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Optical anisotropic metamaterials: Negative refraction and focusing
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We design three-dimensional (3D) metallic nanowire media with different structures and numerically dem-
onstrate that they can be homogeneous effective indefinite anisotropic media by showing that their dispersion
relations are hyperbolic. For a finite slab, a nice fitting procedure is exploited to obtain the dispersion relations
from which we retrieve the effective permittivities. The pseudo focusing for the real 3D wire medium agrees
very well with the homogeneous medium having the effective permittivity tensor of the wire medium. Studies
also show that in the long-wavelength limit, the hyperbolic dispersion relation of the 3D wire medium can be

valid even for evanescent modes.
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I. INTRODUCTION

Recently, negative index materials (NIMs) and photonic
crystals are receiving more and more attention because of
their extraordinary optical properties such as near-field fo-
cusing, subwavelength imaging, and negative refraction.!~!2
As first proposed, these NIMs have the permittivity, e, and
the permeability, w, simultaneously negative, which are
achieved by overlapping electric and magnetic resonances.
But the double-resonance scheme also causes large reso-
nance losses and technical difficulties in design and fabrica-
tion. In addition to negative index materials, both theoretical
and experimental studies show the properties of negative re-
fraction and subwavelength imaging can also occur in some
uniaxially anisotropic media, which can have lower losses
and be easier to fabricate.!323

For a particular anisotropic medium, where the permittiv-
ity component (g ;) along the direction perpendicular to the
interface is negative, while all other permittivity and perme-
ability components are positive, it has a hyperbolic disper-
sion relation as follows:
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where the definitions for € |, g, k|, and k are shown in Fig.
1(b). Figure 1(a) schematically shows how negative refrac-
tion works in this particular anisotropic medium. The group
velocity can be calculated by v,=Vyw(k), which implies that
the direction of group velocity (energy flow) would be nor-
mal to the equifrequency surface (EFS) and in the direction
where w is increasing. The conservation of k; indicates two
possible solutions in the medium, but the correct one can be
determined by causality—the refracted group velocity should
point away from the interface, as shown in Fig. 1(a). From
Fig. 1(a), we can also see that for an isotropic medium, the
circular equifrequency surface forces the refracted phase and
group velocities to lie in the same line—antiparallel for a
negative index medium, while parallel for a positive index
medium. For an anisotropic medium with a hyperbolic dis-
persion relation, they do not lie in the same line any more
except for the case when k;=0. To be normal to the hyper-
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bolic curves and satisfy the requirement of pointing away
from the interface coming from the causality, the refracted
group velocity has to undergo a negative refraction, which
causes the expected focusing. (Note that the refracted phase
velocity for an anisotropic medium still has a positive refrac-
tion.)

A lot of work has been done in anisotropic metamaterials,
both experimentally'>!® and theoretically.!>!416:17.19-23 1 jy
and Zhang?? derived the hyperbolic dispersion only theoreti-
cally in the Maxwell-Garnett approximation. Although they
showed negative refraction and pseudofocusing in numerical
simulations, they did not obtain the actual dispersion relation
from the realistic simulated metamaterial nor did they dem-
onstrate the effective-medium behavior from realistic simu-
lations. There is a need to demonstrate that the hyperbolic
dispersion survives all the way up to the evanescent waves,
which is essential for potential super-resolution. Silveirinha
et al.,'® apart from analytical calculations, also did not dem-
onstrate the hyperbolic dispersion of the simulated metama-
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FIG. 1. (Color online) (a) Top graph: circular EFS for vacuum
and isotropic media. Bottom graph: Equifrequency surfaces for
vacuum (circle) and negative anisotropic refraction media (hyper-
bolic relation). (b) The definitions for k |, k, £ |, and g used in our
simulations.
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terial. They only showed the near-field imaging (channeling),
which occurs for the special case of a very flat dispersion.
Yao et al.'® did experimental work (negative refraction for
small angles only and no dispersion relation was obtained
from the experiments), and Wangberg et al.'” presented ana-
Iytical work based on the Maxwell-Garnett approximation.
Most of the previous theoretical and numerical work on an-
isotropic metamaterials is done on homogeneous materials,
where the hyperbolic dispersion relation given by Eq. (1) is
used.

In this paper, we use realistic simulations for three-
dimensional (3D) wire media and metal-dielectric superlat-
tices to establish directly that the hyperbolic dispersion rela-
tion is valid up to evanescent modes in the long-wavelength
limit and then retrieve the effective permittivity. A fitting
procedure is exploited to get the dispersion relation from the
field distributions obtained from full-wave numerical simu-
lations of realistic structures. The imaging for a homoge-
neous slab with effective permittivity shows very good
agreement with the realistic structure. (All simulations about
this homogeneous effective anisotropic medium are done by
COMSOL MULTIPHYSICS, an electromagnetic (EM) solver
based on the finite element method.) We have three signifi-
cant contributions to the field of anisotropic metamaterials:
(1) the numerically obtained dispersion relations, (2) the
demonstration of the effective-medium behavior that works
with evanescent incident modes, and (3) our unique method
to obtain the dispersion relations, different from the usual
retrieval procedure based on inverting the scattering ampli-
tudes.

II. SUPERLATTICE OF METALLIC-AIR LAYERS

Before discussing our results on 3D wire media, simula-
tions are performed for a superlattice of metallic layers with
e=-4 and air layers with e=1 as shown in Fig. 1(b). These
simulations are done to check the applicability of our idea
that one can obtain negative refraction and focusing in an-
isotropic media. Our simulation results show the existence of
negative refraction in Fig. 2(a) and pseudofocusing in Fig.
2(c). The focusing simulation is compared with the ray-
tracing diagram [Fig. 2(b)] and the imaging of a homoge-
neous anisotropic slab with the effective permittivity ex-
tracted from the dispersion relation of the metallic-air
superlattice [Fig. 2(d)]. The effective parameters for g, and
€, are obtained by extracting k from the field distribution of
a plane-wave incidence inside the slab and then fitting it with
the hyperbolic dispersion given by Eq. (1). The details for
obtaining the effective parameters g, and &, will be dis-
cussed below. One can see that the pseudofocusing for the
real metallic-air superlattice agrees very well with the homo-
geneous medium.

III. OBTAINED NUMERICAL DISPERSION RELATIONS

To check if the wire medium constitutes our desired ho-
mogeneous effective anisotropic medium, it is straightfor-
ward to obtain its numerical dispersion relation first. For this
purpose, we exploit a fitting procedure to extract k from the
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FIG. 2. (Color online) Material parameters of the metallic lay-
ers: e=—4 and u=1; working frequency f=0.5 GHz; space period
of metallic layers is 0.06 m; width of metallic layers is 0.02 m. (a)
The magnetic field distribution of the group negative refraction in
the metallic-air layer array slab. A Gaussian beam with the trans-
verse magnetic polarization and an incident angle of 30° is incident
on the simulated metallic-air superlattice. The white line indicates
the ray-tracing result. (b) A ray-tracing diagram showing that the
rays coming from a line source are refocused by an anisotropic
medium slab with the effective permittivity & tensor of our simu-
lated metallic-air layer array slab. (c) The magnetic field distribu-
tion of the pseudofocusing of our simulated metallic-plates array
slab with a line source placed 1.25 m from the interface, which
launches a cylindrical transverse magnetic polarized wave. The
thickness and the width of the metallic-air layer array slab are 2.4 m
and 6 m, respectively. (d) The magnetic field distribution of the
pseudofocusing in a homogeneous anisotropic slab with the effec-
tive permittivity of our simulated metallic-air layer array slab (g
=1.7293, &, =-0.7907).

phase propagation. In the long-wavelength limit, electromag-
netic metamaterials should behave like a homogeneous me-
dium. When a plane wave incidents on a homogeneous slab
with an incident angle 6, it forms a stationary wave inside
the slab instead of a traveling wave because of the reflections
at the two interfaces. Since k, represents the field variation
in the perpendicular direction, we can take a cross section
along this direction and analytically obtain the field distribu-
tion in the cross section by considering the multireflections
inside the slab as follows:

FO) = 1 gl 00
—re e
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Here y is the position in the perpendicular direction within
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FIG. 3. (Color online) (a) Schematic of 3D metallic wires em-
bedded in a dielectric matrix. (b) The magnetic field distribution for
the negative refraction in a 3D gold-wire square-lattice medium
with vacuum background and the wavelength A=700 nm. The in-
cident plane wave has transverse magnetic polarization and an in-
cident angle of 45°. The permittivity & for gold is taken from ex-
perimental data (Ref. 24) e=—15.5931+i1.2734 at A=700 nm. The
radius, the length of gold wires, and the lattice constant are 16,
1532, and 70 nm, respectively. The white arrow indicates the direc-
tion of power flow.

FIG. 4. (Color online) The magnetic field distribution of the
pseudofocusing in a 3D gold-wire square lattice medium with a line
source placed 884 nm away from the interface, which launches a
cylindrical transverse magnetic polarized wave at the wavelength
A=700 nm. The permittivity of gold is the same as in Fig. 3. The
background is vacuum. The radius, the length of gold wires, and the
lattice constant are 16, 2732, and 70 nm, respectively. The white
arrow indicates the direction of power flow.
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FIG. 5. (Color online) The numerical dispersion-relation data
from the simulation (solid circles) and the fitted hyperbolic curve
(dashed line). All parameters are the same as in Fig. 4 except the
length of gold wires which is 1500 nm. Note that all kK components
here are normalized by kj, where ky=w/c. The inset shows, as a
typical example, the field distribution for 6;=30° fitted by Eq. (2).

the cross section, F(y) is the field at the position y, A and 6
are the field amplitude and the field phase, respectively, at
the starting point of the cross section in the perpendicular
direction y=y, (i.e., the location of the first interface of the
slab), a is the decay factor of the homogeneous slab, k| is
the perpendicular component of the wave vector k, d is the
thickness of the slab, and r is the reflection coefficient at the
two interfaces.

By fitting the numerically obtained field distribution along
the perpendicular direction in a cross section with the theo-
retical formulas above, we can obtain k, inside the wire
medium slab for an incident plane wave with an incident
angle ;. For k;, we can easily get k=k sin 6; from the in-
cident angle 6;, since k; is conserved across the interfaces,
where k, is the wave vector in the background. Conse-
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FIG. 6. (Color online) The effective permittivity £, and g cal-
culated from Maxwell-Garnett equations (solid lines) and numerical
simulations (squares) for different wire radii. The simulated me-
dium is a 3D square-lattice silver-wire medium in vacuum with the
lattice constant a=20 nm. The wavelength is A=700 nm. The per-
mittivity of silver at A\=700 nm is gg,,,=—20.4373+11.2863, taken
from experimental data (Ref. 24).
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quently, we can have the numerical dispersion relation of the
wire medium by obtaining k; and k, for different incident
angles.

The minimum mean-square fit does, in effect, average the
field distribution on length scales small compared to the fit-
ted effective wavelength. So the effective parameters are ob-
tained for the averaged macroscopic field. The choice of the
cross section for the fit is arbitrary, but the results are prac-
tically independent on the location of the cross section.

IV. 3D ANISOTROPIC WIRE MEDIUM

The first structure for the 3D anisotropic wire medium in
the optical region [Fig. 3(a)] is a 3D gold-wire square lattice
with the wire radius, r=16 nm, and the lattice constant, a
=70 nm, in vacuum. Figure 3(b) shows that the group nega-
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tive refraction occurs when a plane wave with the wave-
length A=700 nm, and the transverse magnetic polarization,
incidents on our simulated slab with an incident angle of 45°,
while the phase velocity still undergoes a positive refraction.
Pseudofocusing can also be seen from Fig. 4, where the
transverse magnetic polarized wave with the wavelength A\
=700 nm, coming out from a line source, is focused inside
the simulated slab and then refocused on the other side of the
slab.

When the geometric parameters, the wire radius r
=16 nm and the lattice constant a=70 nm, are much
smaller than the vacuum wavelength A=700 nm of the inci-
dent EM wave, the 3D wire medium can be considered as a
homogeneous effective medium.?>->’ The numerical disper-
sion relation of this 3D gold-wire square-lattice medium is
obtained and shown in Fig. 5. The effective permittivities,
€, =—1.9082+i0.2391 and &;=1.4455+i0.0044, are obtained

C

FIG. 7. (Color online) (a) The magnetic field distribution of the focusing simulation for the simulated 3D gold-wire square-lattice
anisotropic medium slab with the source 884 nm away from the first interface. (b) Same as (a), but for a homogeneous anisotropic slab with
the fitted effective parameters g =1.4455+i0.0044 and &, =—1.9082+i0.2391. (c) and (d) are the same as (a) and (b), respectively, but for
the magnetic field intensity distribution. (¢)—(h) are the same as (a)—(d), respectively, except the source is 442 nm away from the first

interface. All material parameters are the same as in Fig. 4.
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by fitting the numerical dispersion data into the hyperbolic
dispersion relation [Eq. (1)]. The fitted curve (dashed line)
shows that the fitting is pretty good and the simulated
metamaterial does have a hyperbolic dispersion relation.

We have also used the Maxwell-Garnett equations?®?7 to
obtain the effective &, and g; at A=700 nm for different
filling ratios for the square lattice of metallic wires. In Fig. 6,
we present the fitted results for g, and e, for different radii,
while keeping the lattice constant unchanged. We use the
following expressions for g and &, from the Maxwell-
Garnett theory:

(1+e,+(-feq
(1=fPen+ 1 +feg]

(3)

g1=¢&q

8L=f8m+(1 _f)gd’ (4)

where f is the filling ratio of the metal and ¢,, and ¢, are the
permittivities of metal and dielectric, respectively. Notice
that the effective values of &, and g agree reasonably well
with our fitting procedure. This is due to the effect that the
vacuum wavelength, A=700 nm, is much larger than the lat-
tice constant and the radius of the metallic wires. In other
cases, the effective parameters given by Egs. (3) and (4) do
not agree with our fitting procedure.

For comparison, we replace this 3D gold-wire square-
lattice medium slab with a homogeneous anisotropic slab
with the fitted effective parameters g=1.4455+i0.0044 and
e,=-1.9082+i0.2391. (All other parameters are the same,
such as the thickness and the width of the slab, the source
and the distance between the source and the first interface,
etc.) The simulation results for the magnetic field distribution
and magnetic field intensity are shown in Fig. 7. One can see
that both of them have very good agreements between the
homogeneous slab and the 3D wire medium. The excellent
agreement proves again that our simulated 3D gold-wire
square-lattice metamaterial indeed behaves as an effective
medium, which has a hyperbolic dispersion relation and our
fitting procedure works very well.

To be experimentally feasible, the second structure we
examine is a hexagonal-lattice structure composed of silver
wires in the alumina background. Figure 8 shows the mag-
netic field distributions along a cross section perpendicular to
the magnetic field for two different incident angles (0° and
30°). For the incident angle #=30° case [Fig. 8(b)], one can
see that the group velocity (white arrow) undergoes a nega-
tive refraction inside the simulated medium. A substantial
decay in the perpendicular direction for the magnetic field
and the power flow exists for both of these two different
incident angles [Figs. 8(a) and 8(b)] since the lossy metallic
wires have a very high filling ratio in this particular wire
medium.

By the same fitting procedure, the numerical dispersion
relation for the 3D silver-wire hexagonal-lattice medium can
also be obtained and is shown in Fig. 9(a). The lowest four
points are used to fit with a hyperbolic dispersion curve and
the effective permittivity tensor is £,=5.3653+i0.0708 and
&, =-2.9188+1i0.4571. One can see the large k; points devi-
ate from the fitted curve, even though the lowest four points
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FIG. 8. (Color online) The magnetic field distribution in a 3D
silver-wire hexagonal-lattice medium slab with the alumina back-
ground. The incident plane wave has the transverse magnetic polar-
ization and the wavelength in vacuum A=700 nm. (a) Normal in-
cidence. (b) At an incident angle of 30°. The white arrow indicates
the direction of power flow. The hexagonal-lattice constant a, the
radius r, and the length [ of silver wires are 120, 30, and 1700 nm,
respectively. The permittivities of silver and alumina at the wave-
length in vacuum A=700 nm are &g, =—20.4373+i1.2863 and
£a1,0,=3-1, respectively, taken from experimental data (Ref. 24).

are fitted very well. This occurs because we have a small
wavelength/spatial period ratio of around 3.3 in alumina,
which causes the breakdown of the homogeneous effective-
medium approximation in the large k; region.

To extend the “good-fitted” region to a larger k; range,
where the numerical dispersion points can fit well into a
hyperbolic dispersion curve, we reduce the hexagonal-lattice
constant and the radius of silver wires to smaller values a
=30 nm and r=12 nm, respectively, while keeping all other
parameters the same as before, so we can have a much higher
wavelength/spatial period ratio of around 13. The fitted nu-
merical dispersion relation is shown in Fig. 9(b). The lowest
ten points, which are propagating modes (i.e., k;=ko, where
ko= Vew/c and & is the permittivity of alumina), are used to
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FIG. 9. (Color online) The numerical dispersion (solid circles) and the fitted dispersion curve (dashed line) of 3D silver-wire hexagonal-
lattice media in the alumina background. (a) The lattice constant =120 nm and the radius of silver wires r=30 nm. (b) The lattice constant
a=30 nm and the radius of silver wires r=12 nm. k;=k, corresponds to the propagating modes in the background, while k,>k, corre-
sponds to the evanescent modes. All other parameters are the same as in Fig. 8. Note that all k components are normalized by kj, where

ky=Vew/c and € is the permittivity of alumina.

fit with a hyperbolic dispersion curve. The obtained effective
permittivities are &=22.1505+i1.4693 and e, =-13.7714
+i0.6882. If we use Egs. (3) and (4), the Maxwell-Garnett
effective permittivities are given by g;=25.8371+i2.0791
and &, =-10.5614+i0.7466, which do not agree well with
our fitting parameters. Maxwell-Garnet equations are an ap-
proximation, in particular, known to fail completely for the
usual wire metamaterials in the microwave regime. Here, we
include the comparison of the effective parameters derived
directly from the simulated field distribution with those in
the Maxwell-Garnet approximation to show that for high fre-
quency (low permittivity) and “thick” wires the Maxwell-
Garnet approximation becomes good and can be used to
guide design. (The reason for this is the domination of the
electron mass over the magnetic effective mass for the elec-
trons geometrically confined to the wires at near-optical
length scales and frequencies.) In Fig. 9(b), one can also see
that the numerical dispersion-relation data from our fitting
procedure are fitted very well into a hyperbolic dispersion
curve, even for those large k points, where k; > k. The latter
are evanescent modes in air (and even in the alumina back-
ground of the wire medium), which are converted into propa-
gating modes inside the slab and only attenuated by the
losses of the effective medium. These modes preserve the
information contained in the high spatial frequencies across
the anisotropic slab and are essential for super-resolution ap-
plications.

V. CONCLUSIONS

We present two anisotropic metamaterials that demon-
strate negative refraction and focusing. The first system is a
superlattice of the metal-dielectric structure and the second

system is 3D metallic wires embedded in a dielectric matrix.
We first obtain the numerical dispersion relation for the two
cases by simulating the eigenmodes of the realistic system.
The hyperbolic dispersion relation is obeyed in both cases,
where the effective permittivities have opposite signs in the
two propagation directions. Our simulations of the realistic
structures, as well as the homogeneous simulations, show the
negative refraction for all incident angles and demonstrate
the focusing. The metallic nanowires can be valid for the
evanescent modes in the dielectric background by having a
large wavelength/spatial period ratio, which has important
applications in super-resolution.

In conclusion, we numerically demonstrate that a homo-
geneous effective indefinite anisotropic medium can be real-
ized by a 3D nanowire medium at the optical frequency re-
gion, which can have a negative refraction and
pseudofocusing. We also present a nice fitting procedure by
which we can obtain the numerical dispersion relation of our
3D wire medium and then retrieve its effective permittivity
tensor. Meanwhile, we demonstrate that the hyperbolic dis-
persion relation of the 3D nanowire medium can be valid for
the evanescent modes in the background by having a large
wavelength/spatial period ratio (i.e., in the long-wavelength
limit), which may have important applications in super-
resolution.
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