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The performance of two range-separated hybrid �HSE and LC-�PBE� exchange-correlation functionals for
describing narrow-band magnetic solids and, more precisely, for predicting magnetic coupling constants has
been investigated for a large set of systems for which accurate experimental data exist. The set includes
superconducting cuprates parent compounds and transition-metal oxides and fluorides exhibiting a broad range
of magnetic coupling values. Both HSE and LC-�PBE provide an overall improvement over the description
arising from standard hybrid functionals such as the well-known B3LYP. Nevertheless, the two range-separated
hybrid functionals still overestimate antiferromagnetic and ferromagnetic interactions although significantly
less than B3LYP. The increased accuracy of LC-�PBE suggests that the approximations and exact constraints
included in the definition of this long-range corrected hybrid functional have important consequences for the
accurate description of exchange and correlation effects of the electronic structure of magnetic solids and other
systems exhibiting localized spins.
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I. INTRODUCTION

The discovery of high-temperature superconductivity in
doped cuprates in 1986 �Ref. 1� sparked substantial interest
in strongly correlated systems and triggered a huge amount
of work from both theory and experiment.2–6 In fact, super-
conducting cuprates provide one of the most typical ex-
amples of strongly correlated systems, a wide class of mate-
rials that show unusual electronic and magnetic properties. In
solid-state physics, the term strong correlation is applied to
emphasize the situations where the electrons tend to be lo-
calized and strongly interacting.7 Consequently, the resulting
electronic structure of these solids is not well-described,
most often not even in a qualitatively correct manner, by
simple one-electron theories such as the local-density ap-
proximation �LDA� of density-functional theory �DFT�8–10 or
even by the more sophisticated generalized gradient
approaches,11 usually referred to as GGA. This is somehow
different from the meaning that electron correlation has in
quantum chemistry where it is defined with respect to the
Hartree-Fock model.7,12 The apparently simple NiO is surely
the archetype of strongly correlated materials, it has a par-
tially filled 3d band with the Ni2+ cations almost in a 3d8

configuration and therefore from band theory arguments it
would be expected to be a good conductor. However, taking
into account the strong Coulomb repulsion between d elec-
trons, an electron correlation effect, NiO appears to be pre-
dicted to behave as an antiferromagnetic wide band-gap
insulator,13 as observed in experiments. Thus, strongly corre-
lated materials have electronic structures that do not follow
simple free-electron-like models. A careful discussion about
the limitations of current DFT methods was recently pro-
vided by Yang and co-workers.14,15

In spite of significant advances, the mechanism for high
critical temperature remains essentially unknown, in part due
to the difficulties in describing accurately their electronic

structure; however, there are strong indications that it is re-
lated to the magnetic structure.16,17 The recent discovery of
superconductivity in a new family of compounds derived
from LaOFeAs18,19 has renewed interest in strongly corre-
lated magnetic solids and stimulated further research. In the
case of cuprates, the strong correlation in the 3d shell pro-
vokes the unpaired electrons to be essentially localized at the
Cu2+ site leading to an antiferromagnetic insulator. Recently,
it has been suggested that the electronic structure of the
LaOFeAs parent compounds has strong similarity with that
of the cuprates, being described as a strongly frustrated an-
tiferromagnetic insulator.20 However, this similarity only
emerges when the description of the electronic structure of
this material arises from methods that go well beyond LDA
and GGA approximations to the unknown universal
exchange-correlation functional of DFT. In fact, the lack of
wave-function methods �other than Hartree-Fock21,22 and
second-order perturbation theory23,24 based methods� fully
exploiting translational symmetry or making use of appropri-
ate periodic boundary conditions, makes DFT the standard
approach to explore the electronic structure of solids, with
most applications relying precisely on LDA and GGA meth-
ods. However, we already mentioned that LDA and GGA fail
to describe the antiferromagnetic insulating character of the
electronic structure of strongly correlated systems and, in
particular, of high-Tc superconducting parent compounds and
predict them to be metallic conductors. In some cases, this
deficiency of LDA and GGA can be remedied by directly
introducing a correction to the LDA or GGA potential. This
is the case of the LDA+U or GGA+U methods,25 which are
able to correctly describe the antiferromagnetic insulating
ground state of strongly correlated systems such as Ce2O3
�Ref. 26� or LaOFeAs �Refs. 20 and 27�, but at the cost of
incorporating parameters that are external to the theory and
material-dependent. In addition, recent work has shown that
these approaches still have difficulties in describing the mag-
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netic coupling in molecules.28 Other approaches attempting
to overcome the LDA deficiencies by correcting for self-
interaction error such as LDA+SIC �Ref. 29� or GW
approximations.30 In particular, it has been shown that the
GW approximation works extremely well for many different
strongly correlated materials.31–33

Hybrid functionals,34–36 mixing a part of exact nonlocal
Fock exchange with the exchange part of the LDA or GGA
potential, provide a good alternative to LDA and GGA. In
particular, the broadly used Becke-three-parameter-Lee-
Yang-Parr �B3LYP� hybrid functional34,37 was initially intro-
duced to reproduce the thermochemistry of spectroscopic
properties of a large set of organic molecules38,39 but has
been shown to properly describe transition metal containing
molecules,40 dinuclear complexes,41 and magnetic solids.42,43

More importantly, B3LYP and related hybrid functionals pro-
vide a qualitatively correct description of many different
structural, electronic, and magnetic properties of a paradig-
matic magnetic insulator such as NiO �Ref. 13� with pre-
dicted band gaps which are close to experiment.44–46 Hybrid
exchange-correlation potentials including a contribution of
Fock exchange of 20–35 %, such as B3LYP or PBE0,34–36

properly describe the magnetic coupling in strongly corre-
lated systems such as NiO,13 NKiF3, and K2NiF4,42,43,47 and
La2CuO4,42,43 LaMnO3,48 and MnO �Ref. 49� among others,
which are all prototype materials where standard LDA and
GGA fail.50–52 Unfortunately, the B3LYP functional consis-
tently overestimate the magnetic coupling constant in mol-
ecules and solids,53,54 a problem which emerges clearly when
spin symmetry is imposed to the density-functional calcula-
tions of molecular systems or of magnetic solids represented
by appropriate embedded-cluster models.55–58

Recent developments on exchange-correlation potentials
have shown that it is possible to reach a more accurate de-
scription without having to impose explicitly spin symmetry
conditions.59,60 A detailed analysis of the short- and long-
range decay of the hybrid potentials by Scuseria and
collaborators61 has shown that in metallic systems the non-
local exchange interaction has an extremely slow spatial de-
cay, which has undesired numerical and physical effects in
systems with small or vanishing band gaps. In addition, the
asymptotic decay of the exchange potential for atomic and
molecular systems is incorrectly described by the commonly
used hybrid functionals such as B3LYP.62,63 In order to solve
these problems, Vydrov et al.64 implemented and tested64,65 a
long-range corrected hybrid method based on the PBE GGA
functional, hereafter denoted as LC-�PBE, which follow ear-
lier ideas aimed at restoring the proper asymptotic limit.66,67

For a large number of applications, including molecular
structure, thermochemistry, energy barriers and long-range
charge-transfer processes, the LC-�PBE functional shows
overall improvement over standard hybrids such as PBE035,36

or B3LYP. Likewise, Heyd, Scuseria, and Ernzerhof have
presented a short-range corrected hybrid functional �HSE�
which properly describes metallic systems.68 The HSE func-
tional is particularly accurate in estimating band gaps of
solids.69–72 HSE properly describes ceria and reduced ceria.73

The excellent performance of range-separated hybrid
functionals in describing a variety of chemical systems, and
such a delicate property as the magnetic coupling in organic

diradicals and transition-metal binuclear complexes,60

prompted us to analyze their performance in describing dif-
ferent strongly correlated magnetic solids. Hence, the goal of
this paper is precisely to explore the performance of the
range-separated hybrid functionals for describing the mag-
netic coupling in prototypal superconducting cuprates parent
compounds and transition-metal oxides. For the purpose of
the present study, we have found it very convenient to use
embedded model clusters for the range-separated hybrids.
The correctness of this model has been extensively verified
in previous work.74–76

This paper is organized as follows: Sec. II describes the
appropriate way to define and obtain the magnetic coupling
constant from embedded-cluster model calculations using
density-functional calculations. The different systems studied
and their corresponding models used in the present work are
presented in Sec. III. The computational details are outlined
in Sec. IV whereas Sec. V reports our results. Finally, Sec.
VI summarizes our conclusions.

II. EXTRACTING THE MAGNETIC COUPLING IN
MAGNETIC SOLIDS FROM TOTAL-ENERGY

DIFFERENCES

A common feature of magnetic systems with n localized
unpaired electrons on an atom �or group of atoms� is that
these can be regarded as effective spins with total spin quan-
tum number S=n /2. In this way, the study of the interactions
between effective spins can be analyzed using a spin-only
effective Hamiltonian. These model systems allow one to
understand the magnetic order leading to spin nets with dif-
ferent topology and dimensionality exhibiting spin dynamics
that can be described by the simplest spin effective Hamil-
tonian which takes the form

HHDVV = − �
i,j

JijŜiŜ j , �1�

and it is usually known as the Heisenberg-Dirac-Van Vleck

Hamiltonian �HDVV�.77,78 In Eq. �1� Ŝi and Ŝ j are the effec-
tive spin operators in sites i and j, respectively. Jij the mag-
netic coupling constant and the summation runs over all pos-
sible spin pairs although it is often restricted to nearest
neighbors or to nearest neighbors and next-nearest neighbors
only. For the HDVV Hamiltonian in Eq. �1� one has an an-
tiferromagnetic behavior when the magnetic coupling con-
stant is negative and the low-spin state more stable than high
spin. Conversely, a positive value of the magnetic coupling
constant favors a ferromagnetic ground state. For systems
such as superconducting parent compounds where there is
one unpaired electron per Cu site located, the spin operators
in the HDVV Hamiltonian correspond to particles with total
spin S=1 /2 whereas for NiO and related systems with two
unpaired electrons per Ni site, the corresponding spin opera-
tors represent particles with total spin S=1. Hence, the
HDVV Hamiltonian describes the isotropic interaction be-

tween spin moments Ŝi and Ŝj characterizing localized elec-
trons in open shells by means of a set of Jij magnetic cou-
pling constants.
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From an experimental point of view, the magnetic cou-
pling constants can be obtained by means of a proper ther-
modynamic statistics treatment connecting the HDVV solu-
tions with macroscopic properties such as magnetic
susceptibility vs temperature measurements, specific-heat ca-
pacity vs temperature measurements, or from the intensity of
the peaks from magnetic scattering in experiments carried
out with spin polarized neutrons. From a theoretical point of
view, the Jij magnetic coupling constants can be in general
extracted from ab initio effective Hamiltonians,79 although in
some cases it is possible to extract them from total-energy
differences and make use of the appropriate mapping be-
tween the different magnetic states of Eq. �1� and those ob-
tained from suitable first-principles calculations.54 However,
to obtain these energy differences it is necessary to consider
a model for the material of interest.

For a crystalline solid, the obvious choice is a periodic
model and then the magnetic coupling constant can be ex-
tracted from the energy differences between the proper mag-
netic solutions in the appropriate supercells. In these cases it
is convenient to substitute the HDVV Hamiltonian by the
Ising Hamiltonian80 which only takes into account the z com-
ponent of the spin operators. Hence, one has

HIsing = − �
i,j

JijŜzi
Ŝzj . �2�

Among the different eigenstates of the Ising Hamiltonian one
finds the ferromagnetic state �FM� which has the highest pos-
sible Sz value, and various antiferromagnetic states �AFM�
which have Sz=0. A possible criticism to this approach is
that the magnetic coupling constant of the HDVV and Ising
Hamiltonians could be different. Here, one must realize that
most periodic calculations cannot handle spin states because
a single Slater determinant does not always allow a well-
defined total spin quantum number �per cell or formula unit�
which indeed is an observable quantity, and hence these
methods provide only the expectation value of the energy for
the FM and AFM solutions. While the FM and AFM func-
tions are not spin eigenfunctions, and hence it is not possible
to assign a well-defined value to the total spin, they are
eigenfunctions of the z component of the total spin operator.
Therefore, this observable is well-defined at T=0 K and
simply corresponds to the total number of alpha electrons
minus the total number of beta electrons per unit cell which
is fixed in the calculation. Hence, the FM and AFM solutions
are eigenfunctions of the Ising Hamiltonian. Moreover, a
careful analysis shows that the expectation values of the
HDVV and Ising Hamiltonians are the same, thus justifying
this approach for obtaining the magnetic coupling constants
via total-energy difference of periodic calculations.54 This
becomes clear when the HDVV Hamiltonian is written as in
Eq. �3�

Ĥ = − J�
�i,j�

Ŝi · Ŝ j = − J�
�i,j�
�1

2
�Ŝi+Ŝj− + Ŝi−Ŝj+� + ŜziŜzj� ,

�3�

where only one magnetic coupling constant appears because
the summation is now restricted to nearest-neighbor mag-

netic sites. The precise procedure used to derive the equa-
tions needed to extract J from periodic calculations depends
on the type of magnetic cation and on the topology of the
magnetic system resulting from a given crystal structure.54,74

Let us now consider the spin functions �not spin eigenfunc-
tions� corresponding to the broken-symmetry solutions for a
simple-cubic isotropic system with S=1 /2 to derive the cor-
responding mapping within the Ising Hamiltonian. For the
FM solution, each localized spin moment in a double unit
cell has six nearest neighbors, but since each magnetic inter-
action J involves by definition two magnetic centers, the en-
ergy per center is −6JSz

2 /2. For the totally AFM solution, the
reasoning is the same but the interaction between each pair
of spins is now −J and hence the energy is +6JSz

2 /2. There-
fore one has E�FM�=−3J /4, E�AFM�=+3J /4, and
E�AFM�−E�FM�=3J /2. For detailed description on the
mapping procedure for periodic systems the reader is re-
ferred to the recent work of Rivero et al.81

In some cases it is not possible to use periodic models
either because one wishes to carry out calculations using
explicitly correlated wave functions as reported for several
systems16,75,82 or when using state-of-the-art exchange-
correlation potentials not yet implemented in periodic codes.
For ionic magnetic systems one can design appropriate
embedded-cluster models, usually containing two magnetic
centers, and extract the magnetic coupling constant also from
total-energy differences.54 In the case of using wave-
function-based methods the magnetic coupling constant is
directly related to the energy difference between the low-
lying-spin states, whereas when using density-functional
theory-based calculations, the magnetic coupling constant is
related to the energy difference between FM and AFM states
as in the periodic case, and the AFM is a broken-symmetry
solution. The appropriateness of the embedded-cluster model
approach has been established by comparing the values of
the calculated magnetic coupling constants of a series of cu-
prates obtained from periodic and embedded-cluster
models.74–76,83

III. SYSTEMS AND MODELS

The main goal of the present work is to investigate the
performance of range-separated hybrid functionals for de-
scribing magnetic coupling constants in a representative set
of magnetic materials with different structures, spin, and
magnetic orders, and with experimentally known accurate
values for the dominant magnetic coupling constants.84–92

The list of compounds studied in this work includes
La2CuO4, KCuF3, KNiF3, NiO, and La2NiO4. For each of
these systems we defined appropriate embedded-cluster
models which are described below. There is compelling evi-
dence that these embedded-cluster models provide an ex-
tremely good representation of these magnetic systems with
magnetic coupling constants computed from accurate
configuration-interaction calculations which are in excellent
agreement with experiment.74–76

The cluster models used in this paper present three differ-
ent and well-separated regions. The first and second regions
are treated quantum mechanically whereas the third region is
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treated in a classical way. The first quantum region contains
two magnetic centers, which here will be either Cu or Ni
depending of the system under to study, and the anions �F or
O� directly in contact with the magnetic centers. Previous
works16,74–76,82,83 show us that the magnetic coupling con-
stant is a local property involving only the interacting mag-
netic sites, and the full magnetic interaction is recovered by
including their nearest anions. An important remark here
concerns the total number of electrons entering in the calcu-
lation, which is an external input. The number of electrons is
chosen taking into account formal charges for the atoms in
the first region although any possible covalent effect is ex-
plicitly taken into account when minimizing the energy as a
functional of the density. The second quantum region in this
model contains a representation of the next-nearest-neighbor
cation surrounding the explicit anions in the first region at-
oms. This representation consist of the cation formal charge
plus a potential accounting for exclusion effects between
electrons from the first region and the electronic density that
one would have in the second region. The resulting entity is
usually defined as a Total Ion Potential �TIP�. The use of
TIPs prevent an artificial polarization of the anion electronic
density toward the next-neighbor cations when represented
solely by a positive point charge.93 The TIP consists simply
of an appropriate pseudopotential,94–98 a net charge, and
bears no electrons, they constitute a bridge between the first
fully quantum mechanical region and the point-charge repre-
sentation of the rest of the ionic crystal which consists of a
sufficiently large array of point charges chosen to provide an
accurate representation of the Madelung potential in the cen-
tral region of the quantum cluster.99 Note that the final em-
bedded cluster is neutral, not periodic, and conserves crystal
point symmetry. The position of the atoms, TIPs, and point
charges in the cluster models correspond to the experimental
geometry taken from the crystal structures.84–92 This proce-
dure allows one to investigate the performance of a given
computational approach without mixing problems derived
from an inaccurate geometry. Note that the magnetic cou-
pling constant is a property extremely sensitive to the dis-
tance between the magnetic sites with huge variations result-
ing from tiny changes in the distances, see for instance Refs.
98 and 100 and references therein.

The embedded clusters used for each system all contain
two magnetic centers and their corresponding first-neighbor
anions and are built as follows: for La2CuO4 the first region

is represented by a Cu2O11 cluster model, this is surrounded
by 12 TIPs representing the La cations above and below the
CuO2 plane and six TIPS representing the Cu cations con-
nected to the cluster anions in the surface plane and, finally,
the Cu2O7 plus TIPs are surrounded by an array of 1006
point charges representing the Madelung potential. The first
quantum region of the embedded-cluster model for KCuF3
and KNiF3 is Cu2F11 and Ni2F11, respectively. As described
in previous work,101–103 these quantum clusters are sur-
rounded by 12 TIPs representing K cations and 10 TIPs rep-
resenting either Cu or Ni, respectively, and the resulting re-
gion is surrounded by an array of 430 point charges. Note
that for KCuF3, one may have magnetic coupling in the a ,b
plane or on the c directions. The model just described is used
to investigate the coupling through the a ,b plane. An identi-
cal quantum region is used to investigate the coupling along
the c direction but with an array of 560 point charges. For
La2NiO4 we use a Ni2O11, 12 La TIPs, 6 Ni TIPs, and 2036
point charges. Finally, let us consider NiO which provides a
beautiful example of a system with two different dominant
magnetic coupling parameters, a next-nearest-neighbor
dominant interaction J2 along the Ni-O-Ni path involving
angles with 180° and a smaller nearest-neighbor interaction
J1 involving a Ni-O-Ni interaction through 90°. In this case
one also needs two different clusters which are schematically
shown in Fig. 1. These are an embedded Ni2O10 cluster
model with 26 TIPS and also 1288 point charges used to
extract the J1 magnetic coupling parameter �Fig. 1�a�� and an
embedded Ni2O11 cluster with 30 Ni TIPs and 1288 point
charges used to extract J2. In all cases the magnitude of the
charges is chosen according to the formal oxidations state
except for charges at the array edge which are chosen ac-
cording to the Evjen method.99

IV. COMPUTATIONAL DETAILS

Density-functional calculations have been carried out for
the embedded-cluster models described in the previous sec-
tion using the well-known and widely used B3LYP
functional34,37 and two-range-separated hybrid functionals.
These are the Heyd, Scuseria, and Ernzerhof short-range
screened hybrid functional �HSE�68 and the long-range cor-
rected hybrid functional �LC-�PBE� of Vydrov and
Scuseria.64 The HSE functional defined as in Eq. �4�

(a) (b)

FIG. 1. �Color online� Sche-
matic representation of the Ni2O10

and Ni2O11 moieties defining the
first region of the embedded-
cluster models, including the TIPs
in the second region �small exter-
nal dark spheres�, used to extract
the J1 and J2 magnetic coupling
parameters in NiO.
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Exc
HSE��� = aEx

SR-HF��� + �1 − a�Ex
SR-PBE���

+ Ex
LR-PBE��� + Ec

PBE, �4�

corrects the PBE GGA functional104 with a short-range hy-
brid and allows one to properly describe metallic systems.
Values of � ranging between 0.05 and 0.35 a0

−1 have been
recommended to obtain good accuracy and computational
efficiency when applied to molecules and solids. The opti-
mum value in HSE is �=0.11 a0

−1.105 We note that setting
�=0 leads to the hybrid PBE0 functional while for �→�
the resulting functional is the PBE form of the GGA poten-
tial. In HSE, the hybrid aspect of the functional is switched
on in the short range only, whereas the PBE GGA functional
is used at long electron-electron distances. The physical mo-
tivation of HSE is to cut-off the long-range portion of the
Hartree-Fock exchange potential which becomes unphysical
as the band gap closes. Note, however, that �=0.11 a0

−1

roughly corresponds to a spatial range of 9 Bohrs, which is
fairly “long” by most standards and easily includes first and
second neighbors. On the other hand, the LC-�PBE hybrid
functional64 defined as

Exc
LC-wPBE��� = Ex

LR-HF��� + Ex
SR-PBE��� + Ec

PBE �5�

has a different physical motivation with molecules in mind
�as opposed to solids� and aims to restore the proper
asymptotic limit of the molecular exchange-correlation po-
tential. In this approximation, the Fock exchange describes
the long electron-electron distances whereas at short range
the interaction is that given by the PBE �or similar GGA�
functional. The optimum �=0.40 a0

−1 value in LC-�PBE
provides excellent performance for a large number of prop-
erties, including molecular structure, thermochemistry, en-
ergy barriers, long-range charge-transfer processes,64,65 and
magnetic coupling in molecular systems.60 Here, setting �
=0 leads to the PBE functional while for �→� one gets
Hartree-Fock exchange plus the PBE correlation functional.
In general, the LC-�PBE functional has been shown to lead
to an overall improvement for molecular properties over
standard hybrids such as B3LYP or even HSE. For a more
detailed discussion about the importance of Hartree-Fock ex-
change at different ranges, see Henderson et al.61

It is interesting to highlight that the HSE and LC-�PBE
functionals rely on opposed definitions of the range at which
the Fock exchange is active. At first sight this may seem
quite surprising, especially in view of the large improve-
ments over B3LYP results obtained by both range-separated
hybrid functionals. However, it appears that HSE and
LC-�PBE work well because the true important region
where one needs Fock exchange to describe magnetic effects
is the middle-range �MR� region.61 One can get the MR from
the short-range corrected HSE or one can get it from the
long-range corrected �LC-�PBE�, but it is the 2–8 a0 region
where some Fock exchange seems important to describe
magnetic phenomena correctly. This is in line with recent
findings using MR potentials.61,106 Note also that previous
work on molecular magnetic systems shows that, although

both HSE and LC-�PBE functionals largely improve the de-
scription achieved by standard hybrids, LC-�PBE performs
noticeably better than HSE. Here, we explore the perfor-
mance of these two range-separated hybrids in describing
magnetic coupling in strongly correlated solids. We recall
that the magnitude and sign of J results from a delicate equi-
librium between exchange and correlation effects as defined
in wave-function-based electronic structure theory. However,
the meaning of exchange and correlation in DFT is almost
always different since the exchange potential also includes
interactions which are typical of electron-electron static cor-
relation effects and would have to be included in the corre-
lation potential. This is clear from the work of Martin and
Illas42,43 precisely on magnetic coupling and from the discus-
sion in our previous work on molecular magnetic systems60

DF calculations using the exchange-correlation potentials
have been carried out for the embedded-cluster models de-
scribed in the previous section using standard Gaussian basis
sets. For Cu, Ni, O, and F, all electrons are explicitly consid-
ered and described by means of large basis sets which are
essentially those used in previous work;42,43 this also applies
to the choice of the TIPs in the second region of the embed-
ded cluster. The cluster model calculations have been carried
out using a development version of the GAUSSIAN suite of
programs.107

V. RESULTS AND DISCUSSION

Table I summarizes the results obtained by means of the
range-separated hybrid functionals and the embedded-cluster
model representation of the materials of interest. Here we
compare the results from the present hybrid DFT methods
with experimental J values and the precise wave-function
based results obtained using the difference dedicated con-
figuration interaction �DDCI3� method.75 From these results
it is clear that both range-separated functionals systemati-
cally improve the accuracy with respect to the standard
B3LYP hybrid. The improvement affects both ferro- and an-
tiferromagnetic coupling and it is similar for both HSE and
LC-�PBE functionals even if the corrections included in the
functional affect different physical contributions. In some
materials the predicted results are very close to experiment;
this is the case for La2NiO4 where the calculated result is
only 4% of error with respect to the experimental value. In
general, the range-separated functionals predict smaller mag-
netic coupling constants than B3LYP but still larger than the
experimental value. Nevertheless, it is clear that the long-
range corrected LC-�PBE performs considerably better than
B3LYP and also than HSE, at least for magnetic coupling,
although we must add that LC-�PBE still tends to overesti-
mate the band gaps whereas HSE leads to values closer to
experiment. The performance of these range-separated func-
tionals in describing magnetic coupling in the magnetic sol-
ids examined here is in agreement with recent results con-
cerning magnetic coupling in molecular systems.60 The
reduction in the calculated magnetic coupling constant pre-
dicted by the range-separated functionals does not mean a
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reduction in the calculated magnetic moment, estimated from
the Mulliken analysis of the spin density. In fact, the HSE-
and LC-�PBE-calculated magnetic moments are slightly
larger than those arising from the B3LYP potential �Table II�.
The calculated magnetic moment cannot be directly com-
pared to experiment because it is obtained from the approxi-
mate Mulliken population analysis and corresponds to its
spin-only component �i.e., neglecting orbital angular-
momentum contributions�. However, since for a given mate-
rial the B3LYP, HSE, and LC-�PBE calculations are carried
out using the same model and the same GAUSSIAN basis set,
the comparison is meaningful.

In order to have a more quantitative analysis of the per-
formance of these range-separated functionals in predicting
magnetic coupling in magnetic solids, we plot in Fig. 2 the
calculated values in front of the experimental ones. For the
three functionals, B3LYP included, we find a linear trend
with R2 values larger than 0.996 as in Eq. �6�

JB3LYP = 1.6268Jexp + 1.6531,

JHSE = 1.3879Jexp + 1.7540,

JLC-�PBE = 1.2694Jexp + 0.1020. �6�

However, even if the regressions are meaningful, there are
substantial differences between the three functionals. The
slope of the linear plots in Fig. 2 provides a measure of the
accuracy of a given functional, the ideal value being 1.000
and will stand for calculations in perfect agreement with ex-
periment. In a similar way, the independent term is a measure
of the systematic deviation since for the perfect agreement
one will have a 0.000 value. For the B3LYP the slope of
1.6268 and the 1.6531 value for the independent term indi-
cate that the magnetic coupling constants predicted by this
functional present the largest deviation from experiment.
Nevertheless, the almost linear trend indicates that relative

TABLE I. Calculated magnetic coupling constants �J in meV� for the different systems considered in the
present work as obtained from the range-separated hybrid HSE and LC-�PBE functionals applied to the
embedded-cluster models. B3LYP and experimental values are included for comparison. Results from accu-
rate configuration-interaction �DDCI3� cluster model calculations from Refs. 82 and 103 and experimental
values are included for comparison. Positive and negative values correspond to ferro- and antiferromagnetic
couplings, respectively.

B3LYP HSE LC-�PBE DDCI3 Experiment

La2CuO4 −236.56 −201.75 −185.49 −150.0 −146.0 a

La2NiO4 −37.93 −32.16 −30.83 −26.9 −31.0 b

KNiF3 −15.09 −12.55 −12.94 −7.6 −7.4 c

NiO J1 +3.39 +2.85 +2.43 1.33 +1.4

J2 −30.87 −25.87 −25.29 −16.4 −19.0 d

KCuF3 Jab +3.99 +3.18 +1.85 −0.56 +0.35

Jc −57.91 −47.78 −48.94 −28.8 −33.5 e

aReference 85.
bReference 86.
cReference 87.
dReferences 88 and 89.
eReferences 90–92.

TABLE II. Calculated magnetic moments in the antiferromagnetic �AFM� and ferromagnetic states �FM�
for the metal atoms �� in a.u.� in the different systems considered in the present work as obtained from the
range-separated hybrid HSE and LC-�PBE functionals applied to the embedded-cluster models and esti-
mated from the Mulliken population analysis of the spin density. B3LYP values are included for comparison.

B3LYP HSE LC-�PBE

AFM FM AFM FM AFM FM

La2CuO4 0.68 0.71 0.71 0.73 0.71 0.73

La2NiO4 1.81 1.85 1.84 1.87 1.83 1.86

KNiF3 1.79 1.80 1.81 1.82 1.80 1.82

NiO J1 1.72 1.72 1.75 1.75 1.75 1.75

J2 1.65 1.68 1.67 1.70 1.68 1.67

KCuF3 Jab 0.81 0.81 0.83 0.84 0.83 0.83

Jc 0.81 0.82 0.83 0.84 0.83 0.83
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values are well-predicted by this method. For the short-range
corrected HSE functional one finds a slope of 1.3879 and an
independent term of 1.7540, the former being closer to the
ideal value indicating that the corrections included in the
functional have a significant effect on the final calculated J
values. Finally, for the long-range-separated LC-�PBE func-
tional one obtains the best description with a slope of 1.2694
and an independent term of 0.1020. However, even in this
case the calculated J values are always overestimated by
�25% whereas B3LYP-calculated J values are overesti-
mated by �60%.

The general improvement of the range-separated function-
als and, in particular, of the LC-�PBE functional, follows the
trend recently reported for Cu dinuclear complexes and or-
ganic diradicals.60 However, for these molecular systems the
agreement with experiment was slightly better. Reasons for
the different behavior in the strongly correlated systems de-
scribed in the present paper are surely related to the more
compact structure which results in a more confined density
with the subsequent difficulty to describe the subtle varia-
tions through space. In the systems studied here, the distance
between the magnetic centers is smaller than in the molecu-
lar systems described in Ref. 60 with a much more direct
interaction through the bridging ligand. Another possible
source of discrepancy may be the choice of the � parameter.
Note that the value used in the present work ��=0.40� was
optimized in molecular studies and it is well possible that
solids will require a different treatment. In any case, the fact
that improving the functional by improving the physics be-
hind also improves the agreement with experiment provides
strong support for the development of new and improved
density functionals that may eventually be capable of de-
scribing these difficult systems to high accuracy. Note that
these are the first set of density-functional results for mag-
netic coupling which systematically improve the description
provided by the B3LYP hybrid functional. In future work, it
may be feasible to reoptimize a universal screening param-
eter � with magnetic couplings in mind.

An important point concerns the expectation value for the

total spin operator �Ŝ2� in the ferro- and antiferromagnetic
states. For a given material there is no significant difference
between the values obtained by means of one or another of
the hybrid functionals used in the present work. For the high-

spin state it is close to the triplet state for the Cu containing

materials ��Ŝ2�	2.0� and close to the quintet state for the Ni

containing compounds, �Ŝ2�	6.0. For the low spin these val-

ues become �Ŝ2�	2.0 and �Ŝ2�	1.0 as already commented
in the previous section and in line with the arguments from
the mapping procedure strongly suggest that the broken-
symmetry state used to describe the antiferromagnetic state
can be viewed as an almost 50% mixture of high-spin and
singlet states.53,54 Note, however, that pure LDA or GGA
functionals may lead to large deviations for these expectation
values.42,43,53,54

VI. CONCLUSIONS

The performance of the new family of range-separated
hybrid density functionals, short-range screened HSE, and
long-range corrected LC-�PBE, for describing the magnetic
coupling constant in strongly correlated systems with local-
ized spin moments has been assessed through the study of a
broad and representative set of materials including La2CuO4

as an example of superconductor cuprate parent compounds,
NiO, and La2NiO4 as a prototypal transition-metal oxides
with rock salt and perovskite structure and, finally, KCuF3

and KNiF3 as examples of transition-metal fluoride perovs-
kites.

The materials studied are represented by suitable
embedded-cluster models previously validated.74–76 The val-
ues calculated by means of both HSE and LC-�PBE repre-
sent an overall improvement over the description arising
from the standard B3LYP hybrid functionals without large
important differences among them but with the LC-�PBE
functional performing noticeably better and leading to results
in closer agreement with the experimental J value. Neverthe-
less, the fact that both HSE and LC-�PBE perform similarly
well strongly suggests that the true important region where
Fock exchange is needed to describe magnetic effects is the
middle-range �MR�.61 One can get the MR from the short-
range corrected HSE or one can get it from the long-range
corrected �LC-�PBE�, but it is the 2–8 a0 region where some
Fock exchange seems crucial to describe magnetic phenom-
ena correctly. Moreover, it is worth pointing out that the
improvement in the calculated J values by means of these
new hybrid functionals arises from a better physical ap-
proach to the universal exchange-correlation functional al-
though one must accept that these functionals do also contain
some parameters �two in HSE and only one in LC-�PBE�.
Nevertheless, the choice of these parameters is driven by
physical arguments rather than from agreement to experi-
ment. This is appreciably different from other approaches to
hybrid functionals containing several adjustable empirical
parameters.

To summarize, range-separated hybrid functionals allow
us to reach a more quantitative description of the electronic
structure of strongly correlated systems and permits to make
accurate predictions of the magnetic coupling constants of

FIG. 2. �Color online� Plot of calculated vs experimental values
of the magnetic coupling constants for the materials of interest in
the present work. The dashed line corresponds to a perfect fit and is
included as reference.
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these materials. The improvement over previous functionals
relies on physical constraints included in the functional
rather than on parameters fitted to experiment. In fact, the
increased accuracy of LC-�PBE suggests that the approxi-
mations considered in the definition of this long-range cor-
rected hybrid functional have important consequences for the
accurate description of exchange and correlation effects on
the electronic structure of magnetic solids and other systems
exhibiting localized spins.
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