs for different Fermi levels in a
CdS �CdSe or CdTe� QD. The index � denotes the Fermi level right above the energy level �.

� 0 1 2 3 4 5 6 7 8 9 10

l 1 3 2 3 4 5 6 7 5 3 7
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with respect to the SPEs, and the shift ratios �
l1,n1

l2,n2

l for CdS

QDs with different radii when the Fermi levels are right
above the energy levels �=4 and �=8, for example.

Figure 2 depicts the shift ratios �
l1,n1

l2,n2

l of the lowest SP-like

CDEs in CdS QDs with 1.5, 2.3, 3.1, 3.9, and 4.7 nm radius
for some given Fermi levels �. Similarly, the value of �

l1,n1

l2,n2

l

of the lowest SP-like CDE oscillates with the Fermi level �.
Observe that the shift ratio �

l1,n1

l2,n2

l increases linearly with the

radius of a QD for a given �. The increasing trend of the shift
ratio with respect to the radius of a QD could be explained as
follows.

From the theoretical viewpoint, quantum-size effects on
SP-like CDEs in a semiconductor QD are determined by the
competition between the screened Coulomb force and the
repulsive confinement force due to the QD boundary.44–48 In
the case of a QD with a smaller radius, the separation be-
tween the size-quantization levels of carriers is on the order
of �2 / �m�R2�. This separation energy is larger compared with
the energy of the Coulomb interaction, which is on the order
of Q2 / ��sR�. Therefore, the confinement force is dominant in
this case. Hence, in our calculations for a given Fermi level
�, the shift ratio is smallest in a QD with 1.5nm radius as
Fig. 2 shows. On the other hand, for a QD with a larger
radius, one can assume that the center of the mass for a pair
of carriers is at a fixed point which is located at a distance
from the surface of the QD. For that reason, the influence of
the boundary confinement force is found to be weak, and the
screened Coulomb force is less severely influenced and
dominant in this case. Hence, the shift ratio becomes pro-
nounced with the increase in the radius of the QD as shown
in Fig. 2. The larger size will lead to the smaller energy

difference �E
l1,n1

l2,n2, as well as the energy shift �̄
l1,n1

l2,n2

l , and the

shift ratio �
l1,n1

l2,n2

l increases with the QD size. In a three-

dimensional �3D� bulk system, the limiting case of a 0D
spherical QD with a very large radius, the energy level dis-
tribution becomes continuous and the energy difference is

approximately zero, and the energy shift �̄
l1,n1

l2,n2

l becomes neg-

ligible. That implies that the SP-like CDEs will disappear in
a 3D bulk system.

Finally, this subsection also examines the dependence of
the shift ratio �

l1,n1

l2,n2

l on the relative permittivity �s for differ-

ent semiconductors. Figure 3 depicts the shift ratio of the
lowest SP-like CDEs versus the dielectric constants of the

TABLE III. When the Fermi level is right above the energy
levels �=4 and �=8, the lowest SPE energies �E

l1,n1

l2,n2, the calculated

SP-like CDEs with the lowest energies E
l1,n1

l2,n2

l , the energy shifts �̄
l1,n1

l2,n2

l ,

and the shift ratios �
l1,n1

l2,n2

l for CdS QDs with different radii.

�=4
�nm�

�E1,2

3,1
�eV�

E1,2

3,1

4

�eV�

�̄1,2

3,1

4

�meV�

�1,2

3,1

4

�%�

1.5 0.921 0.927 6.29 0.68

2.3 0.392 0.396 4.41 1.13

3.1 0.216 0.219 2.94 1.36

3.9 0.136 0.139 2.30 1.69

4.7 0.094 0.096 1.85 1.97

�=8
�nm�

�E0,3

5,1
�eV�

E0,3

5,1

5

�eV�

�̄0,3

5,1

5

�meV�

�0,3

5,1

5

�%�

1.5 0.110 0.113 2.66 2.42

2.3 0.047 0.049 1.75 3.73

3.1 0.026 0.027 1.26 4.91

3.9 0.016 0.017 0.95 5.84

4.7 0.011 0.012 0.76 6.82

FIG. 2. The shift ratios of the lowest SP-like CDEs versus the
radii of CdS QDs for the Fermi levels right above the energy state
�. The index � is for the �-th excited state. The data are fitted
linearly.

FIG. 3. The shift ratios of the lowest SP-like CDEs versus the
dielectric constants �relative permittivities� of CdS ��s=5.25�, CdSe
��s=6.233�, and CdTe ��s=7.1� QDs with 2.3nm radius for the
Fermi levels right above the energy state �.
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2.3 nm QDs composed by CdS ��s=5.25 �Ref. 49��, CdSe
��s=6.233 �Ref. 49�, me,CdSe=0.13 �Ref. 50��, and CdTe ��s
=7.1, me,CdTe=0.095 �Ref. 49�� for some given Fermi levels
�. Observe that the shift ratio qualitatively decreases with the
relative permittivity of the semiconductor. As mentioned in
Sec. II, a larger �s leads to a smaller Coulomb potential as
Eq. �11� shows, which is tantamount to a weaker interaction
due to the screening effect of the valence electrons. How-
ever, one can anticipate that in a semiconductor QD with a
small �s, the correlation between the conduction and valence
electrons turns into prominent in this system, and the energy
shift becomes pronounced.

In addition, both the energy level difference �E
l1,n1

l2,n2 and

the energy shift �̄
l1,n1

l2,n2

l change with the effective mass as in-

dicated in Eq. �4�. Table I tabulates the electronic levels cal-
culated by EMA for the CdSe and CdTe QDs, and the SPE
energy can be determined. However, the screening effect
should not be affected by different effective masses, and in a
hole-carrier QD system will bear a resemblance to the be-
havior of the SP-like CDE in an electron-carrier QD system.

IV. CONCLUSIONS AND DISCUSSION

In this work, the single-band EMA is adopted to obtain
the electron �hole� envelope functions and energy level dif-
ferences in a spherical semiconductor QD. With the aid of
the obtained envelope functions, the RPA-based generalized
polarization function of electrons is exploited to derive the
dielectric function analytically. This study expands the di-
electric function with the basis, jl�klnr�Ylm�
 ,��, and obtains
the dielectric matrix with the block structure. The indepen-
dence of dielectric matrix elements on the quantum number
m is revealed due to spherical symmetry in a spherical QD.
By numerically finding zeros of the real parts of the deter-
minants of the dielectric matrix, we determine the SP-like
CDEs for the given l quantum numbers. The SP-like CDEs
emerge with energies slightly larger than those of the SPEs
as observed by the resonant Raman scattering,14,15 even
though these SP-like CDEs might be weakly collective exci-
tations as reported by some groups.12,13,16 In the case of a
charged or electron-doped QD, the Fermi level is adjusted to
control the number of occupied conduction states. Then, the
relation between the SP-like CDE energy and the size of a
QD is investigated. The excitation energy shift with respect
to the SPE and the shift ratio are discussed. Efros, Kay-
anuma, and co-workers45–48 elaborated the mechanism dic-
tating the screening effect in a confinement system. Simi-
larly, in our calculations for SP-like CDEs in QDs, the size
effect bears a resemblance. The competition between the
screened Coulomb force and the repulsive confinement force
plays a decisive role in the dependence of the shift ratio on
the QD size. In particular, in the limit of the infinite QD
radius, the calculated SP-like CDE energy goes to zero, and
the excitation will disappear. Moreover, the SP-like CDE en-
ergies vary with the compositions of QDs. The larger relative
permittivity �s, which is tantamount to a weaker interaction
due to the valence electrons, leads to the smaller SP-like
CDE energy shift with respect to the SPE.

Experimentally, the SP-like CDEs in QDs can be probed
by the resonant Raman scattering �RRS�.12,14 Generally, the
RRS technique is a spectroscopic tool to study plasmon
energy.4 In the RRS experiment, external phonons are ab-
sorbed at one frequency and one momentum, and emitted at
another, creating excitations. The energy and momentum dif-
ference between the incident photon and the scattered one is
the so-called Stokes shift, revealing the dispersion of the
relevant elementary electronic excitation originated in the
system. As demonstrated in Ref. 12 and Ref. 16, additional
SP-like SDEs can be observed, which could be calculated by
including the electron spin degree of freedom in our for-
mulism in the future work.
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APPENDIX A: THE COEFFICIENT OF COULOMB
POTENTIAL EXPANDED WITH jl BASIS

In this appendix, the coefficient Clnn� in Eq. �8� is derived.
According to the orthonormality of the basis functions la-
beled by the roots of the spherical Bessel function with a
given integral order l, any well-behaved but otherwise arbi-
trary function f�r� may be expanded in a spherical Bessel
series31 f�r�=�n=1

� Cln� jl��lnr /R�, where �ln is the nth zero of
jl; that is, jl��ln�=0. The coefficient Cln� can be determined
by the orthonormality

Cln� =
2

R3�jl+1��ln��2�
0

R

f�r�jl��ln
r

R
�r2dr .

Furthermore, jl�klnr� is the radial part of an envelope func-
tion in a QD and jl�klnR�=0 because of the boundary-
condition ��r� �r=R=0. We can choose �ln=klnR to expand the
radial part of the Coulomb potential in Eq. �7�. The determi-
nation of the coefficient Clnn� in Eq. �8� will be facilitated by
expanding �r�

l � / �r�
l+1� in terms of jl�klnr� such as

r�
l

r�
l+1 = �

n

C̄lnjl�klnr� .

The employment of the orthonormality relations yields

C̄ln =
2

R3�jl+1�klnR��2�2l + 1

kln
2 jl�klnr�� −

r�lR1−l

kln
jl−1�klnR�	

=
2

R3�jl+1�klnR��2�2l + 1

kln
2 jl�klnr�� +

r�lR1−l

kln
jl+1�klnR�	 .

Then we expand the r�-dependent by the spherical Bessel-
functions jl�kln�r�� and again make use of the orthonormality.
Finally, we end up with the expression for Clnn�
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Clnn� =
2

R3�jl+1�klnR��2
2l + 1

kln
2 �nn�

−
2

R3�jl+1�kln�R��2

R3

klnkln�
jl−1�klnR�jl+1�kln�R��

=
2

R3�jl+1�klnR��2
2l + 1

kln
2 �nn�

+
2

R3�jl+1�kln�R��2

R3

klnkln�
jl+1�klnR�jl+1�kln�R�� .

Both expressions are equivalent and the second one is more
suitable for our calculations.

APPENDIX B: THE INTEGRAL TO CALCULATE
DIELECTRIC FUNCTION

In this appendix, we deal with the integral in Eq. �1� and
expand the dielectric function ��r ,r� ;�� in terms of �i

��r�
and � j�r��. The Wigner 3j symbol38,39 is introduced in this
appendix and some properties of the 3j symbol are employed
to simplify the expression to justify spherical symmetry in a
QD.

To begin with, the integral in Eq. �1� can be rewritten as

� d3r�v�r,r��P�r�,r�;��

=� d3r�A �
lmnn�

�
l1m1n1

occ

�
l2m2n2

unocc

Clnn�jl�klnr�jl�kln�r��



4	

2l + 1
Ylm

� �
,��Ylm�
�,���


�l1n1
�r���l2n2

�r���l2n2
�r���l1n1

�r��


Yl1m1

� �
�,���Yl2m2
�
�,���Yl2m2

� �
�,���


Yl1m1
�
�,���W���l2,n2

l1,n1

, �B1�

where W���
l1,n1

l2,n2 represents the terms inside the braces of Eq.

�5�. In Eq. �B1� both integrals of radial and angular parts can
be carried out, and the radial part integral is given as

� r�2dr�jl�kln�r���l1n1
�r���l2n2

�r�� 
 Jn�n1n2

ll1l2 , �B2�

where the function Jn�n1n2

ll1l2 is introduced. In this work, the
integral in Eq. �B2� is evaluated numerically. On the other
hand, the angular part integral is known to be

� d��Ylm�
�,���Yl1m1

� �
�,���Yl2m2
�
�,���


 �Yl1m1
�Ylm�Yl2m2

�

= �− 1�m1��2l + 1��2l1 + 1��2l2 + 1�
4	


�l1 l l2

0 0 0
�� l1 l l2

− m1 m m2
� , �B3�

where �
la lb lc

ma mb mc
� is the Wigner 3j symbol.38,39 Then, Eq. �B1�

can be simplified to

� d3r�v�r,r��P�r�,r�;��

= A �
lmnn�

�
l1m1n1

occ

�
l2m2n2

unocc

Clnn�
4	

2l + 1
jl�klnr�Ylm

� �
,��


�l2n2
�r���l1n1

�r��Jn�n1n2

ll1l2 �Yl1m1
�Ylm�Yl2m2

�


Yl2m2

� �
�,���Yl1m1
�
�,���W���l2,n2

l1,n1

. �B4�

Similarly, we can expand the r�-dependence parts in Eq. �B4�
by � j�r��= jl̄�kl̄n̄r��Yl̄m̄�
� ,���, such as

�l2n2
�r���l1n1

�r�� = �
l̄n̄

C̃n̄n1n2

l̄l1l2 jl̄�kl̄n̄r�� , �B5�

and

Yl2m2

� �
�,���Yl1m1
�
�,��� = �

l̄m̄

C�˜

m̄m1m2

l̄l1l2 Yl̄m̄�
�,��� .

�B6�

To determine the coefficients, C̃n̄n1n2

l̄l1l2 and C�˜

m̄m1m2

l̄l1l2 , in Eqs.
�B5� and �B6�, we would deal with both integrals

C̃n̄n1n2

l̄l1l2 =
2

R3�jl̄+1�kl̄n̄R��2� r�2dr�jl̄�kl̄n̄r���l2n2
�r���l1n1

�r��

=
2

R3�jl̄+1�kl̄n̄R��2Jn̄n1n2

l̄l1l2 , �B7�

and

C�˜

m̄m1m2

l̄l1l2 =� d��Yl̄m̄

� �
�,���Yl2m2

� �
�,���Yl1m1
�
�,���


 ��Yl1m1
�Yl̄m̄�Yl2m2

���

= �− 1�m̄+m2��2l̄ + 1��2l1 + 1��2l2 + 1�
4	

�l1 l̄ l2

0 0 0
�


� l1 l̄ l2

m1 − m̄ − m2
� . �B8�

By collecting Eqs. �B4�, �B7�, and �B8� together, we obtain
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� d3r�v�r,r��P�r�,r�;��

= A �
lmnn�

l̄m̄n̄

�
l1m1n1

occ

�
l2m2n2

unocc

Clnn�



4	

2l + 1
jl�klnr�Ylm

� �
,��jl̄�kl̄n̄r��Yl̄m̄�
�,���


Jn�n1n2

ll1l2 �Yl1m1
�Ylm�Yl2m2

�
2

R3�jl̄+1�kl̄n̄R��2Jn̄n1n2

l̄l1l2


��Yl1m1
�Yl̄m̄�Yl2m2

���W���l2,n2

l1,n1

. �B9�

The simplification of Eq. �B9� can be achieved by using the
identity

�
m1m2

�Yl1m1
�Ylm�Yl2m2

���Yl1m1
�Yl̄m̄�Yl2m2

���

= �
m1m2

�− 1�m̄+m2+m1
�2l1 + 1��2l2 + 1�

4	


��2l + 1��2l̄ + 1��l1 l2 l

0 0 0
�� l1 l2 l

− m1 m2 m
�


�l1 l2 l̄

0 0 0
�� l1 l2 l̄

m1 − m2 − m̄
� , �B10�

where the relation

� la lb lc

ma mb mc
� = �− 1�la+lb+lc� la lc lb

ma mc mb
�

is applied and l1+ l2+ l �or l1+ l2+ l̄� should be even and
m+m2−m1 �or m1−m2− m̄� should be zero.38,39 We can ex-

ploit the property of the 3j symbols in Eq. �B10� to obtain

�
m1m2

�− 1�m̄+m2−m1� l1 l2 l

− m1 m2 m
�� l1 l2 l̄

− m1 m2 m̄
� =

�ll̄�mm̄

2l + 1
.

Therefore, Eq. �B10� is simplified to

�
m1m2

�Yl1m1
�Ylm�Yl2m2

���Yl1m1
�Yl̄m̄�Yl2m2

���

=
�2l1 + 1��2l2 + 1�

4	
�l1 l2 l

0 0 0
�2

�ll̄�mm̄,

and we acquire

� d3r�v�r,r��P�r�,r�;��

= A �
lmnn�n̄

�
l1n1

occ

�
l2n2

unocc

Clnn�jl�klnr�Ylm
� �
,��jl�kln̄r��Ylm�
�,���



2

R3�jl+1�kln̄R��2Jn�n1n2

ll1l2 Jn̄n1n2

l̄l1l2



�2l1 + 1��2l2 + 1�

2l + 1
�l1 l2 l

0 0 0
�2

W���l2,n2

l1,n1

. �B11�

In the calculation, the Dirac delta function is also ex-
panded in terms of the spherical Bessel functions and spheri-
cal harmonics

��r − r�� = �
lmn

2

R3�jl+1�klnR��2 jl�klnr�jl�kln̄r��


Ylm
� �
,��Ylm�
�,����nn̄.

Consequently, the elements of DM can be expressed as Eq.
�11�, and are independent of the quantum number m.
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