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We use an electronic Mach-Zehnder interferometer to explore the nonequilibrium coherence of the electron
waves within the edge states that form in the integral quantum-Hall-effect device. The visibility of the inter-
ference as a function of bias voltage and transmission probabilities of the mirrors, which are realized by
quantum point contacts, reveals an unexpected asymmetry at finite bias when the transmission probability T of
the mirror at the input of the interferometer is varied between 0 and 100%, while the transmission probability
of the other mirror at the output is kept fixed. This can lead to the surprising result of an increasing magnitude
of interference with increasing bias voltage for certain values of T. A detailed analysis for various transmission
probabilities and different directions of the magnetic field demonstrates that this effect is not related to the
transmission characteristics of a single-quantum point contact but is an inherent property of the Mach-Zehnder
interferometer with edge states.
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I. INTRODUCTION

Interferometers, such as the Mach-Zehnder interferometer
�MZI�,1,2 play a decisive role in the foundation of physics.
They allow to assess and quantify the wave nature of light
and matter by probing the complex amplitude of the field.3

The most simple interferometers are so-called two-path in-
terferometers, of which the MZI �Fig. 1� is a particular sym-
metric one.1 Two-path interferometers employ a well-
collimated incident beam of light or matter wave generated
by source 1, which is then split by a partially transmitting
mirror A �beam splitter� with transmission probability TA and
reflection probability RA=1−TA into two partial beams. After
following two different paths in space, the partial beams are
recollected together by a second half mirror B forming two
output beams that are measured at detectors 2 and 3. Due to
the particle conservation, the two detectors measure comple-
mentary intensities. It therefore suffices to consider one de-
tector signal. In case of a fully coherent classical wave with
frequency �, the measured intensity of the output beam is a
periodic function of the difference � in propagation time
along the two paths. In the ideal case, the intensity oscillates
between zero and a maximum value, in which case one refers
to a visibility of 100%.

In recent years, interferometers with a low number of
channels have been implemented in nanoelectronic devices
lithographically fabricated into high-mobility two-
dimensional electron-gas systems.4 In particular, MZIs �Ref.
5� were realized along these lines.6–18 The two partial beams
are either defined by structuring two paths6–10 or by using the
edge states11–18 that form in a strong magnetic field in the
integer quantum-Hall regime.19–22 In the former approach, it
is difficult to realize a single-quantum channel because of
residual backscattering at defects induced, for example, by
etching. In contrast, in a strong magnetic field, backscatter-
ing is suppressed leading to the formation of chiral edge
states. The number of occupied edge states can easily be
controlled through the magnetic field. In high-mobility
samples of moderate densities, one can even approach a

single spin-polarized channel. Edge states as electron beams
have the additional advantage that ideal tunable mirrors can
be fabricated using quantum point contacts �QPCs�.23,24 In
these electronic interferometers, the visibility can be mea-
sured by sweeping the phase difference with the aid of the
Aharonov-Bohm flux � which can be changed either by a
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FIG. 1. �Color online� �a� Illustration of a MZI with mirrors A
and B, which are characterized by their transmission probabilities
TA and TB. In the electronic version, a potential Vmg at the modu-
lation gate changes the area enclosed by the two partial beams,
leading to a phase modulation through the Aharonov-Bohm effect.
�b� Experimental implementation of the MZI in a two-dimensional
electron gas. The inner Ohmic contact and the two metallic split
gates which define QPC A and B are connected via free-standing
bridges. Of the two edge states i and ii, only the outer one i is
partitioned. The inner edge state ii is fully reflected at the two
QPCs. �c� Due to the consequent constructive and destructive inter-
ference, the current intensities I2,3 at the detector contacts 2 and 3
oscillate as a function of Vmg. We measure the differential transmis-
sion probability dI2

i /dI1
i of the current in the outer edge state i and

define the visibility � as its peak-to-peak modulation as indicated by
the solid lines in �c�. The dashed lines give an indication for the
typical measurement error. �d� Time dependence of the phase of the
oscillations.
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small variation in the magnetic field or by a variation in the
area enclosed by the two paths employing an electrostatic
modulation gate Vmg.

Previous experiments of the electronic MZI concentrated
either on the energy dependence of the visibility of a sym-
metric interferometer �TA=TB=0.5� or on the visibility in
linear response for various transmission probabilities. Here,
we report on the dependence on TA,B and energy.

In an interaction-free model, the total transmission prob-
ability T21�dI2 /dI1 of the MZI consists of two terms:25 an
interference term that depends on the relative phase and a
phase-averaged mean transmission probability �T21� given by
TATB+RARB. In the fully coherent case and without dephas-
ing, the amplitude of the interference term is given by

T̂21 = 2�TARATBRB. �1�

We define the visibility � by the full swing of the interfer-

ence signal, i.e., �=2T̂21 �see Fig. 1�c��. The visibility is
maximal if both mirrors have 50% transparency, i.e., TA
=TB=0.5. If one transmission probability is varied, � follows
a semicircle dependence.

Two basic symmetries of the visibility are contained in the
above equation �1�: on one hand, � is invariant if TA is ex-
changed with TB and, on the other hand, if TA is changed into
1−TA �or TB into 1−TB�. The former more obvious case
states that the outcome of the interference experiment does
not change if input and output are exchanged. This corre-
sponds to the time-reversal symmetry. The latter says that the
visibility is symmetric around a transmission of 50% for both
mirrors separately. Whereas the first symmetry is respected
in our experiment even at finite bias, we find the second one
to be violated. This symmetry breaking, as we will show
below, can lead to the remarkable result of an enhancement
of the visibility with increasing bias voltage. This is surpris-
ing because with increasing energy one would expect that the
number of inelastic-scattering channels increases, leading to
an enhanced dephasing and therefore reduced visibility. This
new feature contrast previous studies of the energy depen-
dence of the visibility which have always reported a decay of
the interference amplitude with energy �i.e., applied bias
voltage�.

II. EXPERIMENTAL

The electronic MZI is implemented in a high-mobility
two-dimensional electron gas that forms at the interface of a
GaAs /Ga0.7Al0.3As heterojunction 120 nm below the surface
with an electron density of 1.61011 cm−2 and a mobility of
170 m2 /Vs at 4.2 K without illumination. It is defined by
wet-chemical etching of a ring structure combined with two
QPCs formed by metallic split gates �Fig. 1�b��. Due to the
chiral nature of the edge states, one of the detector contact
lies inside the ring. This current at contact 3 is drained to
ground via a small central Ohmic contact. This Ohmic con-
tact as well as the two split gates are connected by freely
suspended bridges, which were realized with a two-layer re-
sist technique employing polymethyl methacrylate �PMMA�
as the bottom and PMMA-MA as the top layer.

The area A enclosed by the two partial beams, which each
have a length of 	15 �m, amounts to A	38 �m2 con-
ducted, the total quanta h /e. All measurements reported here
were carried out in a vertical magnetic field of B
= �3.55 T where two spin-polarized edge states are present
�filling factor 2�. Of the two edge states, denoted as i and ii
in Fig. 1�b�, we only vary the transmission of the outer edge
state, i.e., of channel i, which is the one closest to the sample
edge. The inner one is fully reflected at QPC A and B. A bias
modulation technique is applied to deduce the differential
transmission probability dI2 /dI1 or dI3 /dI1. A small ac
modulation Vac of 1 �V is superimposed on the dc voltage
Vdc and applied to the source contact 1. This contact then
injects the current �e2 /h�V into each of the two edge states,
where V=Vdc+Vac. The current at the detector 2 �or 3� is
measured over the voltage drop that forms across the detec-
tor contact and an additional Ohmic contact connected in
series. We then obtain the differential transmission dI2 /dI1 as
the ratio of the respective ac currents. In this relation and in
all following ones, we implicitly subtract the current due to
the inner edge state. Hence, I1− I3 refer in the following to
the currents in the outer edge state which we can tune by the
QPCs. A result is shown in Fig. 1�c� as a function of the
voltage Vmg on the modulation gate and in Fig. 1�d� in addi-
tion as a function of time. The gradual variation in the phase
with time at a rate of 
0.33	 /h reflects the decay of the
magnetic field of our magnet operated in persistent mode.
This results in a change in the magnetic flux � that threads
the interior of the MZI. Our magnetic field decays with
	18 �T /h, yielding a 2	 phase shift every 6 h. Jumps in
the phase are absent which indicates a good quality of the
heterostructure.

The peak-to-peak amplitude of the interference �the vis-
ibility� is extracted from the measured data dI2 /dI1, such as
the one shown in Fig. 1�c�, by a statistical method.16 The
data points of the oscillating differential current dI2 /dI1,
which was measured as a function of Vmg with equidistant
increments, were cast into a histogram. This histogram was
then fitted to the form expected from a sinusoidal depen-
dence for dI2 /dI1 on Vmg.

16 As a control, fast Fourier trans-
formation was employed as well. The visibility � of the co-
herent oscillations is in our experiments always smaller than
100% with a maximal visibility of 20% at the lowest tem-
perature of 35 mK. As a function of temperature 
, the vis-
ibility decays without an indication for saturation at the low-
est temperature �see Fig. 3�b��. The low-temperature decay
can be described by an exponential factor exp�−kB
	 /Ec�,25

where the characteristic energy term Ec amounts to 2.6 �eV,
corresponding to 30 mK. This value agrees within 1 order of
magnitude with other reports for similar MZ interferometers.
For example, Ji et al. found Ec	120 mK �Ref. 11� and
Litvin et al.14 reported Ec=210 mK.14 In the single-particle
interference model,25 the decay of the interference with tem-
perature is due to energy averaging over the temperature
window kBT, limiting the temporal coherence of the electron
source. In a two-path interferometer with a path-length dif-
ference of �L, a wave with energy E will acquire a phase
term in the interference signal given by E�L /�vD �vD is the
drift velocity�, so that Ec	�vD /�L. Drift velocity for edge
states in the quantum-Hall regime has typical values of
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104–5104 m /s.26 Using the value Ec deduced from the
experiment, this then results in �L=2.5, . . . ,12.5 �m. This
path-length difference is unreasonably large. The MZ inter-
ferometer has been carefully designed to have the same path
length on either arm. Taking the full arm length of only
15 �m, the estimated �L must be wrong. The reduced inter-
ference amplitude and strong temperature dependence are
therefore not caused by energy self-averaging17 but must be
due to another energy-dependent decoherence mechanism.
Such a mechanism may be provided by dephasing due to the
electron-electron interaction.5

III. MEASUREMENTS AND DISCUSSION

Because we intend to vary the transmission probability of
both QPCs and the dc bias voltage, the QPCs have to be
carefully characterized. In order to measure the transmission
characteristics of QPC A �B�, the other QPC B �A� is com-
pletely closed so that all current is reflected. The current at
contact 3 is then a measure of the transmission probability. In
Figs. 2�a�–2�c�, we present the differential transmission
probability TA,BªdI3 /dI1 of each individual QPC at differ-
ent bias voltages Vdc as a function of gate voltage VQPCA,B
applied to the QPCs. Whereas TA is energy independent, TB
reveals a resonance structure at VQPCB=−0.345 V. In the ex-
periments presented below, we varied the transmission prob-

abilities of both QPCs over a large range. Once both point
contacts are adjusted, the transmission probability of each
individual QPC cannot be measured anymore. We then only
have access to the mean total transmission probability �T21�
of the MZI between contacts 1 and 2 �or 1 and 3�. In Fig.
2�d�, we compare the measured mean transmission probabil-
ity �dI2 /dI1� �symbols� with the expected value �T21�
=TATB+RARB �solid curves� using the transmission and re-
flection coefficients TA,B and RA,B, experimentally deter-
mined before. The good agreement shows that we are able to
adjust the two QPCs independently in the closed interferom-
eter and even for Vdc�0.

In Fig. 3�a�, the peak-to-peak visibility � deduced from
the differential transmission probability in the outer edge
state dI2 /dI1 is shown as a function of the transmission prob-
ability of the first beam splitter at the entrance of the MZI,
defined by QPC A with QPC B fixed �TB=0.56� for different
dc bias voltages Vdc. According to the theory, � should be
proportional to �TARA=�TA�1−TA�. This dependence is
shown as a solid curve. Taking the error bar of the experi-
ment into account, a good agreement is found for the zero-
bias case. In the nonequilibrium case, for bias voltages Vdc
�10 �V a striking asymmetry appears. This asymmetry is
inconsistent with the relation ���TARA, which is symmetric
around 50% transmission. As compared to the equilibrium
values and for not too large bias voltages, the visibility in-
creases with Vdc for large TA values, whereas it always de-
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FIG. 2. �Color online� �a� Differential transmissions TA

=dI3 /dI1 of the outer edge state i through the QPC A with QPC B
fully reflective as a function of gate voltages VQPCA for different dc
bias voltages Vdc ranging between −40 to 40 �V in steps of
10 �V. The curves are offset for clarity. �b� Similar to �a� but TB

for QPC B as the variable and QPC A fully reflective. �c� Energy
dependence of the differential transmission TA of QPC A at VQPCA

=−0.65 V and TB of QPC B at VQPCB=−0.33 V. �d� The dots rep-
resent the measured total mean differential transmission �dI2 /dI1�
through the MZI as a function of dc bias voltage Vdc with the gate
voltage of QPC B fixed to VQPCB=−0.33 V and for four different
setting of QPC A corresponding to the transmissions TA=0.13, 0.5,
0.76, and 0.96. The solid lines are calculated values using the data
in �a� and �b�.
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function of temperature 
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for the characteristic energy scale Ec a value of 2.6 �eV corre-
sponding to 30 mK. �c� The dependence of the visibility on the dc
bias voltage Vdc scaled to the zero-bias value �0 for five different TA

values �TA=0.96, 0.71, 0.49, 0.34, and 0.13� and QPC B fixed as in
�a�. In the WB limit, the visibility first grows with increasing Vdc,
whereas it decays in the opposite case of WT. The curves in �a� and
�b� are guides for the eyes. �d� The phase evolution is visible in the
measured differential transmission through the MZI as function of
Vdc in the WB, WT, and an intermediate regime.
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cays for small ones. This is better visible in Fig. 3�c� which
shows the scaled visibility � /�0 �where �0 is the visibility at
Vdc=0� for five different settings of TA running from top to
bottom from the weak-backscattering �WB� limit in which
TA is large to the weak-tunneling �WT� limit in which TA is
small. In contrast to the WB limit, � /�0 first decays with
increasing �VDdc� to develop a side lobe appearing symmetri-
cally approximately at �30 �V on either bias side. The side
lobes are visible in all curves in Fig. 3�c� �open arrows�, as
well as in the grayscale phase image in Fig. 3�d�. Such a
dependence of � on Vdc, a central lobe accompanied by side
lobes, has been reported in several publications.12,14–16 In
some reports, only one pair of side lobe appears, whereas in
other studies several were observed. Though only one pair of
side lobe is clearly visible in Fig. 3�c�, the grayscale image in
Fig. 3�d� suggests the appearance of a second pair at
	50 �V. In addition, it has been reported that the phase of
the interference pattern in a MZI can jump by 	 on the
transition from one lobe to the other.12,15 Bias-induced
	-phase jumps where reported before in Aharanov-Bohm
rings with tunneling barriers27,28 and interpreted as the elec-
tric Aharanov-Bohm effect. Whereas the phase is seen in Fig.
3�d� to gradually evolve at small bias voltage, a more com-
plex curved pattern is present at larger bias voltages.28,29

However, in the WT limit, the lobe structure does not seem
to be accompanied by a phase jump of 	 as reported by
Neder et al.12,15 In contrast, clear phase jumps appear in the
WB limit as seen in Fig. 3�d� �filled arrow�. Generally, the
visibility dependence in the WB limit strongly contrasts the
WT one. In the former, � is enhanced for small bias voltages
above the equilibrium value. At larger bias voltages, � de-
cays displaying a weak modulation best visible in the gray
plot of Fig. 3�d�. The reversed dependence on Vdc for small
bias voltages in the two limits shows that these limits are
inequivalent in the MZI with edge states. This is an effect,
which one would not anticipate in a model in which the two
partial beams are equivalent and isolated from the environ-
ment. Before discussing the origin of this effect, we have to
prove that the effect is not induced by one of the QPC but is
a property of the interferometer.

The discovered asymmetry in the visibility is observed in
Fig. 3�a� as a function of the transmission probability TA of
QPC A, which is the first beam splitter at the entrance of the
interferometer. One could argue that this effect may be a
property of this particular quantum point contact. At first,
this seems unlikely because QPC A is the point contact that
shows a very smooth and energy-independent transition from
TA=0 to TA=1 �Fig. 2�a��. Second, we can revert the role of
the two QPCs by changing the direction through which the
current flows. This is achieved by switching the magnetic
field and placing the source at contact 2. We then measure
the differential transmission T12�dI1 /dI2 from contact 2 to
the drain contact 1, instead of T21. Now, QPC B is the first
beam splitter in the interferometer and QPC A the second
one. Hence, the asymmetry in � should show up if we now
vary QPC B. This is indeed the case as demonstrated in Fig.
4�a�. If, on the other hand, we vary the transmission prob-
ability of the second QPC, QPC A, a symmetric dependence
of � is found. This is shown in Fig. 4�b�.

Our results clearly show that the beam splitter at the en-
trance determines the asymmetry and that this is independent

on the global direction taken by the current through the in-
terferometer. Contrary to this asymmetry, the dependence on
the exit beam splitter reveals the well-known symmetric
semicircle dependence. This proves that the observed asym-
metric visibility dependence is a property of the interferom-
eter and not of one of the individual QPCs.

In order to understand this effect, we have to look for a
property that is different for the two partial beams. The first
beam splitter divides the incident beam into two portions that
propagate further along the two different paths. In the sche-
matics of Fig. 1�a�, the two paths are alike �except for the
modulation gate�. In the real device shown in Fig. 1�b�, the
two trajectories bear an additional difference which is evi-
dent if one recalls that we are working at filling factor 2. The
second inner edge state ii, which we have ignored in the
previous discussion, is differently occupied in arm a and b
�see the illustration in Fig. 5� �see also Fig. 3 of Ref. 30�. In
arm a, it is filled up to the potential V of the source contact,
i.e., it carries the full quantum current �e2 /h�V. In contrast, in
arm b it is kept at zero potential because contact 3 is con-

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
TA

TB=0.48

(a) (b)

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0
TB

TA=0.420 µV
10 µV
20 µV
30 µV
40 µV

0 µV
5 µV
10 µV
15 µV
20 µV
30 µV

vi
si
bi
lit
y

ν/
ν(
50
%
,V
D
C
=0

)

vi
si
bi
lit
y

ν/
ν(
50
%
,V
D
C
=0

)

FIG. 4. �Color online� �a� Visibility � normalized to the value
observed at TA,B=0.5 and Vdc=0 for different dc bias voltages �dif-
ferent labels� as a function of the transmission probability of QPC B
with QPC A fixed and vice versa in �b�. In these experiments, the
sign of the magnetic field was reversed as well as the role of source
and drain contacts. The dc bias voltage is now applied to contact 2,
while contact 1 is used to measure the current. The asymmetry
observed in Fig. 3�a� and the present figure �b� are determined by
the first QPC but not by the second one.

(a)

a

b

iiieV

WT

WB

source I1 A

B

2

3

1

drain

drain

(b)

(c)

FIG. 5. �Color online� �a� Illustration of the MZI showing the
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with filling up to eV, whereas the gray one has an intermediate
filling. Light gray indicates low filling. ��b� and �c�� display the
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gimes, respectively. See also Fig. 3 of Ref. 30.
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nected to ground. In terms of state occupation, there is an
asymmetry between the two arms. This asymmetry is small-
est in the WB limit, where on each arm one edge state is
filled up to V while the other remains “empty” �filled to zero
potential�. The asymmetry is largest in the opposite case of
WT. In arm b, both edge states are then filled closely to zero
potential whereas they are both filled to V in a. It is in this
regime in which the visibility is strongly suppressed, hence,
in which dephasing is large. The experiment therefore shows
that the pair of edge states is most strongly susceptible to
dephasing if their Fermi edges are close together. Because
dephasing can efficiently be mediated by electron-electron
interaction in a low-dimensional system, one could reason
that the two edge states have similar group velocities at simi-
lar filling, leading to similar charge-density wave excitations.
The coupling of such plasmonic charge excitation may
strongly influence the coherence in the interferometer.30,31

That the edge state is strongly coupled electrostatically is
reflected in the phase evolution. The phase in Fig. 3�d�
gradually shifts with bias voltage Vdc. This shifts amounts to
2	 for approximately 20 �V. We can understand this as an
electrostatic gating from the inner edge state onto the outer
one. The inner edge state ii in the outer arm a of the MZI is
also biased to Vdc and electrostatically influences the chemi-
cal potential in the outer edge state i, which is the one taking
directly part in the interference. The electrostatic phase is
then given by �2eVgateL /�vD, where Vgate equals Vdc, vD
=104−5104 m /s is the drift velocity,26 L=15 �m is the
arm length of the interferometer, and � is the gate-coupling
efficiency. With the measured values, our experiment is con-
sistent with �=0.14, . . . ,0.75 depending on the exact �but
unknown� drift velocity. Because of the close proximity of
the edge states, a large coupling is plausible. The strong elec-
tric coupling between the edge states may provide a channel
for dephasing as proposed by Levkivskyi and Sukhorukov.30

In their theory, the excitations are dipolar and charged edge
magnetoplasmons. This theory results in a dephasing rate
which is inversely proportional to the temperature 
, which
was confirmed recently.17 A similar dependence was also de-
rived for a single channel when screening was taken into
account in a self-consistent manner.5 In the latter model,
dephasing is caused by intrinsic phase fluctuations driven by
the thermal bath. A related concept of intrinsic dephasing in
a single channel has been put forward in two other papers
recently.32,33

While these theories provide a mechanism for the decay
of the measured visibility with 
 and bias voltage Vdc, we
also observe an increase in � as a function of Vdc for certain
settings of the QPCs. This can qualitatively be understood
using a simple argument. We assume in the following van-
ishing dephasing. The detector current in the outer edge state
I2 as a function of the bias voltage V can then be written as

I2�V� =
e2

h
V��T21�V�� + T̂21�V�cos��0 + �Vmg + �V�� , �2�

where �T21�V�� is the mean transmission, T21�V� is the inter-
ference amplitude, �0 is a static phase term, depending on

the Aharonov-Bohm flux, and � and � parameters that de-
scribe the coupling from the modulation gate and the inner
edge state onto the phase. With the previous notation �
=�2L /�vD=0.3��V�−1. Because we have measured the dif-
ferential transmission, we have to evaluate dI2 /dI1

= �h /e2���I2 /�V�. It contains two interference term: �T̂21

+V� T̂21 /�V�cos� . . . � and −V�T̂21V� sin� . . . �, resulting in a
visibility of

� = 2��T̂21 + V � T̂21/�V�2 + �T̂21V��2. �3�

Even for ideal beam splitters, for which T̂21 does not depend
on V, the visibility can increase with bias voltage V due to

the term T̂21V�. If we assume �T̂21 /�V=0 and compare the
zero-bias curvature of the � /�0�Vdc� in Fig. 3�c� �WB curve�
with Eq. �3�, we deduce for � a value of 0.15��m�−1 which is
in reasonable agreement with the value deduced from the
phase shift before, i.e., �=0.3��V�−1. If we add in addition
an exponential dephasing term with a dephasing rate propor-

tional to V,5,30 i.e., T̂21=T0 exp�−V /V��, the visibility at
small voltages V�V� will approximately follow 1−V /V�

+ �V��2 /2 and be dominated by the exponential decay for
V�V�. This shows that � can indeed grow for not too large
applied voltages provided that V� is large, i.e., V��2 /V�2.
What theory has to provide is the relation between channel
occupation determined by the mirror settings and the param-
eters � and V� to understand the peculiar asymmetry in ��TA�
of Fig. 3�a� and ��TB� of Fig. 4�a�.

IV. CONCLUSION

Mach-Zehnder interferometers were proposed as building
blocks for the realization of orbitally entangled states.34,35 In
order to prove the entanglement, however, one would need to
analyze a Bell inequality, for which the probability for two-
particle coincidences is expressed in terms of zero-frequency
current-noise correlators. Such measurements are performed
out of equilibrium and for many different transmission prob-
abilities of the quantum point contacts. An understanding of
the visibility at finite bias32,33 and for different transmission
probabilities is therefore crucial for future experiments along
this line. On its own, the observed intrinsic asymmetry in the
visibility of a MZI with edge states yields new insights in the
properties edge states, in particular, in their phase coherence
and mutual coupling. It would be interesting to see whether
the recent theories30,32,33 are able to reproduce the asymmet-
ric dependence of the visibility on the mirror setting at the
input of the MZI.
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