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We discuss transport experiments for various non-Abelian quantum Hall states, including the Read-Rezayi
series and a paired spin-singlet state. We analyze the signatures of the unique characters of these states on
Coulomb blockaded transport through large quantum dots. We show that the non-Abelian nature of the states
manifests itself through modulations in the spacings between Coulomb blockade peaks as a function of the area
of the dot. Even though the current flows only along the edge, these modulations vary with the number of
quasiholes that are localized in the bulk of the dot. We discuss the effect of relaxation of edge states on the
predicted Coulomb blockade patterns, and show that it may suppress the dependence on the number of bulk
quasiholes. We predict the form of the lowest-order interference term in a Fabry-Pérot interferometer for the
spin-singlet state. The result indicates that this interference term is suppressed for certain values of the quantum
numbers of the collective state of the bulk quasiholes, in agreement with previous findings for other clustered
states belonging to the Read-Rezayi series.
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I. INTRODUCTION

Probing exotic quantum statistics of particles is a long-
standing experimental challenge. In fractional quantum Hall-
effect systems, elementary excitations are expected to follow
fractional statistics. There, it is difficult to experimentally
distinguish the effects of Abelian fractional statistics from
the effects associated with the fractional charge attributed to
the same excitations. However, for states in which the statis-
tics is expected to be non-Abelian, it is predicted that once
the correct signature of this property is identified and mea-
sured, there will be no ambiguity in associating it with quan-
tum statistics. For this reason alone, it is worth making the
effort to explore the implication of non-Abelian statistics on
measurable quantities.

Non-Abelian statistics is a key ingredient in the design of
quantum gates for topologically protected qubits.1–4 Experi-
mental proof of the existence of non-Abelian anyons would
be a major step toward an implementation of topological
quantum computation.

Most suggested experiments aimed at probing non-
Abelian statistics in quantum Hall systems consider a system
designed to form a two-path interferometer. The path differ-
ence between two quasiparticle �or quasihole� trajectories
along the edge of the system forms a closed loop around a
part of the system. The electronic density is determined by
the positive background charge density and does not vary
with magnetic field. Hence, a small deviation in the external
applied magnetic field introduces quasiparticles or quasi-
holes �depending on whether the magnetic field is increased
or decreased�, localized by impurities, into the loop.5–9 As
the number of these quasiparticles/quasiholes, n, is varied,
the two-terminal conductance is found to show a strong n
dependence via an interference term. Other experiments6,10

considered tunneling of electrons into a large quantum dot
whose interior is in a gapped quantum Hall state, and pre-
dicted how the clustering property of the Read-Rezayi �RR�
states should influence Coulomb blockade peaks.

In this paper we have two goals. First, we extend the
discussion of transport through dots in quantum Hall states
belonging to the Read-Rezayi series and characterized by
Coulomb blockade. We particularly address the issue of the
different time scales involved in the experiment. The fastest
time scale is the time in which a current-carrying electron
traverses the dot, e / I. For these electrons the bulk of the dot
is inaccessible, and they occupy the lowest-energy state on
the edge. A much slower time scale is that in which the area
of the dot is varied. If this scale is slow enough, the electrons
that are added to the dot when its area is varied may make
use of bulk states. We assume, for concreteness, that the
magnetic field is tuned such that there are quasiholes local-
ized in the bulk, rather than quasiparticles. The internal bulk
states are then carried by these localized quasiholes. For that
to happen, however, weak coupling should exist between the
bulk quasiholes and the edges.

In previous discussions of Coulomb blockade measure-
ments in such an experiment,6,10 the hidden assumption was
that as the variation in the area adds electrons to the dot,
these added electrons make use only of states at the edge. In
the language of topological field theory �TFT�, the fusion
channel of all the quasihole operators in the bulk of the dot is
fixed at the beginning of the experiment, and does not
change as new electrons are added to the dot. In the present
paper we consider the possibility that as the area is slowly
varied, weak coupling of the bulk and the edge may allow
for the fusion channel to change when electrons are added, in
such a way that energy is minimized.

Second, we analyze the Fabry-Pérot setting in another
non-Abelian quantum Hall state, a �=4 /7 spin-singlet state,
whose experimental signatures have not been considered so
far. This state was suggested by Ardonne and Schoutens.11 It
is the first in a series of spin-singlet states with order-k clus-
tering, at filling fraction �= 2k

2k+3 . The k�1 states support
spinful quasihole excitations with non-Abelian statistics. For
the paired �k=2� state at �=4 /7, the quasiholes are Fi-
bonacci anyons.12 Experimentally, a spin transition for quan-
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tum Hall states around �=4 /7 has been observed in samples
with reduced Zeeman splitting,13 but this feature may also
indicate an unpolarized Abelian state of the Jain series.
Transport properties we analyze here may distinguish be-
tween the two candidate states. The fact that possible frac-
tional quantum Hall states in graphene are expected to be
spin singlet with respect to the pseudospin �valley� index14

provides additional motivation for studying non-Abelian sta-
tistics for spin-singlet states. In this paper we study Coulomb
blockade transport through a dot in the �=4 /7 non-Abelian
spin-singlet �NASS� state, with and without relaxation. We
also analyze the lowest-order interference in a Fabry-Pérot
interferometer and derive a characteristic suppression factor.

The paper is organized as follows. In Sec. II, we discuss
the experimental setup in which these experiments are to be
carried out. In Sec. III we discuss in short the general struc-
ture of the conformal field theories �CFTs� describing these
states. In Sec. IV we discuss in detail the formation of Cou-
lomb blockade peaks in the conductance through large quan-
tum dots in the RR states. In Sec. V we turn to implement the
same ideas to the spin-singlet state in order to predict the
result for the Coulomb blockade peaks. We also calculate the
interference term of the current in a two-path interferometer
for this state.

II. GENERAL CONSIDERATIONS

The Fabry-Pérot interferometer, sketched in Fig. 1, is a
Hall bar with two quantum point contacts �QPCs� introduc-
ing quasiparticle/quasihole tunneling from one edge to the
other. We deal with two opposite limits of this interferom-
eter: weak interedge backscattering, in which we look at in-
terference to lowest order, and strong interedge backscatter-
ing, where the interferometer becomes a quantum dot, whose
Coulomb blockade peaks we study.

As mentioned above, we shall always assume that there
are quasiholes, rather than quasiparticles, that are localized in
the bulk. For the purpose of lowest-order interference calcu-
lations, when one is also required to consider excitations on
the edge, we shall consider for convenience that the current
along the edge is also carried by quasiholes. Changing this
current to be of quasiparticles should not modify our results.

Lowest-order interference is observed when a single
quasihole does not tunnel between opposite edges more than
once. The tunneling process introduces a finite value for the
longitudinal conductance. The measured backscattered cur-
rent, injected from the left along the lower edge and col-
lected on the left at the upper edge, interferes only through
two trajectories: quasiholes entering from the left along the
lower edge either are being backscattered at the left QPC or
are transmitted at the left QPC and reflected from the right
one. The path difference between the two trajectories forms a
closed loop around the island confined between the contacts,
which may contain localized quasiholes in the bulk of the
sample. For the sake of discussing lowest-order interference,
we assume that there is no hopping of quasiholes between
the bulk and the edge.

The two trajectories sketched in Fig. 1 are associated with
two partial waves, ��L� and ��R�. While these partial waves
differ by global phases originating from the total magnetic
field through the island �due to the Aharonov-Bohm effect�,
their overlap also encodes information on the mutual statis-
tics of the quasiholes in the system. As mentioned in Sec. I,
this is attributed to the fact that the path difference between
the two trajectories of the edge quasiholes forms a closed
loop encircling localized quasiholes. Altogether, the back-
scattered current will be of the form

Ibs � �tL�2 + �tR�2 + 2 Re�tL
�tR��L��R�� . �1�

It is the overlap ��L ��R� that we calculate below.
In the limit of strong backscattering �Fig. 2�, when the

two point contacts on either side of the island are almost
closed, the number of electrons in the dot confined between
them is quantized to an integer. Quasihole or quasiparticle
tunneling into and out of this region is forbidden, and the
only way to transport charge through it is by tunneling of
electrons. Low-voltage low-temperature conductance
through the dot is suppressed due to charging energy, except
at “Coulomb blockade peaks,” when the ground-state energy
of the dot with Ne electrons is degenerate with its ground-
state energy with Ne+1 electrons. Coulomb blockade peaks
may be probed by measuring the conductance through the
dot as a function of a magnetic field B and the dot’s area S,
since a variation in S with fixed Ne violates charge neutrality
with the positive background.10 Peaks in the conductance

FIG. 1. Setup for an interference experiment. The gray region is
a gapped quantum Hall fluid. Two possible tunneling paths for an
incoming edge quasihole are marked. There are n quasiholes local-
ized in the area between the two quantum point contacts.

FIG. 2. Fabry-Pérot interferometer in the limit of strong quasi-
hole backscattering. Transport through the dot is done via electron
�e� tunneling. The area S of the dot may be varied using a side
modulation gate.
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appear for those values of the area S and magnetic field B for
which the equation

E�Ne,S,B� = E�Ne + 1,S,B� �2�

is satisfied for some integer Ne representing the total number
of electrons inside the dot.

The quantum Hall liquid is largely gapped, with two ex-
ceptions: the edge and the internal degrees of freedom of the
bulk quasiholes. As we will review below, the state of the
internal degrees of freedom of the bulk quasiholes deter-
mines the spectrum of the edge, which determines, in turn,
the position of the Coulomb peaks.

In Ref. 10, Coulomb blockade peaks were mapped for
large dots in a quantum Hall state of the RR series �= k

k+2 ,
under the assumption that the state of the bulk quasiholes is
frozen. For a clean large �Ne�1� dot in a metallic state at
zero magnetic field and dots in the integer and Abelian frac-
tional quantum Hall states, the area spacings between con-
secutive Coulomb blockade peaks is �S=e /n0, the area oc-
cupied by one electron. In contrast, for the RR series the
Coulomb blockade peaks’ location as a function of the area
at a fixed magnetic field �i.e., a fixed number of localized
bulk quasiholes, n� was found to depend on B. While the
average spacing between peaks remains e /n0, the presence of
non-Abelian quasiholes in the bulk causes the peaks to bunch
into groups, where the number of peaks in each group de-
pends on k and on n.

The edge energies of the non-Abelian quantum Hall states
we discuss in this paper are stored in a bosonic charged edge
mode �a chiral Luttinger liquid� and one or several neutral
edge modes. With Ne=0 defined to be the number of elec-
trons for a dot with area S0, the energy associated with the
charge mode for Ne electrons on the edge is10

Ec�Ne� =
	vc

�L
�Ne − �

B0�S − S0�

0

	2

, �3�

where 
0 is the magnetic flux quantum. The magnetic field
B=B0 is that in which there are no quasiholes in the bulk, �
is the filling fraction of the partially filled topmost Landau
level, vc is the velocity of the charged edge mode, and L is
the perimeter of the quantum dot �we take �=1�. For Abelian
Laughlin states, where there is only a single bosonic mode,
Eq. �2� reduces to Ec�Ne�=Ec�Ne+1�, and the area separation
�S between its solutions for consecutive values of Ne is
�S=e /n0, where n0 is the charge density inside the dot. The
value of �S in this case is independent of the magnetic field.
For non-Abelian states, this is not the case. Below, we focus
on the contribution of the neutral mode, and add the charge
contribution �3� at the final stage.

The assumptions underlying the calculation performed in
Ref. 10 were that the magnetic field, and therefore the num-
ber of quasiholes, is fixed at the beginning of the experiment,
and that the dot is relaxed into its ground state. It was also
assumed that the initial number of electrons inside the dot
was divisible by k, such that all electrons are clustered in the
bulk of the dot and the occupation of the electron states of
the edge is zero. Then, with a fixed number of quasiholes in

the bulk, the area is varied fast enough such that there is no
time for the electrons to relax onto states with lower energies
that may be available.

Here, we allow the initial number of electrons to have any
integer value. For concreteness we assume that the dot has
no bulk quasiholes at the beginning of the experiment. The
number of electrons then dictates the number of edge modes
that are initially occupied. Shifting the magnetic field creates
a fixed number of quasiholes in the bulk, whose fusion chan-
nel is determined by energetic considerations we explain in
detail later on. The process of introducing quasiholes into the
bulk is done slowly enough for the edge and the bulk to
equilibrate. Finally, once the number of quasiholes and their
fusion channel are determined, we move on to consider what
happens when the area of the dot is varied.

In our analysis we consider the implications of varying
the area slowly enough such that the state of the bulk quasi-
holes may change adiabatically. As the area of the dot grows,
more electrons are added to the dot. In the absence of edge-
bulk coupling, the state of the bulk quasiholes does not
change, and the added electrons affect only the state of the
edge. With bulk-edge coupling, tunneling of neutral modes
between the edge and the bulk quasiholes may change the
state of the bulk quasiholes.

We may envision both elastic and inelastic bulk-edge cou-
plings. In the former, a tunnel coupling allows for the hop-
ping of a neutral particle �whose properties are to be de-
scribed below15,16� between the bulk and the edge. In the
latter, this hopping is accompanied by an energy transfer to
an outside thermal bath, e.g., by an emission of a phonon.
The latter is thus also an irreversible relaxation mechanism
that allows the system to cool. Quantitative estimates of
these two types of couplings are not possible at our present
level of understanding of the microscopy of the samples and
the involved quantum Hall states. Both are, however, bound
to exist to some level. In this work we study in detail the
process involving energy relaxation. We also discuss qualita-
tively the effect of the first process for the particular case of
�=5 /2.

The following argument may illuminate the way the state
of the bulk quasiholes affects the spectrum of the edge: con-
sider a sphere in a RR state with Ne electrons that are all
clustered in clusters of k electrons. Assume that the sphere
has n quasiparticles and n quasiholes, which are localized by
impurities away from one another. The ground state is then
degenerate, with the degeneracy being exponential in n �for
large n�. Topologically, each quasiparticle/quasihole is
equivalent to a puncture in the sphere. Now imagine bringing
the n quasiparticles close together, i.e., fusing together n of
the holes pierced in the sphere. The proximity of the quasi-
particles to one another lifts the degeneracy, and the way it is
lifted is determined by the state to which the n quasiparticles
fuse. This system is topologically equivalent to the system
we are interested in, a disk that has n quasiholes localized in
its bulk.

The energies appearing on both sides of Eq. �2� belong to
the spectrum of the edge theory. The main challenge in ob-
taining the spectrum for non-Abelian states is to construct
the part of it that follows from the addition of a parafermion
theory to that of the chiral boson contributing the charging
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energy �3�. In Sec. III, we describe briefly and most gener-
ally what is the relation between parafermionic field theories
and the quantum Hall effect, and who are the main players in
these theories. When discussing a particular quantum Hall
state, either one that belongs to the RR series or the spin-
singlet state, we will first specialize the discussion to the
parafermionic CFT relevant to it and review its properties.
We will single out the parafermion used to construct the
electron operator, and explain how the construction of the
Hilbert space is done and the spectrum is found. Dwelling on
the details of the parafermionic CFT is also crucial in order
to understand the calculation of the interference term of Eq.
�1�, as some of the phases of the two partial waves interfer-
ing are contributed by fields in this parafermionic theory.

III. CFT DESCRIPTION OF QUANTUM HALL
STATES

CFTs are used in several different contexts regarding
quantum Hall systems. Trial many-body wave functions for
single Landau-level fractional quantum Hall states are cre-
ated from CFTs �in D=2+0 dimensions� as correlators of
fields representing different particles in the system.12,17–19

Starting from chiral boson theories, one constructs Abelian
fractional quantum Hall wave functions such as those in the
Laughlin series. Including parafermionic field theories leads
to wave functions for non-Abelian quantum Hall states.
While explicit closed-form expressions are available for RR
states for general k �see Refs. 12, 18, and 20�, not all physi-
cal properties are easily explored on the basis of these wave
functions alone. Excitations at the edge of a quantum Hall
droplet are described by the same CFTs, now viewed in D
=1+1 dimensions.

A theoretical construction of the paired quantum Hall
state at filling factor of 1/2 was originally proposed in the
context of CFT, and is easily understood in that language.17

The theoretical construction of a wave function for this state
involves the Z2 theory, also known as the Ising CFT. The use
of this CFT yields the Pfaffian wave function, implying that
the gapped state of the bulk is similar to that of a px+ ipy
superconductor in the weak-pairing phase.21 Therefore, this
state is thought of as a superconductor, a condensate of Coo-
per pairs of composite fermions.

The field taken from the Z2 theory and used to define the
electron operator for the 1/2 state is a neutral fermion, and in
fact represents the composite fermion. For members of the
RR series with a higher value of k, this composite fermion is
replaced by a composite anyon, and the operator taken from
the Zk theory is called a parafermion �which no longer obeys
fermionic statistics�. In that case, the gapped state of the bulk
is thought of as a condensation of clusters of such anyons.
The size of the clusters is determined by the minimal number
of such parafermions which may be combined into an effec-
tive boson, which then Bose-condense. For the Zk theory this
number is k. The equivalent statement in the language of
CFT is that a parafermionic CFT at level k can be used to
describe a state in which k electrons form a cluster. This is
because the fusion rules of this parafermion theory always
imply that k copies of the fundamental field used to define

the electron operator fuse to the identity operator.
Since they were first theoretically constructed using para-

fermion CFTs, these same CFTs have remained the main
available theoretical tool used to explore various properties
of quantum Hall clustered states other than the Moore-Read
state. While the Moore-Read state may be conveniently ex-
plored using the theory of superconductivity, no analogous
description exists for other clustered states.

A general parafermionic theory22 is a coset model
Gk /U�1��, where Gk is a simple affine Lie algebra of rank �.
The fields are labeled �


�, where both � and 
 are weights of
the simple Lie algebra G. These fields are subject to some
restrictions and identifications, and we will specify them
when dealing with a specific parafermion theory below. The
conformal dimension of these fields is given by

h

� =

� · �� + 2��
2�k + g�

−

 · 


2k
+ n


�, �4�

where 2� is the sum of the positive roots of the Lie algebra
G, and the scalar product � · � is with respect to the quadratic
form matrix �for more details see Ref. 23�. The integer n


� is
equal to the grade of the representation of the current algebra
in which �


� appears.22

The parafermion field is denoted by ��, and belongs to
the set of fields ��

0 , where � is a root, and the vector 0 is the
vacuum representation. The operator product expansion
�OPE� of a parafermion and a field �


� is given by

���z��

��0� = 


m=−�

�

z−�·
/k−1−m�Am
�,
�


���0� . �5�

Note that the product of roots � ·
 is with respect to the
quadratic form matrix. The modes Am

� obey generalized com-
mutation relations.

IV. READ-REZAYI STATES AND Zk PARAFERMIONS

Consider a two-dimensional electron gas �2DEG� experi-
encing one of the plateaus belonging to the RR series. When
the magnetic field is varied by one flux quantum, k quasi-
holes appear; hence the flux associated with a single quasi-
hole is


0

k . Combined with the fact that the filling factor is
k / �k+2�, this implies that quasiholes for RR states have
charge e

k+2 . In order to fully describe the edge of the RR
state, one must add a second field theory to that of the chiral
boson, a CFT known as Zk parafermions.24,25 In this theory
the algebra Gk is SU�2�k of rank �=1, and therefore the
theory is equivalent to the coset model SU�2�k /U�1�.

The fields in the theory are labeled by two quantum num-
bers �m

l , with l� �0,1 , . . . ,k�. The integer m is known as the
Zk charge of the field �m

l and is defined modulo 2k. The
fields are subjected to the following identifications: �m

l

=�m+2k
l =�m−k

k−l and l+m=0 mod 2.
The creation operators of both electrons and quasiholes in

the bulk are products of two factors. The first is a vertex
operator, ei���z�, that accounts for the flux and the charge
associated with the electron ��=
�k+2� /k�, and with the
quasihole ��=1 /
k�k+2��. �This vertex operator is sufficient
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for the description of Abelian states.26� The second factor is
one of the fields in the parafermionic theory. The electron
creation operator is given by �1ei
�k+2�/k�, where �1=�2

0 is
one of the parafermionic currents, while the quasihole cre-
ation operator is �1ei
1/k�k+2��, where �1 is one of the para-
fermionic primary fields �see below�.

The parafermion �1 has the following operator product
expansion with a field of Zk charge q:

�1�z��q�0� = 

p=−�

�

z−p−1−q/kA�1+q�/k+p�q�0� . �6�

The fields A�1+q�/k+p�q�0� have Zk charge q+2. Similarly, the
mode expansion of the parafermion �1

†=�k−1 is given by

�1
†�z��q�0� = 


p=−�

�

z−p−1−q/kA�1−q�/k+p
† �q�0� , �7�

and the field A�1−q�/k+p
† �q�0� has Zk charge q−2.

The different modes of the field �1,

A�1+q�/k+p =
1

2	i
� dz�1�z�zq/k+p, �8�

obey generalized commutation relations, which may be
found by evaluating the integral

1

�2	i�2��
0

dz,�
0

dw��1�z�zq/k+��1�w�wq/k+��z − w�2/k,

where � and � are integers. These commutation relations
take the form



��0

c����A�3+q�/k+�−�A�1+q�/k+�+� − A�3+q�/k+�−�A�1+q�/k+�+�� = 0

�9�

�when acting on a field with charge q�, where c���=���
−2 /k� /� !��−2 /k�. The same method can be used to obtain
expressions for the generalized commutation relation be-
tween the different modes A† of �1

†, and between the A†’s and
A’s.24,25

The parafermionic primary fields �l
l are defined by the

condition

A�1+��/k+p�l
l = A�1−��/k+p+1

† �l
l = 0 for p � 0. �10�

The primary fields are usually denoted �l and referred to as
spin fields. Their conformal dimension is given by

hl =
l�k − l�

2k�k + 2�
. �11�

Each of these fields generates a series of fields �m
l by appli-

cations of the modes A of the parafermion �1, and the modes
A† of the parafermion �1

†. The conformal dimension of the
field �m

l is given by

hm
l = hl +

�l − m��l + m�
4k

for − l � m � l ,

hm
l = hl +

�m − l��2k − l − m�
4k

for l � m � 2k − l .

�12�

The fusion rules for the parafermionic CFT are24,25

�m�

l� � �m�

l� = 

l�=�l�−l��

min�l�+l�,2k−l�−l��

�m�+m�

l� . �13�

The OPE is given by

�m�

l� �z��m�

l� �w� = 

l�

C����z − w��h�m�+m�

l� �w� , �14�

where the fields appearing on the right-hand side are deter-
mined by Eq. �13�, C���’s are constants, and �h=hm�+m�

l�

−hm�

l� −hm�

l� . As a consequence of that relation, when a field
�m�

l� goes around a field �m�

l� and their fusion is to a field
�m�+m�

l� , the phase generated is 2	�h.

A. Coulomb blockade for Read-Rezayi states

To determine the parafermionic part of the ground-state
energy for a dot with electrons on the edge, we need to
construct a basis of states for the parafermion theory and
extract from it the lowest-lying energy state with 0� j�k
parafermions. Such a basis was constructed using the modes
of the fundamental parafermion �1 in Ref. 27 �see also Refs.
28 and 29�, and used in Ref. 10. A general state with j para-
fermions of the type �1 is of the form

A−pj+�2j+q−1�/kA−pj−1+�2j+q−3�/k ¯ A−p1+�1+q�/k��q� , �15�

where the pi are integers, and ��0�= �0�. This state is an
eigenstate of the Hamiltonian with energy

E�j,q� = hq − 

i=0

j−1
q + 1 + 2i

k
+ 


i=1

j

pi = hq −
j�j + q�

k
+ 


i=1

j

pi

�16�

in units of
2	vn

L , where vn is the velocity of the neutral modes
as they propagate along the edge. Since we are looking for
the lowest-energy state, the integers pi are chosen such that
the state has the lowest possible energy, and is not a null
state. The conditions are that pi=1 for i�k−q and pi=2 for
i�k−q. In order to obtain these conditions one has to use
the generalized commutation relations given in Eq. �9�; see
Ref. 27 for details. The lowest energy for given values of j
and q is therefore given by

E��j,q� = hq + �
j�k − j − q�

k
for j � k − q

�k − j��j + q − k�
k

for j � k − q .�
�17�

It is easy to see that for particular values of q and j, the
energy is simply the conformal dimension of the field which
is the result of the fusion product of �q and j copies of the
parafermion �1. Also, since
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�q+2j
q = A−1+�2j+q−1�/kA−1+�2j+q−3�/k ¯ A−1+�1+q�/k�q

q,

�18�

for j=k−q the energy E��k−q ,q�=hq, i.e., the same as the
conformal dimension of the highest-weight state. This is be-
cause �q+2�k−q�

q =�k−q
k−q=�k−q, and the conformal dimension of

the spin field �Eq. �11�� is invariant under the substitution l
→k− l.

We now turn to a description of the experimental proce-
dure. First, we characterize the state of the dot containing a
quantum Hall droplet at the beginning of the experiment,
when the magnetic field is set to some constant value, the
number of electrons has some quantized value, the area of
the dot is fixed, and the dot is relaxed to its ground state.

For the edge of a quantum Hall system, the charge q of
the highest-weight state of the edge theory is determined by
the number of quasiholes in the bulk and the total number of
electrons in the dot, as we will show below. Whether or not
it stays fixed throughout the experiment �as the area is var-
ied� depends on the rate at which the area is varied. This
issue and its influence on the outcome of the experiment will
be discussed at later stage.

Let us start with a dot where the number of electrons is
divisible by k. By setting the magnetic field to a certain value
for which the filling factor is a bit less than k / �k+2�, quasi-
holes may be introduced into the bulk, while their counter-
parts of opposite charge and topological charge are intro-
duced onto the edge. The contribution of the charged part of
the edge quasiparticles influences the boundary conditions of
the chiral boson theory.10 The parafermionic part of the edge
will be taken from the fusion product of n copies of the field
�k−1, the spin field that makes the edge quasiparticles.

The bulk quasiholes may have several fusion channels as
dictated by Eq. �13�. According to the fusion channel �bulk
of the bulk quasiholes, i.e., of n copies of the field �1, the
fusion channel �edge of the n copies of �k−1 on the edge will
be fixed by the requirement that �bulk��edge�1, and by the
requirement of energy minimization. We now explain how to
determine which fusion channel will ultimately be selected.

For a particular value of the magnetic field, the number of
localized quasiholes is fixed. Therefore the bulk has a single
quantized value of Zk charge which is equal to n mod k. This
value of the Zk charge may correspond to several fusion
channels of the parafermionic part of the quasihole operators.
Had the system with localized quasiholes been infinite with
no edge, all fusion channels of the bulk quasiholes would
have been degenerate in energy. This is the essential ingre-
dient which causes these quasiholes to have non-Abelian
statistics.17,18 The presence of the edge and the excitations
living on it will lift the degeneracy of these fusion channels.
The reason is that while all possible fusion channels of a
particular number of quasiholes have the same Zk charge,
different fusion channels correspond to different highest-
weight states with different initial occupations of parafermi-
ons on the edge, and therefore have different energies.

Let us consider for clarity the example of Z3 parafermi-
ons, assumed to describe the quantum Hall state at filling
factor �=12 /5. In this parafermionic theory there are two
parafermions, �2

0=�1 and �4
0=�2, and two parafermionic

primary fields, �1
1=�1 and �2

2=�2. We denote �3
1=�0

2=�.
The possible Zk charge of the bulk is 0, 1, or 2.

Suppose that the number of quasiholes in the bulk is 3m
+1, where m is some integer. Then, the possible fusion chan-
nels of these quasiholes are

��1�3m+1 � �2 + �1. �19�

Accordingly, the two fusion channels of the edge are �1 and
�2. The two possible edge states in this case are therefore

A−2/3�0�, ��2� , �20�

with E�=2 /3 and E�=1 /15 �in units of 2	vn /L�, respec-
tively. If the initial edge state of the dot is set by energy
considerations, then the fusion channel of the bulk quasi-
holes will be �1. It is easy to check that if there are 3m+2
quasiholes in the bulk, the fusion channel of the bulk will be
�2, resulting in the lowest-energy state ��1� on the edge.

For a general value of k, the lowest energy of the dot will
be achieved when the edge has the lowest possible energy,
under the restriction that the Zk charge of the edge state is
k− ñ, where we write ñ��n�k�n mod k. The unique edge
state fulfilling this requirement is the highest-weight state
��k−ñ�. Therefore, the requirement that the dot is totally re-
laxed into its ground state sets the fusion channel of the bulk
quasiholes to be �bulk=�ñ.

If the initial number of electrons in the dot, Ne, is not
divisible by k, and in the absence of bulk quasiholes, there
will be a number s of parafermion modes occupying edge
states, and the lowest energy of the dot will depend also on s.
In the background of a RR quantum Hall state, an additional
electron is represented by a bulk operator carrying a parafer-
mion field �1. For the complete system to maintain zero
topological charge, this implies the presence of a correspond-
ing dual field, �1

†=�k−1, on the edge. For a total of Ne elec-
trons, the edge Zk charge will be 2�−Ne�k, as can be seen by
adding the Zk charges of the �k−1 modes that come with
every additional electron. Note that it is always possible to
construct states using only modes of �1, due to the relation
�1

†=�k−1���1�k−1. For example, a state with a single occu-
pied mode of �1

† is equivalent to an edge state of form �15�
with j=k−1 occupied modes of �1. Therefore, the number of
occupied edge modes of the field �1 will be s= �−Ne�k.

As the magnetic field is slightly shifted, quasiholes are
introduced into the bulk. The lowest possible energy of the
edge will then be equal to the smallest conformal dimension
of the field which is a result of the fusion product of s para-
fermions of the type �1 and n copies of the field �k−1, with n
being the number of localized quasiholes. This lowest energy
is then the smallest conformal dimension of a field with
charge �2s−n�k.

The lowest conformal dimension of a field with a given Zk
charge always belongs to the parafermionic primary field of
that charge. Therefore, the lowest energy of a dot with n bulk
quasiholes and s parafermions on the edge is h�2s − n�k

. If the
system is assumed to be initially relaxed into its absolute
ground state, then the fusion channel of the bulk will be such
that all parafermionic fields on the edge will fuse to ��2s − n�k

.
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Again, let us consider an example from Z3 parafermions.
Suppose that the number of quasiholes in the bulk is 3m, and
the number of electrons in the dot is 3j+1, where j and m are
integers. The Zk charge contributed to the edge due to the
presence of the extra bulk electron is 2�−Ne�k=4 correspond-
ing to the two fields �1 and �2. Using this fact, we find that
the two possible edge states are

A0A−2/3�0�, ��1� , �21�

with energies E=2 /3 and E=1 /15, respectively. Therefore,
the second state is energetically favorable. Indeed we see that
the lowest-energy edge state is associated with the spin field
of charge �2s−n�k=1. The fusion channel of the 3m quasi-
holes in the bulk in this case will be set to �.

We conclude that the presence of a number of electrons in
the dot which is not divisible by k at the beginning of the
experiment influences the fusion channel of the bulk quasi-
holes. It sets the highest-weight state on which parafermionic
modes act.

We now turn to consider the course of the experiment.
Once the initial value of q is set according to the initial
occupation of modes on the edge and the number of bulk
quasiholes, the area is varied. As an electron tunnels into the
dot, the occupation of parafermion modes on the edge
changes, but we assume that the electron does not couple to
any bulk modes. While the initial state of the dot was a
highest-weight state with charge q= �2s−n�k, and therefore
had the lowest possible energy, bringing the next electron
into the dot results in the edge state A�1−q�/k

† ��q� with charge
q−2. This is not necessarily the state of lowest possible en-
ergy for this charge, since the lowest possible energy is the
conformal dimension of �q−2, and A�1−q�/k

† �q is not necessar-
ily equal to �q−2.

For the system to relax into the ground state after a
change in the area of the dot makes an electron tunnel into or
out of the dot, it has to change the fusion channel of the bulk
quasiholes, and the fusion channel of the n copies of �k−1 on
the edge. Since before the electron tunneled the fusion of the
parafermionic fields on the edge was

��1�s��k−1�n � ��2s − n�k
�22�

and, thus, that of the spin fields on the edge was

��k−1�n � ��2s − n�k−2s
�2s − n�k ,

the lowest energy for an edge with one extra electron is
obtained when

�k−1��1�s��k−1�n � ��1�s−1��k−1�n � ��2�s − 1� − n�k
, �23�

i.e., the fusion channel of the spin fields on the edge should
be

��k−1�n � ��2�s − 1� − n�k+2�s−1�
�2�s − 1� − n�k .

Here, we assumed that the relaxation of the edge has to take
place only through a change in the fusion channel of the
quasiholes. This assumption amounts to assuming that no
excitation with nontrivial Zk charge can tunnel between the
bulk and the edge. This point will be further discussed in
Sec. IV A 2.

Whether the fusion channel of the spin fields on the edge
�and therefore of the quasiholes in the bulk� changes every
time the change in the dot’s area leads to a change in the
number of electrons is a question of time scales. We now
turn to examine the two limits, that of fast variation in the
area of the dot where we do not allow the edge to relax by
changing the fusion channel of the quasiholes, and that of a
slow variation in the area.

1. Zero bulk-edge relaxation

If the area of the dot is varied fast with respect to the time
scale dictated by this relaxation mechanism, then the fusion
channel of the bulk quasiholes will remain fixed throughout
the experiment. In this case, as the area of the dot is varied,
Coulomb blockade peaks are observed when Eq. �2� with
E�Ne ,S ,B�=Ec�Ne ,S�+E��Ne ,q� and q= �2s−n�k is satisfied.
The spacings between Coulomb blockade peaks is easily cal-
culated using Eq. �2� which assumes the form

�S =
e

n0
+

eL�

2n0	vc
�E��Ne + 2� − 2E��Ne + 1� + E��Ne�� .

�24�

The pattern of Coulomb blockade peaks may be described as
follows. If q�0, the peaks bunch into alternating groups of q
and k−q peaks. The spacing that separates peaks within a
group is again given by

�S1 =
e

n0
�1 − �

vn

vc

2

k
	 , �25�

while the spacing that separates two consecutive groups is

�S2 =
e

n0
�1 + �

vn

vc
�1 −

2

k
	� . �26�

If q=0, the peaks bunch into groups of k. The spacing that
separates peaks within the group is again given by Eq. �25�,
while the spacing between two consecutive groups is

�S2 =
e

n0
�1 + �

vn

vc
�2 −

2

k
	� . �27�

The periodicity of the peaks is always k. However, if k is
even, the peak structure may also be periodic with a period
of k /2, provided that q=k /2. For concreteness, the pattern is
schematically sketched in Fig. 3 for k=4.

2. Coulomb blockade in the presence of bulk-edge relaxation

If the area of the dot is varied slowly with respect to the
relaxation rate, then each electron has time to relax onto the
lowest-energy state by changing the fusion channel of the
edge quasiparticles and the bulk quasiholes. Each electron
entering the dot will occupy the first mode of �k−1 operating
on a highest-weight state, ����, which is dictated by the num-
ber of quasiholes in the bulk and the number of electrons Ne
that were inside the dot before the tunneling of the electron
took place. Therefore the energy �in units of 2	vn /L� of the
incoming electron is
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h�−2
� = h� +

� − 1

k
. �28�

The above expression is simply the conformal dimension of
the field which is the result of the fusion product of the
incoming parafermion field, �k−1, and the spin field �� acting
on the vacuum state. �Note that Eq. �28� is the correct ex-
pression for ��1; otherwise the restrictions in Eq. �12�
should be taken into account.� Now, by allowing the fusion
channel of the bulk quasiholes to change, the energy of the
edge state may be relaxed. Since the current Zk charge of the
edge is �−2, the fusion channel of the bulk quasihole is
expected to change such that the energy of the edge is h�−2.
�This means that the fusion product of the fields on the edge
changes to ��−2.�

In order to calculate the spacings between Coulomb
blockade peaks in this case, we use the form of Eq. �24�,
with a slight modification:

�S =
e

n0
+

eL�

2n0	vc
�E��Ne + 2� − E��Ne + 1� − E���Ne + 1�

+ E���Ne�� , �29�

where E��Ne� is the energy of the edge state of a dot con-
taining Ne electrons before it has a chance to decay, and
E���Ne� is the energy of the edge after the decay. For a par-
ticular value of ��2, these energies are given by

E��Ne + 2� =
2	vn

L
h�−4

�−2, E��Ne + 1� =
2	vn

L
h�−2

� ,

E���Ne + 1� =
2	vn

L
h�−2

�−2, E���Ne� =
2	vn

L
h�

�. �30�

Therefore the area spacing between two peaks is given again
by Eq. �25�. However, if the initial charge of the edge was
�=1,2, the spacing is given by Eq. �26�.

The pattern of peaks we predict will be as follows.
Bunching of peaks will still be observed for all the RR states
with k�3. However, the dependence of the pattern on the
number of quasiholes in the bulk vanishes. The periodicity of
this structure depends on k: if k is even, the periodicity is k /2
and the pattern is of groups of k /2 peaks, while for odd k the
periodicity is k, and the pattern is of alternating groups of
�k−1� /2 and �k+1� /2 peaks.30

For the case k=2, we find that when inelastic bulk-edge
relaxation is allowed, the Coulomb blockade pattern will be
the same as for Abelian fractional quantum Hall states, with
a constant spacing between peaks. This means that for slow
variation in the area of the dot, the even-odd effect predicted
in Ref. 6 is smeared out. This smearing is a consequence of
the parafermionic edge mode �which for k=2 is a Majorana
fermion mode� staying unpopulated throughout the experi-
ment. Whenever the addition of an electron into the dot at-
tempts to populate this mode by a fermion, the bulk-edge
relaxation mechanism makes the fermion tunnel inelastically
into the bulk, where its presence does not involve any energy
cost. It is important to stress, as we discuss in greater detail
in Sec. VI, that this smearing takes place only when the
bulk-edge coupling induces inelastic relaxation, and the en-
ergy of the tunneling electron is dissipated away from the
electronic system.

For other RR states, a change in the fusion channel of the
bulk quasiholes, and as a result, also of the fields on the
edge, can be understood in terms of tunneling of neutral
particles as well. In this context, neutral means having no Zk
charge. The reason we allow for the bulk and the edge to
exchange only particles with zero Zk charge in order to relax
the energy of the edge is that fields that carry nontrivial Zk
charge are always accompanied by a vertex operator that
carries real electric charge. This physical assumption is re-
quired in order to keep the electron operator single valued
with respect to all possible excitations in the system. An
electric charge is not allowed to tunnel freely into the bulk
due to charging energy considerations.

Some more intuition on this relaxation process may be
gained from Fig. 4, where we plot the energy as a function of
the area. This graph, similarly as the graph presented in Fig.
3, shows a set of parabolas representing the energy of the dot
as a function of its area. However, this time, different pa-
rabolas for the same value of Ne, corresponding to two dif-
ferent fusion channels of the parafermion fields on the edge,
may participate in the process. Switching between two such
parabolas is done by exchanging a neutral particle between
the edge and the bulk. Note that only the crossing points
marked by a black dot are those that indicate the location of
a Coulomb peak. Other crossing points, such as the one de-
noted by S1, correspond to higher-order events we neglect,
since both tunneling of an electron into the dot and relax-
ation take place simultaneously. Naturally, these processes

(b)(a)

FIG. 3. �Color online� Schematic picture of the Coulomb block-
ade peaks for the k=4 RR state �we chose s=0 for convenience�.
The total energy of the dot, Ec+E�, is plotted for every value of n
and Ne. The parabolic shape of the energy curve is due to the form
of the charging energy, and the shift of the bottom of these parabo-
las is given by E�. Coulomb blockade peaks appear when two
neighboring parabolas intersect.
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are expected to occur on a longer time scale than relaxation
alone, and are therefore at this point excluded from the dis-
cussion.

V. NON-ABELIAN SPIN-SINGLET STATES

The non-Abelian spin-singlet �NASS� states at �= 2k
2k+3 are

close analogs of the clustered �parafermion� states of Read
and Rezayi.8 The main difference is the role of the electron-
spin degree of freedom: while the RR states describe spin-
polarized electrons, the spin-singlet states describe unpolar-
ized electrons which make up a state that is a singlet under
the spin SU�2� symmetry. The quasiholes of smallest frac-
tional charge �q= 1

2k+3 � are spin-1/2 particles. For k�1 they
carry non-Abelian statistics. In the same way that the RR
states generalize the �=1 /3 Laughlin state, the �= 2k

2k+3 spin-
singlet states can be thought of as generalizations of the Abe-
lian Halperin state at �=2 /5.

Clustering of electrons in spin-singlet states is rather dif-
ferent from and a bit more complicated than in the RR states.
The RR state at �=k / �k+2� can be thought of as a quantum
fluid made of clusters of k �spin-polarized� electrons. The
formation of such clusters is mirrored quite clearly in the
relation ��1�k�1 satisfied by the fundamental parafermion
�1. The spin-singlet states are associated with more compli-
cated parafermion theories, formally denoted as

SU�3�k /U�1�2. There are now two fundamental parafermions
�1 �associated to spin-up electrons� and �2 �spin down�. The
fusion rule ��1�2�k�1 indicates that the smallest cluster
with total spin zero is now composed of 2k electrons.

We will focus on the simplest example, which is the state
with k=2 with filling fraction �=4 /7. The SU�3�2 /U�1�2

parafermion theory has central charge c=6 /5. The k=2 state
is made up of clusters of four electrons rather than two, each
cluster having total spin zero. The CFT describing this state
employs fields that are products of free-boson vertex opera-
tors and parafermionic fields. There are now two fundamen-
tal bosons: �c corresponding to charge and �s giving the spin
degrees of freedom. The parafermionic fields are again the
source of the non-Abelian statistics of the quasiparticles.

For the SU�3�2 /U�1�2 parafermionic theory, the parafer-
mionic charge is a two-component vector, and each field in
the theory is labeled by two vectors, �


�=��
1,
2�
��1,�2�. The iden-

tification rules for the fields in this case are12

��
1,
2�
��1,�2� � ��
1+4,
2−2�

��1,�2� , ��
1,
2�
��1,�2� � ��
1−2,
2+4�

��1,�2� ,

��
1,
2�
��1,�2� � ��
1+2,
2�

�2−�1−�2,�2�, ��
1,
2�
��1,�2� � ��
1,
2+2�

��1,2−�1−�2�.

�31�

Due to these identifications, the parafermion theory has eight
fields, which we label in accordance with the notation of Ref.
12,

1 = ��0,0�
�0,0�, �1 = ��2,−1�

�0,0� , �2 = ��−1,2�
�0,0� , �12 = ��1,1�

�0,0�,

�↓ = ��2,−1�
�1,1� , �↑ = ��−1,2�

�1,1� , �3 = ��1,1�
�1,1�, � = ��0,0�

�1,1�.

�32�

These fields obey the fusion rules presented in Table I. Their
conformal dimensions are

h� = 1
2 , h� = 1

10, h� = 3
5 . �33�

We write �� = ��c ,�s�, where �c and �s are bosonic fields.
Using the notation

�� ↑ =
1

2� 1

7

,1	, �� ↓ =
1

2� 1

7

,− 1	, �� 3 = � 1

7

,0	 ,

the three quasihole operators are

Vqh
↑ = �↑e

i�� ↑·�� , Vqh
↓ = �↓e

i�� ↓·�� , Vqh
0 = �3ei�� 3·�� , �34�

corresponding to a spin-up quasihole with charge of 1/7, a
spin-down quasihole with charge of 1/7, and a spinless quasi-
hole with charge of 2/7, respectively. The operators creating
the two types of spinful electrons in the system are

Vel
↑ = �1ei�
7/4�c+1/2�s�, Vel

↓ = �2ei�
7/4�c−1/2�s�. �35�

Given this form of the electron operators, it is evident
from the fusion rules that it takes four electrons to create a
cluster with zero spin, since �1��2�1.

A. Coulomb blockade regime

As we have mentioned above, the field theory describing
the dynamical edge modes of the spin-singlet state at �

FIG. 4. Schematic description of bulk-edge relaxation for the
k=3 RR state. Every parabola on this graph represents the charging
energy as a function of the area of the dot for a given number of
electrons in the dot. The shift at the bottom of these parabolas is the
part of the energy of the edge contributed by the parafermions. The
initial state of the edge in this example is the vacuum state. Cross-
ing points between neighboring parabolas that correspond to
electron-tunneling events are marked by a black dot. The thick
black curve represents the energy of the edge for any given value of
the area. Note that two parabolas centered around the same point
correspond to the same number of electrons in the dot, but to dif-
ferent fusion channels of the bulk quasiholes. A decay between two
parabolas is an exchange of an � field between the edge and the
bulk. We do not allow decay processes that require the tunneling
and the decay to occur simultaneously, as in the region between the
crossing points marked above S1 and S2.
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=4 /7 is a sum of three theories: two free chiral bosons and a
parafermionic field theory. The spectrum of the edge is there-
fore also made of three contributions,

E = Ec + Es + E�, �36�

where Ec labels the contribution of the charge boson �c, Es
labels the contribution of the spin boson �s, and E� is the
contribution from the parafermionic theory. The contribution
to the spectrum of the edge coming from the parafermions is
again calculated by constructing the Hilbert space of parafer-
mionic states, the set of highest-weight states on which cre-
ation modes of the parafermions �1 and �2 operate.

The mode expansion of the parafermion ������1,�2�
�0,0� is

given by

�� = 

m

z−m−1/2�m
���, �37�

where the mode indices m may be integer or half integer,
depending on boundary conditions of the parafermion set by
the field on which these parafermions act. For example,
when acting on the vacuum state, m�Z+1 /2, since the para-
fermion should obey periodic boundary conditions. When
acting on any other field, �


�, the boundary conditions can
easily be determined using the OPE between the two fields.

The charging energy as a function of the number of elec-
trons in the dot may be found using the same considerations
that were explained in Sec. II. It is given by Eq. �3�. The
energy cost associated with creating nonzero spin inside the
dot will, by analogy, have the form

Es =
vs

4	
� ��x�s�2dx =

	vs

4L
Ns

2, �38�

with Ns being the net number of unpaired spins on the edge.
We assume that the region outside the dot, the leads from

which electrons tunnel into and out of the dot, contains elec-
trons of both spins, and that both spins are equally available,
such that finding the lowest-energy state of j parafermions on
the edge is not constrained by availability of a certain type of
spin. Since the ground state of the dot is a spin singlet,
breaking “spin neutrality” must cost a certain amount of en-
ergy, and this energy cost given by Eq. �38� will influence the
order in which electrons enter the dot.

Using the same argument we used in Sec. IV A, we now
turn to construct the lowest-lying energy states of the para-

fermion theory. This time, however, we must take into ac-
count the spin of the incoming electron in order to determine
the order in which the parafermion modes are applied to the
highest-weight state. While the charging energy is unavoid-
able, the other two components of the energy may compete
with each other. We now turn to evaluate a particular ex-
ample in order to demonstrate the effect of this competition.

We start from the case when the bulk of the dot does not
include any quasiholes �n=0�. The fusion rules and the re-
quirement that the ground state of the dot is a spin singlet
imply that the electrons cluster into groups of four. If the
total number of electrons in the dot is not divisible by 4, the
remainder accumulates at the edge, occupying charge, spin,
and parafermionic modes. The parafermionic state of the
edge is then obtained by applying j parafermion operators to
the vacuum, with 0� j�3. For simplicity, we start from a
situation where the initial number of spin-up electrons, N↑

0, is
equal to the number of spin-down electrons, N↓

0, which is
even. Therefore the highest-weight state of the edge theory is
�0�, the vacuum state, and the initial number of occupied
edge modes is zero.

The first electron to tunnel into the dot will create nonzero
total spin inside it. Since the energy cost involved, Es
=	vs /4L, cannot be avoided and is the same for both types
of spins, we choose without loss of generality that this elec-
tron is a spin-up electron. The modes m of the parafermion
part of the electron operator, �1, will be half integer. There-
fore the state with one occupied parafermion mode is

�−1/2
�1� �0� , �39�

and the corresponding energy is E�=1 /2�2	vn /L�.
We now estimate the energy cost for the tunneling of the

second electron assuming that the first one was a spin-up
electron ��1�. If the second electron is a spin-up electron, we
will again need to pay energy for increasing the total spin of
the system. The boundary conditions on the �1 field are pe-
riodic. Therefore the parafermionic edge state will be

�1/2
�1��−1/2

�1� �0� , �40�

with E�=0 and Es=4�	vs /4L�.
On the other hand, if the second electron is a spin-down

electron, the spin of the system will be reduced back to zero.
This way, the energetic cost associated with spin polarization

TABLE I. Fusion rules of the parafermion and spin fields associated to the parafermion theory
SU�3�2 / �U�1��2.

� �↑ �↓ �3 � �1 �2 �12

�↑ 1+�

�↓ �12+�3 1+�

�3 �1+�↓ �2+�↑ 1+�

� �2+�↑ �1+�↓ �12+�3 1+�

�1 �3 � �↑ �↓ 1

�2 � �3 �↓ �↑ �12 1

�12 �↓ �↑ � �3 �2 �1 1
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is avoided. The boundary conditions on the �2 field are an-
tiperiodic, since �1 ·�2�z−1/2�12. Therefore the state will be

�0
�2��−1/2

�1� �0� , �41�

with E�=1 /2�2	vn /L�, and the energy due to spin is Es=0.
Comparing the two scenarios in which two electrons tun-

neled into the edge of the system, we find that in order to
determine which state has lower energy we must consider the
ratio between vn and vs. Bringing in a spin-down electron as
the second electron is an energetically favorable process as
long as vn /vs�1, while when vn /vs�1, the lowest energy
will correspond to a state of two electrons with the same
spin.

If vn /vs�1, then the state of three electrons on the edge
must correspond to

�0
�1��0

�2��−1/2
�1� �0� , �42�

with E�=1 /2�2	vn /L� and Es= �	vs /4L�. Finally, the fourth
electron entering the dot will have spin down, setting the
total spin of the dot back to zero. The parafermion state of
four parafermions is identified with the vacuum state.

Since the lowest energy of a state with j parafermions is
always given by the conformal dimension of the field which
is the result of the fusion product of all the parafermions, the
tunneling sequences can intuitively be described using a
simple diagram. The sequence corresponding to the case
vn /vs�1 can be represented diagrammatically as

1→
�1

�1→
�1

1→
�2

�2→
�2

1 . �43�

The parafermion above the arrow in the diagram is the para-
fermion added to the edge state, and the field at the tip of an
arrow is the result of the fusion product of the field at the
beginning of the arrow with that parafermion. The energies
are given by

E0 = Ec�Ne� ,

E1 = Ec�Ne + 1� +
	vn

L
+

	vs

4L
,

E2 = Ec�Ne + 2� +
	vs

L
,

E3 = Ec�Ne + 3� +
	vn

L
+

	vs

4L
. �44�

The sequences corresponding to the case vn /vs�1 are either

1→
�1

�1→
�2

�12→
�1

�2→
�2

1 , �45�

or alternatively

1→
�1

�1→
�2

�12→
�2

�1→
�1

1 . �46�

This time the energies are given by

E0 = Ec�Ne� ,

E1 = Ec�Ne + 1� +
	vn

L
+

	vs

4L
,

E2 = Ec�Ne + 2� +
	vn

L
,

E3 = Ec�Ne + 3� +
	vn

L
+

	vs

4L
. �47�

Of course, interchanging �1 with �2 in these diagrams leaves
the energies at each stage completely invariant.

Using Eqs. �3� and �2�, we may find the area, which ap-
pears in the expression for the charging energy, for which
transport through the dot is allowed. Then we may calculate
the area spacing between peaks. We find that the two se-
quences above correspond to two different Coulomb peak
structures. The first sequence corresponds to

�S1 =
e

n0
�1 + �

vs

4vc
− �

vn

vc
	 ,

�S2 =
e

n0
�1 − 3�

vs

4vc
+ �

vn

vc
	 ,

�S3 =
e

n0
�1 + �

vs

4vc
− �

vn

vc
	 ,

�S4 =
e

n0
�1 + �

vs

4vc
+ �

vn

vc
	 , �48�

while the second sequence corresponds to

�S1 =
e

n0
�1 − �

vs

4vc
−

1

2
�

vn

vc
	 ,

�S2 =
e

n0
�1 + �

vs

4vc
	 ,

�S3 =
e

n0
�1 − �

vs

4vc
−

1

2
�

vn

vc
	 ,

�S4 =
e

n0
�1 + �

vs

4vc
+ �

vn

vc
	 . �49�

These spacings repeat themselves as the area is varied. It is
obvious that they fluctuate around the value anticipated to
occur for the Abelian states, just as in the case of the RR
series.

It is instructive to compare the k=2 spin-singlet state to
the k=2 RR state �aka the Moore-Read state�. While both
states can be obtained as maximal density zero-energy eigen-
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state of the same “pairing” Hamiltonian,31 the periodicity in
the Coulomb blockade peak structure is different. For the
Moore-Read the maximal periodicity is 2, while for the spin-
singlet state we find a periodicity of 4, in agreement with the
physical picture where the state is built up from clusters hav-
ing four electrons each.

When n is nonzero, the requirement for spin neutrality
leads to N↑+n↑=N↓+n↓, where n↑�↓� denotes the number of
spin-up �-down� quasiholes and N↑�↓� denotes the number of
spin-up �-down� electrons. By the same considerations ap-
plied for the RR states, the fusion channel of the bulk quasi-
holes directly influences the fusion channel of the spin fields
on the edge, thus determining the highest-weight state on
which the modes of the parafermions act. Also, these fusion
channels at the beginning of the experiment are fixed such
that the edge has the lowest possible energy.

Looking at the fusion rules �Table I�, we find that the
fusion channel of the bulk quasiholes will be the same as the
fusion channel of the spin fields on the edge. Having an
initial number of spin-up electrons on the edge, given by
�N↑�2, or spin-down electrons, given by �N↓�2, will influence
both fusion channels.

Let us consider an example for concreteness. Suppose that
the possible fusion channels of quasiholes in the bulk are
�2+�↑. If �N↑�2= �N↓�2=0, the requirement that the edge has
the lowest possible energy fixes the fusion channel of the
edge to be �↑, since it has a lower conformal dimension.
However, if this is not the case, the fusion channel of the
bulk quasiholes may be �2, such that the edge is in the
vacuum state. This may occur when �N↑�2=0 but �N↓�2=1.

In general, there are four possible highest-weight states on
the edge: �0�, ��↑�, ��↓�, and ��3�, and it is difficult to pre-
dict how they correspond to the exact number of quasiholes
in the dot, and to the initial number of electrons on the edge,
as we have done for the RR states. This is true mostly be-
cause there may also be quasiholes of zero spin in the bulk
which do not contribute to the total spin, but may change the
possible fusion channel of the bulk �and therefore the one of
the edge�. Consequently, we study tunneling of electrons into
an edge characterized by each of these highest-weight states,
knowing that initially the total spin of the dot was zero, and
applying the same logic we applied for the vacuum state
above. The results are summarized in Table II.

If the system is allowed to relax into its ground state after
each tunneling event of an electron into the dot, i.e., the
fusion channel of the bulk quasiholes is allowed to change
when the new electron is added, the sequences appearing in
Table II will change whenever one of the fields in the chain
is not a primary field. Noting that, we realize that the se-
quences that may change are the ones starting with the iden-
tity field, and the second sequence constructed from the pri-
mary field ��3�, appearing last on Table II. When drawing the
new sequences we will denote a decay to a lower-energy
state �switching to a field with the same charge, but with
lower conformal dimension� by a dashed arrow.

Let us see how this generalization applies to the se-
quences that formally started with the identity operator. We
therefore start with the case where the fusion channel of the
bulk quasiholes is such that the initial state of the edge is
either 1 or �, and may switch between these two in order to

minimize the energy. This switching is again done via the
exchange of a neutral particle, as we discussed at the end of
Sec. IV A. In this case, the neutral particle is �. Before any
electron tunneling occurs, the state of the edge will be the
vacuum state, and therefore our sequence begins with the
identity field again. It will be, for example,

1→
�1

�1-- → �↓→
�2

�3→
�1

�↑→
�2

�-- → 1 �50�

for the limit in which the spin energy is the dominant energy
�vn /vs�1�. The energy cost for each of the tunneling elec-
trons and the energy of the edge after relaxation takes place
are again easily calculated using the conformal dimension of
the parafermionic fields as well as Eqs. �3� and �38�. Other
orderings of �1 and �2 that minimize the spin energy will
yield the same set of energies. Plugging these into Eq. �29�,
we then find that the set of spacings between peaks changes
from the one appearing in Eq. �48� to the following set:

�S1 =
e

n0
�1 + �

vs

4vc
	 ,

�S2 =
e

n0
�1 − �

vs

4vc
+

1

2
�

vn

vc
	 ,

�S3 =
e

n0
�1 + �

vs

4vc
	 ,

�S4 =
e

n0
�1 − �

vs

4vc
−

1

2
�

vn

vc
	 , �51�

which is slightly different but again corresponds to a period-
icity of 4 for the Coulomb blockade structure.

In the opposite limit where the energy associated with the
spin excitation is smaller, the sequence of fields will be

1→
�1

�1-- → �↓→
�2

�3→
�1

�↑→
�1

�3→
�2

�↓→
�2

�3→
�1

�↑→
�1

�3 ¯ ,

�52�

and so on. The above sequence shows that after the first
electron tunnels into the dot, the sequence turns out to be the
same as if the highest-weight state of the dot was ��3�, and
therefore the spacings will be the same as for that case �see
Table II�.

When the fusion channel of the bulk quasiholes is such
that the initial state of the edge is �3, and the spin energy is
the dominant one, the sequence of fields generalizes to

�3→
�1

�↑→
�2

�-- → 1→
�1

�1-- → �↓→
�2

�3. �53�

Note that this sequence is identical to sequence �50�, and
following from it is the same set of spacings given in Eq.
�51�.

In conclusion, we have found that depending on the
highest-weight state of the edge, the periodicity of the Cou-
lomb blockade peak pattern will be either 4 or 2. Also, in
contrast with the result we obtained for the k=2 RR state,
where the time scale on which the area is varied strongly
influenced the periodicity, we find that for the state at �
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=4 /7, while the spacings themselves are affected by the re-
laxation of the edge, the periodicity of the peak pattern re-
mains unaffected.

B. Lowest-order interference

In this section we find the interference term of Eq. �1�
when the bulk is at the �=4 /7 NASS state. We use the CFT
input detailed at the beginning of Sec. V.

Lowest-order interference for the RR series of states was
studied before in Ref. 8, and a general expression for the
interference term was obtained. The approach of Ref. 8 re-
lied on studying the properties of the modular S matrix rel-
evant for the parafermion and free-chiral-boson CFTs. For
convenience, in this section we shall refer to parafermionic
fields with a fusion product that may yield more than one
possible outcome as “non-Abelian” fields �those are the three
�’s and ��, and to those who always fuse to one field as
“Abelian” �the three �’s and 1�. As we will see, there will be

a crucial difference between the interference term in the case
where the fusion product of the bulk quasiholes results in a
non-Abelian or an Abelian filed. This is also true for the RR
states, as was demonstrated before in Refs. 6–9.

Every one of the n localized bulk quasiholes, and also the
quasiholes propagating along the edge, is either spin up, spin
down, or spinless, corresponding to the operators listed in
Eq. �34�. Again, we denote by n↑ the number of localized
quasiholes with spin up and by n↓ the number of localized
quasiholes with spin down. The number of localized spinless
quasiholes is denoted n3, such that n=n↑+n↓+n3.

The result of the fusion product of all the quasiholes lo-
calized in the bulk into a single field can be obtained by
fusing all the bosonic contributions into a single bosonic
operator, ei�1/2�(�n↑+n↓+2n3�/
7,n↑−n↓)·�� , and fusing all the spin
fields of the quasihole operators into a single parafermionic
field. The operator that is obtained represents the internal
state of the island between the two point contacts, and will
ultimately determine the form of the interference term we
wish to calculate.

TABLE II. Tunneling sequence for charge transport through a quantum dot in the �=4 /7 non-Abelian
spin-singlet quantum Hall state. In case that the highest-weight state is �0�, replacing �1 with �2 and vice
versa everywhere in the sequence yields the same set of energies.

Highest-weight state Tunneling sequence Energy spectrum Spacings Periodicity

�0� For vn /vs�1 E0=Ec�Ne� �S1= e
n0

�1+�
vs

4vc
−�

vn

vc
� 4

1→
�1

�1→
�1

1 E1=Ec�Ne+1�+
	vn

L +
	vs

4L �S2= e
n0

�1− 3
4�

vs

vc
+�

vn

vc
�

→
�2

�2→
�2

1 E2=Ec�Ne+2�+
	vs

L �S3= e
n0

�1+�
vs

4vc
−�

vn

vc
�

E3=Ec�Ne+3�+
	vn

L +
	vs

4L �S1= e
n0

�1+�
vs

4vc
+�

vn

vc
�

For vn /vs�1 E0=Ec�Ne� �S1= e
n0

�1−�
vs

4vc
− 1

2�
vn

vc
� 4

1→
�1

�1→
�2

�12 E1=Ec�Ne+1�+
	vn

L +
	vs

4L �S2= e
n0

�1+�
vs

4vc
�

→
�1�2�

�2�1� →
�2�1�

1 E2=Ec�Ne+2�+
	vn

L �S3= e
n0

�1−�
vs

4vc
− 1

2�
vn

vc
�

E3=Ec�Ne+3�+
	vn

L +
	vs

4L �S4= e
n0

�1+�
vs

4vc
+�

vn

vc
�

��↑� �↑→
�1

�3→
�2

�↓ E0=Ec�Ne�+ 1
10

2	vn

L �S1=�S3= e
n0

�1−�
vs

4vc
� 2

→
�2

�3→
�1

�↑ E1=Ec�Ne+1�+ 1
10

2	vn

L +
	vs

4L �S2=�S4= e
n0

�1+�
vs

4vc
�

E2=Ec�Ne+2�+ 1
10

2	vn

L

E3=Ec�Ne+3�+ 1
10

2	vn

L +
	vs

4L

��↓� �↓→
�2

�3→
�1

�↑ The same as above The same as above 2

→
�1

�3→
�2

�↓

��3� For vn /vs�1 E0=Ec�Ne�+ 1
10

2	vn

L �S1= e
n0

�1+�
vs

4vc
� 4

�3→
�1

�↑→
�1

�3 E1=Ec�Ne+1�+ 1
10

2	vn

L +
	vs

4L �S2= e
n0

�1− 3
4�

vs

vc
�

→
�2

�↓→
�2

�3 E2=Ec�Ne+2�+ 1
10

2	vn

L +
	vs

L �S3= e
n0

�1+�
vs

4vc
�

E3=Ec�Ne+3�+ 1
10

2	vn

L +
	vs

4L �S4= e
n0

�1+�
vs

4vc
�

For vn /vs�1 E0=Ec�Ne�+ 1
10

2	vn

L �S1= e
n0

�1−�
vs

4vc
+ 1

2�
vn

vc
� 4

�3→
�1

�↑→
�2

� E1=Ec�Ne+1�+ 1
10

2	vn

L +
	vs

4L �S2= e
n0

�1+�
vs

4vc
−�

vn

vc
�

→
�1

�↓→
�2

�3 E2=Ec�Ne+2�+ 3
5

2	vn

L �S3= e
n0

�1−�
vs

4vc
+ 1

2�
vn

vc
�

E3=Ec�Ne+3�+ 1
10

2	vn

L +
	vs

4L �S4= e
n0

�1+�
vs

4vc
�
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We assume here that the bulk quasiholes have a definite
fusion channel. Although in principle the fusion product of
all the spin fields has two possible outcomes, it was shown in
a previous work32 that the measurement procedure collapses
this superposition onto a particular fusion channel. We do not
elaborate on the collapse process here, but rather refer the
interested reader to Ref. 32 for more details.

The fusion product of n spin fields of different types may
have eight different results, due to the existence of eight
parafermionic fields of the SU�3�2 /U�1�2 coset. Accordingly,
the state of the island may be represented by eight different
operators. For fixed values of n↑, n↓, and n3, the state of the
island will be one of two fields, Abelian or non-Abelian ac-
cording to the fusion rules �Table I�.

We now study the interference between the two partial
waves ��L� and ��R� discussed in Sec. II, and examine how
different internal states of the dot affect them, hence influ-
encing the interference term of the backscattered current.
When the internal state of the island is represented by a
non-Abelian field, the fusion product of this field with an
incoming quasihole on the edge is a superposition of two
fields. To each of these we assign a state. We denote the two
states by �0� and �1�, referring to an Abelian and a non-
Abelian field correspondingly. For example, if there is only
one localized spin-up quasihole in the bulk, and the edge
quasihole also has spin up, the two spin fields of the type �↑
fuse as follows: �↑�↑�1+�. Therefore, we say that the sys-
tem is in a superposition state ���=a0�0�+a1�1�, with �a0�2
+ �a1�2=1. The state �0� corresponds to the Abelian field 1,
and the state �1� corresponds to the non-Abelian field �. Note
that the two partial waves ��L,R� describe the state of the n
localized quasiholes and the incoming edge quasihole.

The two partial waves can be written, using the above
notation, as follows:

��L� = a0�0� + a1�1� , �54�

��R� = �ei
Ra0�0� + a1�1��ei�+i
�+i
B. �55�

The phase 
B is contributed by the bosonic exponents carry-
ing the charge and the spin of the quasiholes. The origin of
the phases 
� and 
R lies in the conformal nature of the
parafermionic fields, and we explain how to determine them
below.

In case the parafermionic operator of the island is Abe-

lian, the coefficient a0 is zero, and ��R�= �1�ei�+i
�
A+i
B. �The

superscript A is added to 
� to indicate that the internal state
of the dot corresponds to an Abelian field.� In the case where
a0=0, the interference term contributed to the backscattered
current by the two partial waves, proportional to the real part
of the overlap ��L ��R�, is given by

cos�arg��L��R�A� = cos�� + 
�
A + 
B� . �56�

When the parafermionic operator of the island is non-
Abelian, the overlap is given by

��L��R�NA = �ei
R�a0�2 + �a1�2�ei�+i
�
NA+i
B. �57�

The ratio between the overlap in Eq. �56� and the overlap in
the case where the parafermionic operator of the island is
non-Abelian is given by

��L��R�NA

��L��R�A
= �ei
R�a0�2 + �a1�2�ei�
�

NA−
�
A� �58�

and will determine both the relative amplitude and the phase
shift between the two cases.

1. Determining the phases ��
A, ��

NA, �R, and �B

As was mentioned before, the fusion of n quasiholes re-
sults in a parafermion multiplied by a bosonic vertex opera-
tor of the form

ei�n↑�� ↑+n↓�� ↓+n3�� 3�·�� = ei�1/2�„�n↑+n↓+2n3�/
7,n↑−n↓…·�� . �59�

An incoming quasihole carries, in general, a bosonic factor
of the form ei�� ex·�� , with �� ex= ��c ,�s� being �↑, �↓, or �3. The
OPE of the two vertex operators is

ei�� ex·���z�ei�1/2�„�n↑+n↓+2n3�/
7,n↑−n↓…·���0�

� zf�n↑,n↓,n3�ei�1/2�„�n↑+n↓+2n3�/
7+2�c,n↑−n↓+2�s…·���0� ,

�60�

where

f�n↑,n↓,n3� =
1

2� �n↑ + n↓ + 2n3��c


7
+ �n↑ − n↓��s� .

Therefore,


B = 	� �n↑ + n↓ + 2n3��c


7
+ �n↑ − n↓��s� . �61�

The phases 
�
NA, 
�

A, and 
R all depend on the conformal
dimension of the parafermionic fields. We now demonstrate
how to calculate them for a particular example �we leave out
the bosonic part of the quasihole operators�. Suppose that the
fusion of n quasiholes on the island can result in one of the
following two parafermions: �2 or �↑. Suppose that the in-
coming edge quasihole has spin up. If the quasiholes on the
dot fused to the Abelian field �2, the OPE of the island’s
operator with the incoming quasiholes is

�2 · �↑ � zh�−h�−h�� . �62�

Therefore, the phase accumulated when the quasihole en-
circles the island is 
�

A =2	�h�−h�−h��=0.
If the n quasiholes in the dot fused to yield the non-

Abelian field �↑, the OPE of the island’s operator with the
incoming quasiholes is

�↑�↑ � z−2h�1 + zh�−2h�� = �z−h�1 + ��zh�−2h�. �63�

From the above equation we conclude that 
R=−2	h�

=−6	 /5, and 
�
NA=2	�h�−2h��=4	 /5.

2. Determining the values of �a0�2 and �a1�2

The coefficients �a0�2 and �a1�2 are the probabilities that
the quasihole encircling the island fuses with the localized
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bulk quasiholes into Abelian and non-Abelian fields, respec-
tively. In the general context of models for non-Abelian
anyons,32,33 the probability that two uncorrelated anyons a
and b fuse into a third anyon c is given by �see Ref. 33�

P�ab → c� = Nab
c dc

dadb
, �64�

where da, db, and dc are the quantum dimensions of the
anyons. The coefficient Nab

c is in general a non-negative in-
teger determined by the fusion rules, and indicates the num-
ber of different ways the anyons a and b can be combined to
form c. In our case it is either zero or one, depending on
whether the fusion rules allow a and b to fuse to c.

The quantum dimension is a parameter that controls the
rate at which the Hilbert space of a system of n anyons of a
certain type grows. For a large number of such anyons, the
number of states scales as dn. For Abelian particles d=1,
while non-Abelian particles have d�1.

The expression for the overlap between the two partial
waves ��L,R� can therefore be written as follows:

��L��R�NA =
1

dbulkdqh
�ei
R + d1�ei�+i
�

NA+i
B, �65�

where dbulk and dqh are the quantum dimensions of the bulk
and of the edge quasiholes, respectively. The quantum di-
mension d1 is that of the non-Abelian field that is the result
of the fusion product of both. Note that this expression is
exactly the expression for the monodromy matrix element
calculated in Ref. 32,

Mab =
1

dadb



c

Nab
c dce

2	i�sc−sa−sb�, �66�

where si is the scaling dimension of the relevant anyon. In
our case, a represents the edge quasihole and b represents the
composite made of a group of quasiholes in the bulk.

Taking for example the neutral part of the spin-up quasi-
hole �↑, we use the fusion rules to count how many states
there are for n such quasiholes:

�↑�↑ = 1 + � ,

�↑�↑�↑ = �2 + 2�↑,

�↑�↑�↑ = 21 + 3� ,

�↑�↑�↑�↑ = 3�2 + 5�↑ ¯ .

The number of states for n quasiholes is a Fibonacci number.
For a large value of n, this number scales as �n, where � is
the golden ratio.

Following the same considerations one finds that for the
SU�3�2 parafermionic fields, there are two values for the
quantum dimension: the quantum dimension of the Abelian
fields 1 and �i, is d=1, while that of the non-Abelian fields �
and �i is d=�. Therefore

�a1�2 =
1

�
, �a0�2 =

1

�2 . �67�

Plugging the values of 
R, 
�
NA, and 
�

A from the above
example into Eq. �58�, along with coefficients �67�, and us-
ing the fact that �=2 cos�	 /5�, we find

��L��R�NA

��L��R�A
= − �−2. �68�

From Eq. �68� we conclude that the interference term is sup-
pressed by a factor of �−2 when the parafermionic operator of
the island is non-Abelian.

It is straightforward to calculate ratio �58� for all other
possible operators of the island. The result always turns out
the same and is given by Eq. �68�. The interference term is
therefore

�− �−2�N
cos�� + 	
�n↑ + n↓ + 2n3��c


7
+ 	�n↑ − n↓��s + 
�

A	
= �− �−2�N
cos�� + 8	

�n↑ + n↓ + 2n3��c


7
	 . �69�

Here 
�
A =	�
1

bulk
2
qh+
2

bulk
1
qh� is 0 or 	 �up to 2	� depend-

ing on the specific Abelian field that may result from fusing
n bulk quasiholes. The vector �
1 ,
2� is given for each op-
erator in Eq. �32�, 
i

bulk are the components of the vector that
corresponds to the fusion product of the bulk quasiholes, and

i

qh are the components of the vector that corresponds to the
quasihole that tunnels across the point contact. The second
line of the equation is obtained from the first with some
algebra. The number N
 is either 0 or 1 depending on
whether the fusion product of the quasiholes on the dot was
an Abelian or a non-Abelian field. Equation �69� shows that
the damping factor that multiplies the interference term is the
same as the one predicted to appear for the k=3 RR state.
This is a manifestation of the so-called level-rank duality
between SU�3�2 and SU�2�3; see Ref. 31. This result agrees
with the one calculated using the modular S matrix34 in a
similar fashion to the calculation presented in Ref. 8 for
lowest-order interference in the RR series.

The above result is calculated without making any as-
sumptions on the nature of the edge quasiholes that tunnel
across the point contact, and is therefore general. However, it
is expected that the most prominent contribution to these
tunneling events will come from the quasihole with the low-
est conformal dimension. For that reason, one may expect
mostly spinless quasiholes to tunnel across the junction. The
interference term for these quasiparticle is given by Eq. �69�
with �c=1 /
7 and �s=0.

VI. SUMMARY

In this work we studied transport through a device known
as the two-point-contact �or the Fabry-Pérot� interferometer
formed using edge states of non-Abelian quantum Hall
phases. We have focused on the RR series at filling factor
�=2+ k

k+2 , and on one of the spin-singlet states that may be
appropriate to describe the plateau at filling factor of 4/7.

For the limit of strong quasihole backscattering at the two
point contacts, where the topmost partially filled level forms
a closed trajectory around the “island” formed between the
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point contacts, transport is characterized by a series of Cou-
lomb blockade peaks in the conductance as a function of the
area enclosed by this trajectory.

For the RR states we explained in detail the results ob-
tained in Ref. 10, and analyzed the effect of relaxation of the
edge states of the parafermionic theory into states with lower
energy by adjusting the fusion channel of the bulk quasi-
holes. We found that this relaxation, mediated by neutral
fields of the parafermion theory flowing between the bulk
and the edge, modifies the spacing between peaks. Without
relaxation, the Coulomb blockade pattern predicted10 is a
bunching of peaks into groups of n mod k and k−n mod k
peaks �where n is the number of quasiholes localized in the
bulk�. Therefore the periodicity of the peak structure is k,
unless k is even and n=k /2, in which case the periodicity is
k /2 �assuming, for convenience, that the initial number of
electrons in the dot was divisible by k�. When relaxation is
introduced between consecutive electron-tunneling events,
this structure changes such that the number of bulk quasi-
holes no longer influences the periodicity of the entire struc-
ture. The periodicity is k for odd k and k /2 for even k. For
the k=2 Moore-Read state, we predict that in the presence of
relaxation of Majorana fermions from the edge of the dot
into the bulk, the even-odd effect predicted in Ref. 6 will not
be observed. Therefore, for that state relaxation eliminates
the unique signature for non-Abelian statistics and cluster-
ing.

We would like to stress the difference between two time
scales relevant for the experiments we discuss here, that of
relaxation of the edge states which is discussed in the Cou-
lomb blockade context, and that of quasihole exchange be-
tween the bulk and the edge, which is neglected altogether.
The two scales are related to different mechanisms and are
generally very different. The first involves an exchange of
neutral particles between the edge and the bulk, and the sec-
ond involves tunneling of a charged particle �with both non-
zero Zk and electric charge�. The charging energy involved in
the latter is expected to make this time scale much longer
than the former. Hopping of quasiholes between the bulk and
the edge involves energy scales of the order of the bulk gap,
while relaxation of edge states via the exchange of neutral
modes involves an energy which is much smaller and scales
as L−1, where L is the perimeter of the dot. Little can be said
about these time scales quantitatively, since they crucially
depend on disorder in the sample, and in a way that is not
presently understood.

The microscopic mechanism which induces relaxation is
beyond the scope of this paper. Since at present there are
many fundamental aspects of the microscopic theory of non-
Abelian quantum Hall states that are not well understood, we
investigate the implication of such a mechanism on a phe-
nomenological level and provide a prediction that follows
from it. While not giving quantitative estimates, our paper
brings to light the possible effect of the time scales related to
these mechanisms on experiments in non-Abelian quantum
Hall states.

A few particular sentences are in order with respect to the
even-odd effect at �=5 /2, both because it is at present the
closest to experimental realization and because it stands out
as a special case in our analysis. We have found that in the

presence of an inelastic bulk-edge coupling that allows the
system to be at its ground state all throughout the experi-
ment, and in the presence of bulk quasiholes, the edge mode
stays unpopulated in the ground state for any number of
electrons in the dot. Thus, under this condition no even-odd
effect of the Coulomb blockade peaks will be observed.
However, we stress that the situation is different when the
bulk-edge coupling is elastic, as considered, for example, in
Refs. 15 and 16. In that case, the spectrum of the combined
bulk-edge system is shifted by the coupling. The coupling
introduces a time scale for a Majorana fermion to tunnel
back and forth between the edge and the bulk. As long as this
time scale is much longer than the time at which the Majo-
rana fermion encircles the dot, L /vn, the bulk-edge coupling
does not significantly affect the spectrum, and an even-odd
effect is to be observed.

For the spin-singlet state at �=4 /7 we have mapped the
location of the Coulomb blockade peaks as a function of the
area of the dot, and showed that it follows a periodicity of 2
or 4. Moreover, although the modulations from equal spac-
ings change when relaxation is introduced, the periodicity
remains unaffected.

One should also note another crucial difference between
the RR states and the spin-singlet state that may be observed
in such an experiment. The extent to which peaks are
bunched in the RR state is determined by the ratio of the
velocity of the neutral modes to that of the charged modes,
vn /vc, as they propagate along the edge. These velocities are
hard to determine. In the absence of Landau-level mixing
and for an infinitely sharp confining potential, dimensional
analysis determines that the interaction-induced velocity is,
up to a dimensionless number, e2 /��, with � being the di-
electric constant. The dimensionless number may be evalu-
ated only numerically, and one expects it to be larger for a
charged mode than for a neutral one. Indeed, recent numeri-
cal studies35 for �=5 /2 predict that the two velocities differ
by an order of magnitude. If that trend persists to RR states
of higher k, then the effect of bunching in the RR states may
be difficult to observe in experiment. In contrast, the size of
the modulations in the spacing between Coulomb blockade
peaks for the spin-singlet state is determined by two contri-
butions. The first is vn /vc, which may be small for this state
as well, and the second is vs /vc, the ratio between the veloc-
ity of the spin and charge excitations. If this ratio is not
small, then these modulations may still be observed. Note,
however, that in the extreme case of vs�vc, the periodicity
in some cases may seem to reduce from 4 to 2 �see Table II�.
Moreover, as we point out below, these modulations in the
spacings due to the spin degree of freedom may not be
unique for a non-Abelian state.

While it was shown before that Coulomb blockade peaks
are equally spaced for the Laughlin states, the case of other
Abelian quantum Hall states was not discussed �when the
parameter varied is the area of the dot, which keeps the num-
ber of bulk quasiholes fixed�. One may expect that for Abe-
lian hierarchy states peaks may not be equally spaced, since
the edge theory describing these states is made of several
chiral boson theories. However, we expect that the structure
and its periodicity in particular will not show dependence on
the number bulk quasiholes. Thus, several measurements at
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slightly different values of the magnetic field should in prin-
ciple distinguish an Abelian hierarchy state from a non-
Abelian one. For the spin-singlet state at �=4 /7 it may be
more difficult to distinguish such Abelian states from non-
Abelian ones, since modulation may still occur for vn=0 due
to spin. However, the periodicities of the peak structure pre-
dicted are different for negligible and non-negligible values
of vn /vc, and this will ultimately distinguish an Abelian state
from a non-Abelian one. The case of other Abelian states
may be slightly more complicated. For example, the 331
Halperin state may show bunching as well as a dependence
on the number of quasiholes.36

Finally, we considered lowest-order interference effects in
the Fabry-Pérot interferometer, and calculated the form of
the backscattered quasihole current through this device. For
the non-Abelian spin-singlet state we have found that inter-

ference will be suppressed by a damping factor that is equal
to the one obtained for the RR state with k=3 in Ref. 8. The
phase of the interference term has a rich structure, and is
influenced by the number of quasiholes localized in the bulk,
their total charge and spin, and the spin of the interfering
quasihole.
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