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Elastic stiffness and compliance tensor components, spontaneous polarization, piezoelectric constants, and
second-order nonlinear optical coefficients in the static limit, including the strain-free �clamped� and stress-free
�unclamped� electro-optic tensors, are calculated using the density functional perturbation theory approach for
Zn-IV-N2 compounds with IV= �Si,Ge,Sn� and compared with the corresponding values in III-N with III
= �Al,Ga, In�.
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I. INTRODUCTION

The Zn-IV-N2 compounds with the group-IV elements Si,
Ge, and Sn are a series of promising wide-band-gap semi-
conductors with estimated band gaps ranging from about 1 to
possibly as large as 5 eV.1–3 As is the case for their III-N
analogs, their relatively high ionicity implies that they are
also potentially interesting piezoelectric materials and, ac-
cording to their relatively low symmetry, should be pyroelec-
tric, i.e., possess a nonzero spontaneous polarization. Their
analogy with the II-IV-V2 chalcopyrites suggests that they
may also have interesting nonlinear optical properties. Al-
though second-order nonlinear coefficients are known to de-
crease with increasing band gap, certain applications such as
frequency doubling into the UV range require wide band
gaps.

In a recent series of papers, we have studied the structural
and phonon related properties of these materials.3–6 These
calculations were carried out using the linear response ap-
proach within the local density approximation �LDA� and a
pseudopotential plane wave method.7,8 This approach is
based on density functional perturbation theory �DFPT�. It
allows one to calculate first-order corrections to the Kohn-
Sham orbitals in response to perturbations, such as electric
field and atomic displacements. The latter enter in the study
of vibrational properties as reported earlier.3 Here, we con-
sider strain related properties, which correspond to perturba-
tions of the unit cell lattice vectors. The consistent treatment
of strains in DFPT is discussed by Hamann et al.9 and Wu et
al.10 From the first-order corrected wave functions, one can
obtain corrections to the total energy to third order.11 Elastic
constants are second derivatives of the total energy versus
strain and are thus readily available in this formalism.

The other quantities we consider here are related to polar-
ization, i.e., the derivative of the total energy versus a static
electric field. The piezoelectric effect is the strain derivative
of the polarization, i.e., a mixed second derivative of the
total energy versus electric field and strain. Since piezoelec-
tricity is closely related to spontaneous polarization, we also
consider the Berry-phase calculation of the spontaneous po-
larization in the absence of strain. By combining these two
quantities it is in principle possible to evaluate internal elec-
tric fields in quantum wells and surface charges induced on
interfaces between the materials in heterojunctions for vari-

ous strain states in which the latter may find themselves de-
pending on film thickness and growth procedures.

Second-order derivatives of the total energy versus elec-
tric field give the electrical susceptibility or high-frequency
dielectric constant and hence refractive index and were al-
ready presented in Ref. 3. Third-order derivatives of the en-
ergy versus electric field give second-order nonlinear optical
response. Here, we consider only the “static” limit, i.e., op-
tical frequencies well below the band gap, so we can take
derivatives versus static electric fields. In other words, they
do not include the region above the band gap where inter-
band transition effects come into play but only adiabatic re-
sponse to the electric field as can be obtained in a Berry-
phase calculation. At the same time we here consider high
frequencies with respect to vibrational frequencies so that the
lattice can be kept static. In other words, this gives the
second-order optical response as enters, for example, in
second-harmonic generation or sum and difference frequency
generation.

Another nonlinear optical property is the electro-optic or
Pockel’s effect. This gives the change in optical refractive
index in a truly static electric field. In that case, the effect of
lattice vibrations must be incorporated in the response. Even
though atomic vibrations are included, one must still distin-
guish “clamped” and “unclamped” values. The former means
a strain-free calculation in which the piezoelectric response
to the electric field is not included and the latter means a
stress-free situation in which the piezoresponse is included.
For details of these definitions, see Ref. 11.

In this paper, we present the results of first-principles cal-
culations of these properties using the method sketched
above and compare them with the values for the III-N semi-
conductors. At present, none of these quantities have been
measured for the Zn-IV-N2 materials. ZnSnN2 remains to be
synthesized and only a handful of papers have appeared on
the other two materials. The quantities calculated here may
be useful to evaluate the potential of these materials for fu-
ture applications and inspire renewed efforts for their crystal
and thin film growth.

II. COMPUTATIONAL DETAILS

The details of the computational method are the same as
in Ref. 3. All calculations are performed in the LDA. The
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DFPT in terms of electric field, strain, and internal atomic
coordinate displacements is implemented in the open-source
ABINIT package, which is used here. We use norm-
conserving Fritz-Haber pseudopotential,12 200 Ry plane-
wave energy cutoff, and 2�2�2 sampling of the Brillouin
zone. Zn 3d states are treated as valence electrons. Such a
high cutoff is required for the convergence of the strain re-
lated derivatives, which is found to be more sensitive to con-
vergence than the derivatives versus internal atomic dis-
placements as calculated in our previous work.3 Further for
the Berry-phase calculation of spontaneous polarization we
used a 4�4�4 k-point sampling.

The unclamped electro-optic tensor involves various
terms as discussed by Veithen et al.11 Among these is a term
corresponding to the derivative of the high-frequency dielec-
tric constant with respect to strain, i.e., the part of the dielec-
tric response not involving atomic displacements in the cell,

�d����R,��
d��,�

�
R0,�0

. �1�

Since the calculation of the latter by DFPT is not yet imple-
mented in the ABINIT code, we calculate it by a numerical
finite difference method. In other words, we simply evaluate
the high-frequency dielectric constant for two finite but small
strains to evaluate this derivative. This corresponds to a cal-
culation with frozen internal coordinates. The terms which
involve the relaxation of the internal coordinates were
worked out by Veithen et al. in terms of the Raman tensor
and the internal strain tensor and are all evaluated by DFPT
in the ABINIT approach and simply assembled here as de-
scribed by Veithen et al.11 to give the final values of the
Pockel’s effect.

III. RESULTS

A. Elastic and compliance tensors

Following the notation convention of the papers by Wu et
al.,13 we use Roman indices i , j , . . . for Voigt notation indices
�i=1. . .6� commonly used for second rank tensors and Greek
indices � ,	 , . . . for Cartesian components of electric fields.
The crystals we are studying have point group C2v �or mm2
in international crystallography notation�.

We start with the relaxed ion elastic stiffness tensor, given
in Table I. These are calculated under the assumption of fixed
�vanishing� electric field and give the stress �
i� response to
an imposed strain �� j�,


i = Cij� j , �2�

using summation convention. The only nonzero components
for the present symmetry are Cij, i=1,2 ,3, and Cii, i
=4,5 ,6. The present elastic constants are calculated by ob-
taining the clamped ion strain derivatives first and are then
corrected for the internal strain effects, i.e., the internal po-
sitions under strain are obtained by imposing zero force from
the knowledge of the mixed second derivatives of energy
versus strain and internal atomic coordinates, all of which are
obtained from perturbation theory.

In order to compare these values with wurtzite III-N, we
note that the same Cartesian axes apply with z along the c

axis, x along the a axis of wurtzite or orthorhombic material,
and y in the c plane and perpendicular to a. The only differ-
ence is that in hexagonal materials, C11=C22, C44=C55, and
C13=C23, whereas no such symmetry restrictions hold in the
orthorhombic system. We can indeed see that these relations
still hold approximately for the current materials, indicating
that their deviations from hexagonal wurtzite are relatively
small. Compared to AlN, GaN, and InN the elastic constants
are generally lower in ZnSiN2 and ZnGeN2 but higher in
ZnSnN2. We can also see that the differences between
ZnSiN2 and ZnGeN2 elastic constants are smaller than their
differences from ZnSnN2, which is clearly significantly
softer. This is also true for AlN and GaN compared to InN.

The corresponding compliance tensor S gives the strain
response to imposed stress again under fixed �vanishing�
electric field boundary conditions, �i=Sij
 j, and is listed in
Table II.

First, we note that for an orthorhombic material, the bulk
modulus B=−dp /d ln V=Vd2E /dV2 can be expressed as

B = 1
9 �C11 + C22 + C33 + 2C12 + 2C13 + 2C23� . �3�

This gives 221, 197, and 170 GPa for ZnSiN2, ZnGeN2, and
ZnSnN2. These values are in agreement with the values of
228, 197, and 184 GPa obtained by fitting an equation of
state to the relaxed energy versus volume calculations.3

TABLE I. Elastic constants Cij in Voigt notation in the units of
100 GPa=Mbar compared to the corresponding ones in the III-N.

Components ZnSiN2 ZnGeN2 ZnSnN2 AlNa GaN InN

C11 3.83 3.41 2.72 3.96 3.67 2.23

C22 4.08 3.58 2.90

C33 4.63 4.01 3.06 3.73 4.05 2.24

C44 1.04 0.86 0.64 1.16 0.95 0.48

C55 1.10 0.95 0.67

C66 1.24 1.05 0.74 1.29 1.16 0.54

C12 1.46 1.36 1.28 1.37 1.35 1.15

C13 1.17 1.03 1.00 1.08 1.03 0.92

C23 1.05 0.98 1.05

aValues for III-N are taken from Wright �Ref. 14�.

TABLE II. Relaxed ion compliance tensor S at fixed electric
field boundary condition in Voigt notation in units of Mbar−1.

Components ZnSiN2 ZnGeN2 ZnSnN2

S11 0.32 0.26 0.49

S22 0.29 0.23 0.46

S33 0.24 0.22 0.39

S44 0.96 0.89 1.56

S55 0.90 0.85 1.50

S66 0.80 0.62 1.34

S12 −0.099 −0.054 −0.179

S13 −0.057 −0.029 −0.099

S23 −0.041 −0.023 −0.098
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Single crystalline material is required to measure the elas-
tic stiffness constants. For the materials under consideration
here, only small crystals and polycrystalline material are
presently available. It is thus of interest to estimate the bulk
and shear moduli of polycrystalline forms of this material.
Two estimates are widely used: the Voigt average15 corre-
sponding to the assumption that the internal strain of an iso-
tropic aggregate of small crystals equals the externally im-
posed strain and the Reuss average16 in which the internal
stress is assumed to equal to externally imposed stress. The
isotropic elastic moduli of the polycrystalline aggregate cal-
culated from anisotropic single crystal elastic stiffness tensor
in Voigt and Reuss approximations represent the theoretical
maxima and minima.17 In the case of orthorhombic materi-
als, the Reuss shear and bulk moduli �GR and BR� and the
Voigt shear and bulk moduli �GV and BV� can be written as

GR = 15�4�S11 + S22 + S33 − S12 − S13 − S23�

+ 3�S44 + S55 + S66��−1, �4�

GV = 1
15�C11 + C22 + C33 − C12 − C13 − C23�

+ 1
5 �C44 + C55 + C66� , �5�

BR = ��S11 + S22 + S33� + 2�S12 + S13 + S23��−1, �6�

BV = 1
9 �C11 + C22 + C33 + 2C12 + 2C13 + 2C23� . �7�

Since the Voigt and Reuss isotropic averages of the bulk and
shear moduli represent an upper and lower boundaries, Hill18

suggested that the true value of the bulk and shear moduli of
polycrystalline aggregates should be approximately the
mathematical mean of the two values, B= �BR+BV� /2 and
G= �GR+GV� /2. Note that the Voigt expression for the bulk
modulus of an isotropic mixture is the same as we mentioned
above for an orthorhombic crystal under isotropic strain and
is thus in good agreement with direct calculations of the total
energy versus volume. With this value of B and G, we can
define the Young’s modulus Y = �9BG� / �3B+G� and the
Poisson’s ratio �= �3B−2G� / �6B−2G�. The ratio of B /G is
also of interest since it gives a qualitative measure of ductil-
ity: low G means low resistance to shear, hence ductility,
while low B means low resistance to fracture, hence brittle-
ness. The critical value separating brittle from ductile mate-
rials is about 1.75.17 These quantities are computed using the
calculated elastic and compliance tensor and tabulated in
Table III.

B. Spontaneous polarization and piezoelectric tensor

In this section we first present our results for the sponta-
neous polarization of these materials. By symmetry we ex-
pect the only nonzero component to be in the z direction
because the system has mirror planes perpendicular to x and
y but no symmetry relating +z with −z directions. Further-
more, we remind the reader that strictly speaking only
changes in spontaneous polarization under adiabatic transfor-
mations are uniquely defined. Nonetheless it is possible to
give a definition of spontaneous polarization as a bulk value

for a crystal of the appropriate low enough symmetry using a
Berry-phase calculation. The latter reduces to an integral
over k points across the Brillouin zone only, without the need
for an additional integral over the adiabatically varying pa-
rameter. The value of P obtained in this manner is defined
only within a quantum 2eR /�, where R is a lattice vector in
the direction of the polarization, � is the unit cell volume,
and the factor 2 is for spin degeneracy. Furthermore, as
pointed out by Vanderbilt and King-Smith,19 certain high-
symmetry structures can give a nonzero value with this defi-
nition. Relatedly, we here point out that for the wurtzite,
from which the present lattice structures are derived, there is
a symmetry operation connecting the atoms in the z=0 and
z=c /2 planes comprising the structure. As a result, the spon-
taneous polarization obtained by the Berry-phase formula
may differ from its “effective value” given below by a vector
2e�n+1 /4�c /�. This however plays no role in determining
interface charges at in-plane lattice-matched heterojunctions
because it only depends on the cross-sectional area A=� /c.

Suppose we wish to consider the surface charge at an
interface between ZnGeN2 and ZnSiN2. In general, the strain
state of either of the materials will depend on the layer thick-
nesses, the substrate they are grown on, and eventually even
the growth conditions. In the pseudomorphic case, for very
thin layers, it can in principle be determined by minimizing
the strain energy using the elastic constants but, in general,
misfit dislocations may relax the strain at high temperature
and the subsequent residual strain will then depend on the
thermal expansion coefficient differences. In any case, we
may first consider a lattice-matched junction and calculate
the polarization in each part as a sum of the spontaneous
polarizations for the unstrained crystal plus some piezoelec-
tric contribution. The charge at the interface is given by 

= n̂ ·�P with n̂ as the unit vector normal to the interface and
�P as the change in polarization. The spontaneous polariza-
tion here can omit any quanta related to e /A since the area is
the same on both sides and cancels out. Afterward, any fur-
ther strain changes related to misfit dislocation formation or
other strain relaxation can still be added by means of an
additional piezoelectric contribution. The values obtained for
the “effective spontaneous polarization” defined in this way
are given in Table IV in comparison with those in the III-N
materials as calculated by Bernardini et al.20

TABLE III. Various polycrystalline elastic moduli in units of
100 GPa and dimensionless Poisson ratio and B /G ratio.

Components ZnSiN2 ZnGeN2 ZnSnN2

GR 1.23 1.45 0.75

GV 1.26 1.08 0.77

BR 2.19 2.00 1.70

BV 2.21 1.97 1.70

G 1.245 1.265 0.76

B 2.20 1.985 1.70

Y 3.14 3.08 1.97

� 0.38 0.36 0.30

B /G 1.77 1.60 2.24
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We note that the values for the Zn-IV-N2 materials are
much closer to each other than those of the III-N values. In
fact, they are all close to the value for GaN. This implies
that, as long as piezoelectric polarization contributions also
stay small, one may expect smaller induced interface charges
at their polar heterojunctions and hence much smaller inter-
nal electric fields in quantum wells. This is potentially an
advantage of the class of materials considered here for
electro-optic applications since such fields separate electron
and hole states at opposite ends of a quantum well and hence
lower optical matrix elements. The fact that the systems are
also closer lattice matched to each other means that also the
piezoelectric contributions to polarization will be smaller.
These smaller values of the polarization differences are prob-
ably simply related to the fact that only one of the cation
sublattices is subject to change, namely, the IV sublattice,
whereas the Zn sublattice remains unchanged. One thus ex-
pects smaller dipole changes.

Next we present the piezoelectric constants. The �relaxed�
piezoelectric tensor is defined by

e�j = � �P�

�� j
�

E
= − � �
 j

�E�
�

�

. �8�

As explained by Wu et al.,10 the electric polarization P� and
electric field E� here are to be interpreted as “reduced” quan-
tities in order to give the “proper” piezoelectric tensor. The
results are given in Table V.

Comparing again to the hexagonal wurtzite system with
symmetry 6mm, we note that in that symmetry, e15=e24 and
e31=e32. We may notice the same trend for Zn-IV-N2 as for
III-N: the values decrease in the order AlN, InN, and GaN
and in the order ZnSnN2, ZnSiN2, and ZnGeN2. This is in-
dicative of the ionicity decreasing in this order. The same
order is, for example, found for the Born effective charges.3

Experimental values21 for bulk GaN are e33
=1.12 C m−2 and e31=−0.55 C m−2, while for AlN they are
1.5 and −0.6 C /m2. Experimentally, one often prefers to
measure the d�j coefficients, which give the response to
stress rather than to strain. The two are related by e�j
=d�iCi,j. Specifically, we have e15=d15C44 in wurtzite. Ex-
perimental data are available for d15 in GaN and AlN by
Muensit et al.22 and using the elastic constants from Wright14

convert to �e15�=0.29 C m−2 for GaN and 0.42 C m−2 for
AlN. This value for GaN is close to our calculated value for
ZnGeN2 as expected. The sign of these coefficients depends
on how the Cartesian axes are oriented versus the crystal
structure polarity �positive from anion to cation along its
axial bond� and it is not clear from the experimental data if
the sign was actually determined. Overall, we can see that
the values for the Zn-IV-N2 compounds are comparable to
the corresponding III-N, in particular, for ZnGeN2 and GaN.
Although the values for ZnSiN2 are smaller than those in
AlN, AlN has been considered for surface-acoustic-wave ap-
plications because of its high piezoelectric constants. From
another point of view, since the crystals are also closer lattice
matched than in the III-N compounds, we expect that piezo
as well as spontaneous polarization induced effects in hetero-
junctions in this class of materials will be markedly reduced
compared to those in III-N materials.

C. Nonlinear optical tensor

Next, we turn to nonlinear optical properties. For an insu-
lator the polarization can be expanded as

P� = P0 + 
�	
�1�E	 + 
�	�

�2� E	E� + ¯ . �9�

We are here concerned with the third rank tensor 
�	�
�2� =
�j

�2�,
where the last notation converts the two indices of the input
electric fields to Voigt second rank tensor notation. This ten-
sor determines second-harmonic generation and other sum or
difference frequency generation efficiencies. As already
mentioned in Sec. I, we consider only frequencies of the
electric field small compared to electronic excitations, i.e.,
well below band gap, but high compared to any phonons, so
that the ions are clamped in response to the electric field.
Since the polarization is a first derivative of the total energy
versus electric field, the quantity of interest here is a third
derivative versus three electric fields. In the static limit, the
Kleinman symmetry is obeyed, meaning that the indices can
be cyclically permuted. In this limit, the indices for which
the components are nonzero are the same as for the piezo-
electric tensor but two additional equalities hold because
here all derivatives refer to electric field. It is important to
note that wavelength dispersion is not included in these cal-
culations. On the other hand, the polarization is calculated
using Berry-phase methods, which does not require the ran-

TABLE IV. Spontaneous polarizations in Zn-IV-N2 and III-N
materials in C /m2.

ZnSiN2 ZnGeN2 ZnSnN2

−0.022 −0.023 −0.029

AlN GaN InNa

−0.090 −0.029 −0.042

aValues for III-N are taken from Bernardini et al. �Ref. 20�.

TABLE V. Relaxed ion piezoelectric tensor e�j in C /m2 for
Zn-IV-N2 and III-N materials.

Components ZnSiN2 ZnGeN2 ZnSnN2

e15 −0.31 −0.27 −0.41

e24 −0.30 −0.35 −0.44

e31 −0.45 −0.43 −0.59

e32 −0.44 −0.49 −0.59

e33 0.80 0.73 1.09

AlN GaN InNa

e33 1.46 0.73 0.97

e31 −0.60 −0.49 −0.57

aThe values for III-N are from Bernardini et al. �Ref. 20�.
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dom phase approximation and thus includes local field ef-
fects properly. The resulting nonlinear optical coefficients are
given in Table VI. As is customary, we give d�j =

1
2
�j

�2�. The
standard notation d is used here and should not be confused
with the piezoelectric coefficient at given stress which unfor-
tunately is usually given by the same symbol. We use a dif-
ferent font to distinguish the two.

The value for d33 for ZnGeN2 is reasonably close to that
in GaN of 5.76 pm/V as obtained by a “sum-over-states”
calculation in LDA and including local field effects by Chen
et al.23 The values obtained by Rashkeev et al.24 �2.8–4.4
depending on whether or not a scissor correction was in-
cluded� differ by almost a factor of 2 because they do not
include local field effects. The only experimental value avail-
able by Miragliotta et al.25 is 5.35 pm/V. For AlN, Chen et
al.23 obtained 4.61 and the experimental value is 6.3.26 The
values given here are LDA values. One expects that the un-
derestimate gap would overestimate the 
�2�. Consistent with
the expected trend with LDA gap, also given in Table VI, the
values increase from ZnSiN2 to ZnGeN2 to ZnSnN2. The
values appear to be comparable to those in the III nitrides as
far as data are available on those. The value in ZnSnN2 is
still rather small compared to that in chalcopyrite semicon-
ductors, given its relatively small band gap, in particular in
the LDA, where it is 0.7 eV. However, one should recall that
the 
�2� components depend on the average gap over the
whole Brillouin zone rather than the minimum gap. In
ZnSnN2, the lowest conduction bands have a very large dis-
persion so that the average gap is significantly larger than the
minimum gap at �.

The ratio 
31
�2� /
33

�2��−1 /2 is expected on the basis of the
relation between zinc blende and wurtzite. Furthermore one
expects 
31

�2��
32
�2� based on the relation between the ortho-

rhombic ZnGeN2 structure and wurtzite. The actual ratios

31

�2� /
33
�2� are −0.39, −0.38, and −0.10 for ZnSiN2, ZnGeN2,

and ZnSnN2, respectively. The 
32
�2� /
33

�2� ratios are −0.37,
−0.45, and −0.31. Thus the structural deviations of the ortho-
rhombic from wurtzite and nonideal wurtzite relative to cu-
bic material significantly affect these ratios.

D. Pockel’s coefficient

Closely related to the nonlinear optical coefficient is the
electro-optic tensor. The linear electro-optic coefficient or

Pockel’s coefficient corresponds to the change in index of
refraction in the presence of a static electric field. More spe-
cifically, it is given by

���−1��	 = r�	�E�, �10�

in which we use summation convention as usual but addi-
tionally use indices � for the static field and � ,	 for the
optic frequency electric fields. Depending on the mechanical
boundary conditions, it may contain three contributions, a
purely electronic one, which is directly related to the nonlin-
ear optic coefficient, an ionic contribution, and a piezoelec-
tric contribution. For details, we refer the reader to Veithen et
al.11 The clamped value refers to the value measured under
strain-free conditions and includes the electronic and ionic
contribution but not the piezoelectric contribution. The
unclamped value refers to the value measured under stress-
free conditions and includes the additional piezoelectric con-
tribution arising from the changes in the unit cell shape in
response to the electric field. The ionic contribution is calcu-
lated in terms of the Raman tensor and the mode “polarities,”
closely related to the oscillator strength of the mode,
summed over all the vibrational modes at q=0. The values
for the clamped and unclamped electro-optic tensor are given
in Table VII.

No experimental data on these coefficients are available in
Zn-IV-N2 or III-N materials to the best of our knowledge.

E. Summary

In summary, we here presented results for the following:
�1� the elastic constants and compliances and related poly-
crystalline elastic constants, �2� the piezoelectric tensor and
spontaneous polarization, and �3� the nonlinear optical and
�clamped� linear electro-optic coefficients for the Zn-IV-N2
materials. Where possible, comparisons were made with the
corresponding quantities in III-N materials AlN, GaN, and
InN. The elastic constants and piezoelectric coefficients are
found to be comparable in magnitude to those in III-N ma-
terials, which should make them suitable for some practical
applications. The spontaneous polarization differences were
found to be markedly smaller between members of this class
of compounds than in the class of III-N compounds. Along
with the better lattice match among them this suggests that
polar interface electric field effects will be markedly sup-
pressed in these compounds, which can be considered as an

TABLE VI. Second-order nonlinear optical tensor coefficients
d�j =

1
2
�j

�2� in pm/V and LDA band gaps �in eV� calculated using the
PW-pseudopotential approach.

Components ZnSiN2 ZnGeN2 ZnSnN2

d15=d31 −2.19 −2.63 −0.99

d24=d32 −2.09 −3.17 −2.96

d33 5.60 6.98 9.27

Eg 3.96 2.37 0.70

TABLE VII. Clamped �A� and unclamped �B� linear electro-
optical coefficients �pm/V�.

Components

ZnSiN2 ZnGeN2 ZnSnN2

A B A B A B

r15 0.40 0.40 0.45 0.48 0.25 0.25

r24 0.31 0.31 0.52 0.46 0.50 0.50

r31 0.17 0.18 0.20 0.47 −0.16 −0.15

r32 0.12 0.21 0.09 0.12 −0.14 0.09

r33 −0.66 −0.59 −0.77 −1.15 −0.77 −0.60
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advantage for electro-optical applications relying on strong
optical transitions. The piezoelectric constants are strongest
for the Si and Sn based compounds, which are related to the
higher ionicity in these materials. The nonlinear optical co-
efficients are also comparable to those in III-N materials and
are as expected rather small because of the large “average”
gaps across the Brillouin zone.
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