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We discuss a model for the onsite matrix elements of the sp3d5s� tight-binding Hamiltonian of a strained
diamond or zinc-blende crystal or nanostructure. This model features onsite, off-diagonal couplings among the
s, p, and d orbitals and is able to reproduce the effects of arbitrary strains on the band energies and effective
masses in the full Brillouin zone. It introduces only a few additional parameters and is free from any ambi-
guities that might arise from the definition of the macroscopic strains as a function of the atomic positions. We
apply this model to silicon, germanium, and their alloys as an illustration. In particular, we make a detailed
comparison of tight-binding and ab initio data on strained Si, Ge, and SiGe.
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I. INTRODUCTION

The oncoming limits of conventional downscaling of
field-effect transistors have strengthened the need for inno-
vative device architectures.1 In this context, the use of me-
chanical strains has become an attractive solution to improve
the electrical performances by enhancing the carrier
mobility.2,3 As a matter of fact, strain engineering techniques
such as the growth of a contact etch stop layer �CESL� �Ref.
4� or Si channels strained by SiGe source and drain exten-
sions are now widely spread in the semiconductor industry.
More generally, the electronic properties of strained Si1−xGex
layers grown on Si1−yGey buffers are attracting much
attention.5 These heterostructures, which can be integrated
into Si-based electronics and photonics, indeed offer the op-
portunity to tune the band gap of the active layer.

The modeling of the electrical properties of such devices
requires a detailed description of the effects of strains on the
band structure. Over the past decades, the ab initio methods
such as the density functional theory6,7 �DFT� have provided
comprehensive information about the deformation potentials
of semiconductors.8–13 However, such ab initio methods re-
quire heavy computational resources and are not, therefore,
suitable for the calculation of the transport properties of large
systems. For that reason, the physics and electronic device
community is actively developing more efficient semiempir-
ical approaches, such as the k ·p,14,15 the empirical
pseudopotential,16–18 or the tight-binding19,20 �TB� methods,
which can work out the electronic structure of strained semi-
conductors devices. Among these semiempirical approaches,
the TB method has long been proven to be successful in
predicting the electronic properties of semiconductor nano-
structures such as nanocrystals or nanowires. The use of an
atomic orbitals basis set with interactions limited to a few
nearest neighbors indeed allows the calculation of the wave
functions of million atom systems.21,22 The TB method is

also well suited to quantum transport calculations22–26 and to
the atomic scale description of, e.g., impurities27,28 or
electron-phonon coupling.29 In this respect, the first nearest-
neighbor sp3d5s� model is one of the most accurate and ef-
ficient TB descriptions of semiconductor materials.30

The effects of strains are accounted for in TB models
through the bond-length dependence of the nearest-neighbor
parameters V�� �� and � being two orbitals on different at-
oms�, which is usually fitted to a power law,31,32

V���d� = V���d0��d0

d
�n��

, �1�

where d is the distance between the two atoms in the strained
crystal and d0 is the equilibrium distance. Although some
hydrostatic and uniaxial deformation potentials can be repro-
duced that way,33 much better accuracy can be achieved with
the introduction of strain-dependent onsite parameters.34–38

Indeed, hydrostatic strain shifts the average potential39 in the
crystal, while uniaxial and shear strains split the p or d or-
bitals of a given atom. In their original sp3d5s� parametriza-
tion, Jancu et al.30 therefore introduced a term that lifts the
degeneracy among the dyz, dxz, and dxy orbitals under
uniaxial �001� strain. Jancu and Voisin38 later generalized
this approach to uniaxial �111� strain. These Hamiltonians,
however, feature the macroscopic strains ���, whose expres-
sion as a function of the atomic positions �the basic input of
the TB method� is not univocal. Boykin et al.36,37 therefore
introduced position-dependent orbital energies in the sp3d5s�

Hamiltonian. They could reproduce that way the valence-
band deformation potentials av and bv but did not really im-
prove on dv. This limitation is a consequence of the “diago-
nal” assumption made in that model. Uniaxial �111� strain
indeed leaves, for example, the px, py, and pz orbitals of a
given atom equivalent. It however couples these orbitals off
the diagonal of the Hamiltonian.
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In this paper, we discuss a model for the onsite matrix
elements of the sp3d5s� TB model based on an explicit ex-
pression for the crystal field, assuming that the total potential
is the sum of central, atomic contributions.40,41 It features
off-diagonal couplings between different orbitals and is able
to reproduce the effects of arbitrary strains on the band en-
ergies and effective masses at all relevant k points. It only
involves a few additional parameters, is fully consistent with
the symmetries of the crystal, and is free from any ambiguity
that might arise from the introduction of the macroscopic
strains ��� in an atomistic description. We present this model
in Sec. II and then discuss its properties in Sec. III. Finally,
We apply this model to silicon, germanium, and their alloys,
which are the most relevant materials for microelectronics, in
Sec. IV. We provide detailed comparisons with ab initio data
on strained Si, Ge, and SiGe and discuss two important prob-
lems: the increase in the longitudinal effective mass under
shear strains �missing in previous TB models� and the de-
scription of random alloys.

II. MODEL

In this section, we introduce the model for the onsite ma-
trix elements of the sp3d5s� tight-binding Hamiltonian. For
the sake of simplicity, we focus on a homogeneously strained
diamond or zinc-blende crystal, the application to arbitrary
strains, and other crystal structures being straightforward. We
assume that the total potential in the crystal is the sum of
central, atomic contributions �1��r−Ri�� �sublattice 1� and
�2��r−Ri�� �sublattice 2�, with Ri being the atomic positions.
In a first nearest-neighbor �NN� approximation, the potential
experienced by the orbitals of atom i on sublattice 1 is there-
fore

��r� = �1��r − Ri�� + �
j

NN

�2��r − R j�� . �2�

This potential shifts the energy of the orbitals and couples
them one to each other in the strained crystal. In particular,
��r� might lift the degeneracy between the p or between the
d orbitals of the atom. Our model is actually based on a
first-order expansion of the onsite matrix elements of the
potential ��r� as a function of the atomic positions. In the
following, we calculate the onsite Hamiltonian of the p or-
bitals of sublattice 1 as an example �paragraph IIA�. We then
discuss the application to other orbitals and crystal structures
in paragraph IIB.

A. Case of p orbitals

Let pi
x, pi

y, and pi
z be the p orbitals of atom i, and

V1 = �pi
x��1��r − Ri���pi

x� , �3a�

V2
��dij� = �pi

���2��r − R j���pi
�� , �3b�

V2
��dij� = �pi

���2��r − R j���pi
��, , �3c�

where pi
� and pi

� are the p orbitals aligned ��� or orthogonal
��� to the bond axis Rij =R j −Ri. Slater-Koster relations eas-
ily yield19,40,41

Vx = �pi
x���pi

x� = V1 + �
j

NN

V2
��dij� + �

j

NN

lij
2 	V2

��dij� − V2
��dij�


= V1 +
1

3�
j

NN

	V2
��dij� + 2V2

��dij�


+ �
j

NN �lij
2 −

1

3
�	V2

��dij� − V2
��dij�
 , �4�

where lij =x ·Rij /dij is the cosine director along x. This ex-
pression has been arranged so that the last �angular� term of
the third line is zero in the unstrained material or under hy-
drostatic pressure �where � j

NNlij
2 =4 /3 whatever the orienta-

tion of the crystal with respect to the principal axes�. We next
expand V2

��dij� and V2
��dij� in powers of dij −d0,

V2
��dij� = V2

��d0� +
3

4
�p

�dij − d0

d0
+ ¯ , �5a�

V2
��dij� = V2

��d0� +
3

4
�p

�dij − d0

d0
+ ¯ . �5b�

We hence get

Vx = V1 +
1

3�
j

NN

	V2
��d0� + 2V2

��d0�
 +
3

4
�p�

j

NN
dij − d0

d0

+ �
j

NN ��p
�0� + �p

�1�dij − d0

d0
��lij

2 −
1

3
� , �6�

where42 �p= ��p
�+2�p

�� /3, �p
�0�=V2

��d0�−V2
��d0�, and �p

�1�

=3��p
�−�p

�� /4. The first line of Eq. �6� is part of the un-
strained p orbital energy Ep

0. The second line is actually pro-
portional �to first order in the dij’s� to the hydrostatic strain,
i.e., proportional to the relative variation in the volume � of
the unit cell �also see paragraph III�. We thus define for con-
venience

	�

�0
=

� − �0

�0
=

3

4�
j

NN
dij − d0

d0
+ O�dij� , �7�

where �0 is the unstrained volume of the unit cell. The px
orbital energy therefore reads with these assumptions as

Ex = Ep
0 + �p

	�

�0
+ �

j

NN

�p�dij��lij
2 −

1

3
� , �8�

where �p�d�=�p
�0�+�p

�1��d−d0� /d0.
The equations are similar for Ey and Ez, with lij replaced

by mij =y ·Rij /dij and nij =z ·Rij /dij, respectively. Off-
diagonal couplings between the p orbitals can be obtained in
the same way. Slater-Koster relations19 yield, for example,

�pi
y���pi

x� = �
j

NN

mijlij	V2
��dij� − V2

��dij�
 = �
j

NN

�p�dij�mijlij ,

�9�

which is also zero under hydrostatic pressure.
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The onsite p block matrix finally reads in the px , py , pz�
basis set as

Ĥp = �Ep
0 + �p

	�

�0
�Î + �

j

NN

�p�d��l2 − 1
3 lm ln

ml m2 − 1
3 mn

nl nm n2 − 1
3

� ,

�10�

where the explicit dependence of dij, lij, mij, and nij on the
atomic sites i and j has been dropped for simplicity. The p
orbitals feature a 
�p hydrostatic correction and a 
�p an-
gular term, whose effects will be discussed in more detail in
Sec. III.

B. Case of other orbitals

The onsite Hamiltonians of the s �s�� and d orbitals, as
well as the off-diagonal coupling matrices among the s, p, d,
and s� orbitals are given in the Appendix. Equation �10�,
�A1�, �A2�, and �A4�–�A7� of the Appendix are valid for
both sublattices 1 and 2, possibly with different parameters
in III-V or II-VI materials. They feature hydrostatic �
�
terms� and/or angular terms �
� and 
� matrices�. The 
�
matrices are all zero in the unstrained crystal and under hy-
drostatic strain. There are, however, nonzero couplings be-
tween the d orbitals 	Eq. �A3�
, between the s and s� orbitals
	Eq. �A4�
, and between the p and dyz ,dxz ,dxy� orbitals 	Eq.
�A7�
 if the corresponding � parameters are not zero. In par-
ticular, the d orbitals are not degenerate anymore in the un-
strained crystal if �d

�0��0 �see paragraph 2 of the Appendix�.
This is actually consistent with the symmetry of the zinc-
blende lattice but is not, usually, accounted for in TB models.
As a matter of fact, lifting the degeneracy between the d
orbitals does not significantly improve the quality of the TB
model in diamond or zinc-blende crystals, while it is essen-
tial in lower-symmetry polytypes such as wurtzite materials.

This model has been checked against an ab initio �DFT�
description of silicon based on atomiclike orbitals �the SI-

ESTA code43�. With the single-�-polarized basis set used, the
self-consistent ab initio Hamiltonian is formally equivalent
to a nonorthogonal third nearest-neighbor sp3d5 TB model.
The evolution of the onsite ab initio matrix elements under
strain compares fairly well with our tight-binding approach
�despite the latter being first nearest neighbors only�. All
��0�’s and ��0�’s �except �d

�0�� are found negative within SI-

ESTA, as expected from simple arguments assuming positive
exponentially decaying radial parts for the orbitals. The sign
of the �’s, ��1�’s, and ��1�’s is, however, expected to be quite
sensitive to the choice of orbitals.42,44

The present model can be applied to other crystal struc-
tures and inhomogeneous strains. In a wurtzite material for
example, the 
�p and 
�d or �d terms will lift the degen-
eracy between the p and between the d orbitals in the un-
strained crystal, as is usually enforced a priori in the TB
descriptions of these materials.45 We will now discuss some
properties of this model and then its application to silicon,
germanium, and their alloys.

III. DISCUSSION

Equation �10�, �A1�, �A2�, and �A4�–�A7� directly depend
on the atomic coordinates through the interatomic distances
dij and cosine directors lij, mij, and nij. These equations are
thus free of any ambiguities that might arise, e.g., from the
definition of the strains ��� as a function of the atomic po-
sitions and, in particular, in inhomogeneous environments
such as alloys. They also account for internal strains at the
atomistic level and should therefore be able to reproduce
electron-optical phonon couplings. Moreover, this model for
the onsite tight-binding Hamiltonian is consistent with the
symmetries of the crystal. In particular, the band structure
remains invariant under global rotation of the lattice �since
these equations fulfill Slater-Koster’s relations19�, a property
which is not easily enforced in models depending explicitly
on the ���’s or in the model of Refs. 36 and 37. In practice,
the input atomic positions can be calculated using, for ex-
ample, Keating’s46 or Stillinger-Weber force fields.47

We next discuss the effects of biaxial stress on the p or-
bitals as an illustration of the versatility of this model. In a
homogeneously strained crystal, the strained atomic posi-
tions Ri read as a function of the unstrained coordinates Ri

0,

Ri = �Î + �̂�Ri
0  �

a

4
��yz,�xz,�xy� , �11�

where the + �respectively, −� sign holds for sublattice 1 �re-
spectively, sublattice 2�, � is Kleinman’s internal strain pa-

rameter, a is the lattice parameter, Î is the identity matrix,
and �̂ is the matrix of the strains ���. The internal strain
parameter � describes the motion of one sublattice with re-
spect to the other under shear strain.48 We successively con-
sider the cases of biaxial �001� and �111� strains.

A. Case of biaxial Š001‹ strain

Let us apply a biaxial stress perpendicular to z= 	001
 and
let �xx=�yy =�� and �zz=�� be the strains in the crystal.
Equations �10� and �11� then yield, to first order in strains,

Ĥp = �Ep
0 + �p

��

�0
�Î +

8

9
�p

�0���� − ����− 1 0 0

0 − 1 0

0 0 2
� .

�12�

The first line features the hydrostatic strain �� /�0=�xx
+�yy +�zz=2�� +��. It accounts for the variation of the aver-
age potential in the crystal and shifts the three p orbitals
equally. As expected, the stress also lifts �second line� the
degeneracy between the px , py� and the pz orbitals. The split-
ting between px , py� and pz, �Ep=8�p

�0����−��� /3, is actu-
ally proportional to the uniaxial component of the strain ten-
sor but does not depend on �p

�1�. The degeneracy between
dyz ,dxz� and dxy is likewise lifted for the d orbitals. This
model thus reproduces the effects of the 
�001 term in the
parametrizations of Jancu et al.30,38 or of the diagonal energy
shifts in the parametrization of Boykin et al.36,37
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B. Case of biaxial Š111‹ strain

Let us now apply a biaxial stress perpendicular to z�
= 	111
. The strains in the x�= 	11̄0
 , y�= 	112̄
 , z�
= 	111
� axis set are thus �x�x�=�y�y�=�� and �z�z�=��. Equa-
tions �10� and �11� then yield, to first order in strains,

Ĥp = �Ep
0 + �p

��

�0
�Î +

8

27
�p

eff��� − ����0 1 1

1 0 1

1 1 0
� , �13�

where �p
eff=�p

�0��1+2��+�p
�1��1−��. As expected, biaxial

	111
 strain leaves the px, py, and pz �diagonal� energies
equivalent. It however couples these orbitals off the diagonal

of the Hamiltonian. The eigenvectors of Ĥp are indeed: �i�
the p orbital aligned with 	111
 �pz��, with energy Ep

0

+�p�� /�0+16�p
eff���−��� /27, and �ii� the two degenerate

p orbitals perpendicular to 	111
 �px� , py���, with energies
Ep

0 +�p�� /�0−8�p
eff���−��� /27. The splitting between

these orbitals is again proportional to the uniaxial component
of the strain tensor. It also depends on the internal strain
parameter � �through �p

eff�. The value of � used as a reference
to compute the deformation potentials must therefore be pro-
vided with the TB parameters.

Such off-diagonal couplings between the p �or d� orbitals
do not exist in the parametrization of Ref. 36. As a conse-
quence the degeneracy between the p and between the d
orbitals is not lifted by biaxial �111� strain, and the value of
dv is the same whether the diagonal energy corrections are
included or not. �p

�1� and �d
�1� also reproduce the effects of the


�111 and 
�111 terms in the parametrization of Ref. 38.
However, the effective �d

�0� is assumed to be zero for the
	111
 strain �but not for the 	001
 strain�, which makes the
model of Ref. 38 hardly consistent with an explicit descrip-
tion of the crystal field, even beyond first nearest neighbors.

IV. APPLICATION TO SI, GE, AND THEIR ALLOYS

In this section, we discuss the application of the above
model for the onsite matrix elements of the TB Hamiltonian
to silicium, germanium, and their alloys. We therefore at-
tempted to reproduce the band structure of Si, Ge, and of the
ordered Si0.5Ge0.5 alloy with a first nearest-neighbor, two-

TABLE II. Harrison and onsite strain parameters of Si and
Ge.

Si Ge

d0 �Å� 2.35169 2.44999

nss� 3.56701 3.57536

nss�� 1.51967 1.03634

nsp� 2.03530 2.88203

nsd� 2.14811 1.89283

ns�s�� 0.64401 1.07935

ns�p� 1.46652 2.64809

ns�d� 1.79667 2.33424

npp� 2.01907 2.40576

npp� 2.87276 2.95026

npd� 1.00446 0.51325

npd� 1.78029 1.62421

ndd� 1.73865 1.68410

ndd� 1.80442 2.64952

ndd� 2.54691 3.83221

�s �eV� −0.13357 −0.33252

�p �eV� −0.18953 −0.43824

�d �eV� −0.89046 −0.90486

�s� �eV� −0.24373 −0.52062

�p
�0� �eV� 1.13646 1.01233

�p
�1� �eV� −2.76257 −2.53951

�pd
�0� �eV� −0.13011 −0.22597

�pd
�1� �eV� −3.28537 −3.77180

�d
�0� �eV� 3.59603 1.99217

�sp
�0� �eV� 1.97665 1.27627

�s�p
�0� �eV� −2.18403 −2.02374

�sd
�0� �eV� 3.06840 2.38822

�s�d
�0� �eV� −4.95860 −4.73191

TABLE I. Tight-binding parameters of relaxed, bulk Si, and Ge
�first nearest-neighbor, two-center orthogonal sp3d5s� model�. The
notations are those of Slater and Koster �Ref. 19�. The valence
bands of Si and Ge have been aligned at E=0 eV; the onsite ener-
gies Es, Ep, Ed, and Es� of Ge must, therefore, be shifted by
	VBO=0.68 eV to account for the valence-band offset between the
two materials. �so is the spin-orbit coupling parameter of the p
orbitals.

Si
�eV�

Ge
�eV�

Es −2.55247 −4.08253

Ep 4.48593 4.63470

Ed 14.01053 12.19526

Es� 23.44607 23.20167

�so 0.01851 0.12742

Vss� −1.86600 −1.49093

Vss�� −1.39107 −1.59479

Vsp� 2.91067 2.91277

Vsd� −2.23992 −2.10114

Vs�s�� −4.51331 −4.86118

Vs�p� 3.06822 2.92036

Vs�d� −0.77711 −0.23561

Vpp� 4.08481 4.36624

Vpp� −1.49207 −1.58305

Vpd� −1.66657 −1.60110

Vpd� 2.39936 2.36977

Vdd� −1.82945 −1.15483

Vdd� 3.08177 2.30042

Vdd� −1.56676 −1.19386
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center orthogonal sp3d5s� TB model. We used experimental
data when available and ab initio calculations otherwise as a
reference for the optimization of the TB parameters. We first
review the ab initio calculations and the optimization process
in paragraph IVA, then discuss the TB model of Si, Ge, and
Si0.5Ge0.5 in paragraph IVB, and finally the case of arbitrary
SiGe alloys in paragraph IVC.

A. First-principles calculations and optimization procedure

A series of first-principles calculations was performed
with the ABINIT �Refs. 49–51� code on Si, Ge, and the or-
dered Si0.5Ge0.5 alloy to set up a reference for the optimiza-
tion of the TB parameters. These calculations are based on
the local density approximation �LDA� to DFT,6,7 using rela-
tivistic Hartwigsen-Goedecker-Hutter pseudopotentials.52

The LDA band structure was further corrected with Hedin’s
GW approximation to the self-energy used as a post-DFT
scheme.53,54 In general, the GW band energies were found in
good agreement with the available experimental data.55 The
properties of a large set of strained crystals have been com-
puted, including hydrostatic as well as biaxial deformations
perpendicular to 	100
, 	110
, and 	111
.56 The biaxial strains
were chosen to be large enough �up to �� = 5%� to span the
whole range of lattice mismatches encountered in epitaxial
Si1−xGex layers grown on relaxed Si1−yGey buffers. The
atomic positions within the cell were carefully optimized as
they strongly affect the band structure.15

The TB parameters were fitted to the ab initio �or experi-
mental, when available� band structures, effective masses,
and deformation potentials using global optimization
methods57 refined with local optimizers.58 The least-squares
convergence of the band structures was monitored on a dense
set of k points in the first Brillouin zone.

The sp3d5s� model of Si and Ge features 4 onsite energies
and � parameters, 14 nearest-neighbor and Harrison �n���

parameters, and up to 20 � and � parameters. However, only
nine of them appeared to have significant impact on the elec-
tronic structure of strained Si and Ge around the band gap
�see Table II for a list�. In particular, all � parameters and
most ��1�’s were set to zero. This left 45 parameters in the
model, which were optimized in following way:

�1� the 4 onsite energies and 14 nearest-neighbor param-
eters were fitted on the band structures of relaxed Si and Ge;

�2� the 4 �’s and 14 Harrison parameters were fitted on
one positive and one negative hydrostatic strain;59

�3� the 7 ��0�’s were fitted on one 	100
 and one 	111

biaxial strain that do not change the first nearest-neighbor
bond lengths ����−2�� and ��1�; and

�4� the 14 Harrison, 7 ��0�’s, and 2 ��1�’s were further
refined on one 	100
 and two 	111
 biaxial strains 	one with
�=0.557 �Si� or �=0.536 �Ge� and one with �=0
.

Steps 2 and 3 ensure a reasonable starting point for step 4.
The resulting parametrization was also checked against 	110

biaxial strains, and its transferability was tested on strained
Si/Ge films and wires.

The TB model of the Si0.5Ge0.5 alloy only involves seven
additional first nearest-neighbor parameters �since the Si/Ge
and Ge/Si interactions are different�. The onsite energies and
onsite strain parameters of the Si and Ge atoms were chosen
equal to those of bulk Si and Ge, respectively.

The TB parameters of Si, Ge, and Si0.5Ge0.5 are listed in
Tables I–III. The onsite strain parameters have the sign ex-
pected from simple considerations about the shape of the
orbitals, except �p

�0�, �sp
�0�, and �sd

�0�. We point out that the sign
of these three parameters is extremely robust; including the
missing ��0�’s in the onsite corrections will not, in particular,
change the picture.60 The positive sign of �p

�0� seems charac-
teristic of first nearest-neighbor orthogonal models: the
model of Ref. 37 indeed splits the p orbitals the same way as
ours; while this is hidden in Ref. 38 by the choice of an
effective �p

�0�=0 but different effective �d
�0�’s for biaxial

	001
 and 	111
 strains �see discussion in paragraph IIIB�.

TABLE III. First nearest-neighbor two-center tight-binding parameters of SiGe. The onsite energies and
onsite strain parameters of the Si and Ge atoms are those of bulk Si and Ge, respectively. The Harrison
parameters are the same for Si/Ge and Ge/Si interactions. The relaxed SiGe bond length is d0=2.39792 Å.

Si�1�Ge�2�

Vs1s2� �eV� −1.67650 nss� 3.90172

Vs1
�s2

�� �eV� −4.63349 ns�s�� 0.85993

Vp1p2� �eV� 4.21933 npp� 2.34995

Vp1p2� �eV� −1.54668 npp� 3.08150

Vd1d2� �eV� −1.41949 ndd� 1.66975

Vd1d2� �eV� 2.62540 ndd� 2.24973

Vd1d2� �eV� −1.39382 ndd� 3.06305

Vs1s2
�� �eV� −1.50940 Vs2s1

�� �eV� −1.50314 nss�� 1.03801

Vs1p2� �eV� 2.82890 Vs2p1� �eV� 3.01033 nsp� 2.37280

Vs1d2� �eV� −2.13989 Vs2d1� �eV� −2.04737 nsd� 1.99537

Vs1
�p2� �eV� 3.06299 Vs1

�p2� �eV� 2.79296 ns�p� 1.94143

Vs1
�d2� �eV� −0.46386 Vs2

�d1� �eV� −0.51235 ns�d� 2.01051

Vp1d2� �eV� −1.43412 Vp2d1� �eV� −1.61322 npd� 0.75549

Vp1d2� �eV� 2.57110 Vp2d1� �eV� 2.43552 npd� 1.67031
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The reasons are twofold: first, the orbitals hidden behind
orthogonal TB models are much more complex than usually
assumed when discussing the sign of the interactions. The
radial parts must indeed have at least one zero to fulfill �near�
orthogonality relations with the neighboring atoms. Second,
some deformation potentials, such as bv and �u

	, are inde-
pendent of the first �but not on the second� nearest-neighbor
Harisson parameters �bv, for example, depends on �p

�0� and
�d

�0� only�. The onsite parameters will therefore likely renor-
malize the missing long-range interactions beyond their
“bare” definition given in Sec. II and the Appendix. The
renormalization of long-range interactions into first nearest-
neighbor and onsite terms is underlying every short-range
TB model and is a key to their success. We have carefully
checked our parametrization in bulk �including properties
that were not included in the optimization, such as the non-
linearities of the band edges and the behavior of the masses
under shear strains discussed in the next paragraph� and
tested its transferability to random SiGe alloys �paragraph
IVC� and to a variety of test nanostructures such as strained
Si/Ge films and wires. This model �as the previous ones�
actually shows excellent transferability of the bulk physics to
the nanostructures.

B. Results in bulk Si, Ge, and SiGe

The TB and GW band structures of bulk, unstrained Si,
Ge, and Si0.5Ge0.5 are compared in Figs. 1–3. They are in
very good agreement one with each other, with the difference
between the TB and GW principal band gaps being
�0.01 eV. The lifting of the degeneracies at, e.g., the X
point in SiGe are also well reproduced. The TB conduction-
band effective masses and valence-band Luttinger param-
eters of Si and Ge are given in Table IV. They are compared
with the GW and experimental data, and with two other
sp3d5s� parametrizations.30,68

The TB deformation potentials of the conduction- and
valence-band extrema of Si and Ge are listed in Table V and
are compared with the experimental and LDA data. The TB
model performs well on all relevant deformation potentials.
Also shown are the results obtained with the sp3d5s� model
and parametrization of Refs. 37 and 68. The present model

reproduces the uniaxial �111� deformation potentials dv and
�u

L significantly better as it is able to account for the onsite
couplings between the orbitals under shear strains. The hy-
drostatic valence-band deformation potential av, which con-
trols the position of the band structure on an absolute energy
scale, has been fitted to Ref. 13 �av=2.38 eV for Si and av
=2.23 eV for Ge�. Accordingly, the unstrained valence-band
offset between Si and Ge has been set to 	VBO=0.68 eV to
reproduce the experimental valence-band discontinuity be-
tween Si1−xGex alloys and Si as best as possible �see Table I
and paragraph IVC�. We achieve that way strained valence-
band offsets 	VBO=0.79 eV on Si 	001
 and 	VBO
=0.28 eV on Ge 	001
, within the experimental error bars69

and in between the theoretical LDA values of Refs. 8 and 70.
The unstrained valence-band offset and hydrostatic deforma-
tion potential, which are still somewhat controversial,8–13 can
be tuned by shifting all onsite energies and �’s.

The typical behavior of the valence and conduction bands
of Si and Ge under biaxial 	001
, 	110
, and 	111
 strains is
plotted as a function of the in-plane deformation �� in Figs. 4
and 5.71 As a reference, the lattice mismatch of Si grown on
Ge is �� =4.18%, while the lattice mismatch of Ge grown on
Si is �� =−4.01%. Under biaxial 	001
 strain, the six
conduction-band minima of silicon split in two groups:10 the
	x,y valleys oriented along 	100
 and 	010
, and the 	z val-
leys oriented along 	001
. The conduction-band edges are

FIG. 1. �Color online� Band structure of bulk, unstrained silicon
in the sp3d5s� TB and GW approximations.

FIG. 2. �Color online� Band structure of bulk, unstrained ger-
manium in the sp3d5s� TB and GW approximations.

FIG. 3. �Color online� Band structure of bulk, unstrained
Si0.5Ge0.5 in the sp3d5s� TB and GW approximations.
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almost linear with strain, with 	x,y being the lowest energy
valleys when �� �0 and 	z when �� �0. Biaxial 	110
 strain
also splits the conduction-band minima in the same way; the
	z minima are, however, markedly nonlinear, being the low-
est energy valleys for both �� �0 and �� �2%. This behavior,
which is not accounted for by the simplest deformation po-
tential theories, results from the shear strain component �xy
= ���−��� /2 �see discussion below�. As a matter of fact, bi-
axial 	111
 strain �which does not split the conduction-band
minima10� also exhibits the same nonlinear trends 	�yz=�xz
=�xy = ���−��� /3
. It is worthwhile to note that these nonlin-
earities have not been specifically targeted in the optimiza-
tion of the TB parameters.

In germanium, a biaxial 	001
 strain likewise splits the 	
valleys �but not the L ones�. The 	x,y valleys are the lowest
energy bands for compressive strain �� �2%, while the �
valley falls below the L valleys for tensile strain �� �2%.
Germanium then becomes a small direct band-gap semicon-

ductor and even a semimetal �zero gap� when �� �4%. Bi-
axial 	111
 strain splits the L valleys into two groups:10 the

three L�111̄� valleys �lowest energy for compressive strains�
and the L	111
 valley �lowest energy for tensile strains�. The
band gap again closes when �� �3.5%. The behavior of ger-
manium under biaxial 	110
 strain is much more complex,

	z, the two L�111̄� valleys, the two L�111� valleys, and �
being successively the lowest energy band�s� when going
from compressive to tensile strains, with a zero band gap for
�� �−5% and �� �4%.

These results are in good agreement with the ab initio
data �black diamonds72 in Figs. 4 and 5�. Though the sp3d5s
parametrization of Refs. 37 and 68 also shows reasonable
agreement with ab initio data for 	001
 biaxial strain, it no-
tably misses the strong nonlinearity of the conduction-band
energy in Si 	110
 or 	111
. As stated previously, this nonlin-
earity results from the peculiar behavior of the 	 valleys
under shear strains, as further evidenced in Fig. 6. Indeed,
the conduction-band minima move toward the X points with
increasing compressive or tensile 	111
 strain and finally
hang to the latter when �� �4% or �� �−3.3%.15 The posi-
tion of the conduction-band minima along the �X axis as
well as the longitudinal effective mass are plotted in Fig. 7.
The longitudinal effective mass dramatically increases with
���� and eventually diverges �quartic conduction-band disper-
sion� before decreasing again when the conduction-band
minima reach the edge of the first Brillouin zone. Likewise,
the 	z valleys shift to the X point under biaxial 	110
 strain,
with a divergence of the longitudinal effective mass at ��

�2.1% and �� �−2.4%.15,73,74 The splitting of the transverse
masses under uniaxial �110� strain is also well reproduced.15

These effects, which were not accounted for by previous TB
parametrizations, are fundamental for the understanding of

TABLE IV. Effective masses and Luttinger parameters of Si and
Ge.

Si Exp. GW sp3d5s� TB Present model

ml
	 0.9163a 0.925 0.702h;0.891i 0.900

mt
	 0.1905a 0.189 0.227h;0.201i 0.197

ml
L 1.808 1.378h;3.433i 2.125

mt
L 0.124 0.161h;0.174i 0.151

�1 4.26a;4.285a 4.54 4.51h;4.15i 4.22

4.22b;4.340c

�2 0.38a;0.339a 0.33 0.15h;0.26i 0.37

0.39b;0.31c

�3 1.56a;1.446a 1.54 1.55h;1.39i 1.43

1.44b;1.46c

Ge Exp. GW sp3d5s� TB Present model

ml
L 1.588d;1.74e 1.626 1.363h;1.584i 1.594

mt
L 0.08152d;0.079e 0.074 0.083h;0.081i 0.082

ml
	 0.881 0.655h;0.701i 0.837

mt
	 0.176 0.223h;0.201i 0.178

m� 0.038h;0.039i 0.038

�1 13.0f;12.8g 13.54 13.13h;13.14i 12.96

13.25a

�2 4.4f;4.0g 4.32 4.01h;3.68i 4.11

4.20a

�3 5.3f;5.5g 5.77 5.75h;5.63i 5.59

5.56a

aReference 61.
bBalslev and Lawaetz, as presented in Ref. 62.
cReference 63.
dReference 64.
eReference 65.
fReference 66.
gReference 67.
hReference 30.
iReference 68.

TABLE V. Deformation potentials of Si and Ge �eV�.

Si Exp.a LDAb sp3d5s� c Present model

bv −2.100.10 −2.27 −1.85 −2.12

dv −4.850.15 −4.36 −5.46 −4.91

�d
	+ 1

3�u
	−av 1.500.30 1.67 0.97 1.43

�u
	 8.600.40 8.79 6.88 8.70

�d
L+ 1

3�u
L−av −3.14 −2.61 −3.20

�u
L 13.85 3.69 16.19

Ge Exp.a LDAb sp3d5s� c Present model

bv −2.860.15 −2.90 −2.48 −2.74

dv −5.280.50 −6 −3.74 −5.09

ag��� −9.54 −9.01

�d
L+ 1

3�u
L−av −2.000.50 −2.86 −2.85 −3.19

�u
L 16.200.40 17 8.09 15.39

�d
	+ 1

3�u
	−av 1.43 3.50 1.10

�u
	 10 6.50 9.02

aCited by Ref. 8.
bPresent work.
cReferences 37 and 68.
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the transport properties of strained metal-oxide-
semiconductor field-effect transistors �MOSFETs� or SiGe
nanowire heterostructures.2,3,73

C. Results in disordered Si1−xGex alloys

The TB method offers the opportunity to describe semi-
conductor alloys as random distributions of atoms instead of

virtual crystals, thus allowing, e.g., the investigation of alloy
disorder scattering. The present TB model is particularly well
suited to such random alloys as it does not depend on mac-
roscopic strains that would be ill defined in a disordered
environment. We have therefore computed the band-gap en-
ergy of bulk Si1−xGex alloys modeled as random distributions
of Si and Ge atoms in large �65 000 atom supercells �in
order to reduce the statistical noise�. The lattice parameters

(a)

(b)

(c)

FIG. 4. �Color online� �a� 	001
, �b� 	111
, and �c� 	110
 biaxial
strain behaviors of bulk silicon �Ref. 71�. The black diamonds are
the ab initio data �Ref. 72�.

(a)

(b)

(c)

FIG. 5. �Color online� �a� 	001
, �b� 	111
, and �c� 	110
 biaxial
strain behaviors of bulk germanium �Ref. 71�. The �red� dots, �blue�
squares, and �magenta� triangles are the L, �, and 	 valleys, respec-
tively. The black diamonds are the ab initio data �Ref. 72�.
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of these supercells and the internal coordinates of the atoms
were optimized with Keating’s valence force field model.46

The bond-bending and bond-stretching constants of the SiGe
alloy are given in Table VI.

The calculated band-gap energy of the alloy is plotted as a
function of the Ge mole fraction x in Fig. 8 and compared
with luminescence data.75 The lattice parameter of the alloy
�computed from the valence force field� is also plotted in the
inset and matches Dismukes’s law76 a�x�=5.431+0.2x
+0.027x2 Å �solid line�. The present model predicts a cross-
ing between the 	- and L-valley conduction-band minima
around x=0.84, in agreement with the experimental data.
The bowing of the band-gap energy for x�0.84 is, in par-
ticular, very well reproduced by the tight-binding calculation.
We find that the band-gap energy of the disordered Si0.5Ge0.5
alloy is only �5 meV lower than the band-gap energy of the
ordered alloy.

As another illustration, the band-gap energy of random
SiGe alloys biaxially strained on Si 	001
 �Refs. 77–79� or
	110
 �Ref. 80� is plotted in Fig. 9. Also shown in the inset of
Fig. 9�a� is the valence-band discontinuity in Si1−xGex alloys
on Si 	001
. The band gap decreases much faster with the Ge
mole fraction than in bulk alloys due to the strains. This
decrease is again very well reproduced by the TB model,
showing its ability to describe random alloys under arbitrary
strains. The conduction- and valence-band offsets of disor-
dered Si1−xGex alloys on Si1−yGey 	001
 buffers are likewise
in agreement with the 30 band k ·p model of Ref. 15 in the
virtual crystal approximation.

V. CONCLUSION

We have presented a model for the onsite matrix elements
of the sp3d5s� TB Hamiltonian of a strained diamond or zinc-
blende crystal. This model improves over previous param-
etrizations by including the onsite couplings among the s, p,
and d orbitals of the atoms under uniaxial and shear strains.
It is able to reproduce the deformation potentials and the
dependence of the effective masses on strains at all relevant
k points of the first Brillouin zone and is fully consistent with
the symmetries of the crystal. We have successfully applied
this description to Si, Ge, and their alloys. This tight-binding
model should allow predictive modeling of the electronic
properties of strained Si/Ge heterostructures and is numeri-
cally efficient enough to be included, e.g., in full-band Monte
Carlo82 or Kubo-Greenwood83 calculations of the transport
properties of semiconductor devices.

ACKNOWLEDGMENTS

This work was supported by the French national research
agency �ANR� project “QuantaMonde” �Contract No. ANR-
07-NANO-023-02�. We thank C. Delerue and J.-M. Jancu for
reading the manuscript and for fruitful discussions about
tight binding.

FIG. 7. �Color online� Conduction-band, longitudinal effective
mass of bulk silicon under the 	111
 biaxial strain. Inset: position of
the conduction-band minimum along the �X axis. The black dia-
monds are the ab initio data.

FIG. 6. �Color online� Lowest two conduction bands �plotted
along the �X axis� of bulk silicon under the 	111
 biaxial strain. The
conduction-band minimum is marked with a dot. Its motion with
strain is plotted as a dotted gray line. The crosses are the ab initio
data �also see Fig. 7�.

FIG. 8. �Color online� Band-gap energy of random bulk
Si1−xGex alloys as a function of the Ge mole fraction x. Inset: lattice
parameter of the alloy. The solid line is Dismukes’s law �Ref. 76�
a�x�=5.431+0.2x+0.027x2 Å.
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APPENDIX: COMPLETE ONSITE COUPLINGS BETWEEN
THE s (s�), p, AND d ORBITALS

1. Onsite energy of the s (s�) orbitals

The onsite energy of the s orbitals reads as

Hs = Es
0 + �s

	�

�0
, �A1�

where Es
0 is the unstrained s orbital energy and �s character-

izes the dependence of Hs on the hydrostatic strain. The same

model applies to the s� orbitals �possibly with a different �s
�

coefficient�.

2. Onsite couplings between the d orbitals

The onsite d block matrix Ĥd reads in the
dyz ,dxz ,dxy ,dx2−y2 ,d3z2−r2� basis set as:

Ĥd = �Ed
0 + �d

	�

�0
�Î + �

j

NN

�d�d�

��
l2 − 1

3 − lm − ln mn − 1
�3

mn

− lm m2 − 1
3 − mn − ln − 1

�3
ln

− ln − mn n2 − 1
3 0 2

�3
lm

mn − ln 0 n2 − 1
3

2
�3

u

− 1
�3

mn − 1
�3

ln 2
�3

lm 2
�3

u − n2 + 1
3

�
+ �

j

NN

�d�d��
m2n2 lmn2 lm2n mnu mnv

lmn2 l2n2 l2mn lnu lnv

lm2n l2mn l2m2 lmu lmv

mnu lnu lmu u2 uv

mnv lnv lmv uv v2
� ,

�A2�

where Ed
0 is the “bare” d orbital energy �see discussion be-

low�, u= �l2−m2� /2, and v= �3n2−1� / �2�3�. Like �p�d�,
�d�d�, and �d�d� can be written as

�d�d� = �di
���2�di

�� − �di
���2�di

�� = �d
�0� + �d

�1�d − d0

d0
,

�A3a�

�d�d� = 3�di
���2�di

�� + �di
���2�di

�� − 4�di
���2�di

��

= �d
�0� + �d

�1�d − d0

d0
, �A3b�

where �d
�0�, �d

�1�, �d
�0�, and �d

�1� are additional TB parameters.

Ĥd is the sum of the bare d orbital energies of a 
�d
hydrostatic correction and of two 
�d ,�d angular matrices.

Like Ĥp, the diagonal of the 
�d matrix has been shifted 	by
−1 /3�NN�d�d�
 so as to be zero in the unstrained diamond or
zinc-blende crystal. The five d orbitals are not, however, de-

TABLE VI. The valence force field bond-stretching constant �, bond-bending constant �, elastic con-
stants cij and internal strain parameter of Si, Ge and Si0.5Ge0.5. In the disordered SiGe alloys, we choose
�=13.31 N /m for Si-Si-Ge and �=12.30 N /m for Ge-Ge-Si pairs of bonds.

Material
�

�N/m�
�

�N/m�
c11

�GPa�
c12

�GPa�
c44

�GPa� �

Si 48.54 13.83 165.8 63.9 79.3 0.557

Ge 39.14 11.81 131.8 48.3 64.1 0.536

Si0.5Ge0.5 43.80 12.81 148.5 55.9 71.6 0.547

(a)

(b)

FIG. 9. �Color online� �a� Band-gap energy of random Si1−xGex

alloys biaxially strained on Si 	001
 as a function of the Ge mole
fraction x. The inset is the TB valence-band discontinuity 	Ev
�dots� compared to various experimental sources �diamonds� com-
piled in Ref. 81. �b� Band-gap energy of random Si1−xGex alloys
biaxially strained on Si 	110
.
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generate anymore as soon as �d
�0��0. They indeed split in

two groups: �i� the dyz ,dxz ,dxy� orbitals with energy Ed
0

+4�d
�0� /9 and �ii� the dx2−y2 ,d3z2−r2� orbitals with energies Ed

0

�since, e.g., � j
NNm2n2=4 /9�.84 This is consistent with the

symmetry of the zinc-blende or diamond lattice, though it is
usually not accounted for in TB models.

3. Couplings between the s and s� orbitals

The onsite matrix element coupling the s and s� orbitals
reads as

Hss� = �
j

NN

�ss��d� , �A4�

where �ss��d�= �si��2�si
��=�ss�

�0� +�ss�
�1� d−d0

d0
. It is nonzero in the

unstrained diamond or zinc-blende crystal if �ss�
�0� �0.

4. Couplings between the s (s�) and p or d orbitals

The onsite matrices coupling the s and p /d orbitals read
as

Ĥsp = �
j

NN

�sp�d�	 l m n 
 �A5�

Ĥsd = �
j

NN

�sd�d�	mn ln lm u v 
 , �A6�

where �sp�d�= �si��2�pi
��=�sp

�0�+�sp
�1� d−d0

d0
and �sd�d�

=�3�si��2�di
��=�sd

�0�+�sd
�1� d−d0

d0
. Both matrices are zero in the

unstrained diamond or zinc-blende crystal.

5. Couplings between the p and d orbitals

The onsite matrix coupling the p and d orbitals reads as

Ĥpd = �
j

NN

�pd�d�� 0 n m l − 1
�3

l

n 0 l − m − 1
�3

m

m l 0 0 2
�3

n
� + �

j

NN

�pd�d�

��lmn l2n l2m lu lv

m2n lmn lm2 mu mv

mn2 ln2 lmn nu nv
� , �A7�

where �pd�d�= �pi
���2�di

��=�pd
�0�+�pd

�1� d−d0

d0
and �pd�d�

=�3�pi
���2�di

��−2�pi
���2�di

��=�pd
�0�+�pd

�1� d−d0

d0
. This matrix is

nonzero in the unstrained diamond or zinc-blende crystal if
�pd

�0��0.
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