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We present an interatomic potential for the Mo-S system based on the second-generation reactive empirical
bond-order formalism. An analytic function is introduced to the bond-order term to capture the effect of the
coordination number on the binding energy. The fitting scheme used for this potential is optimized by appro-
priate selection of the functions, training databases, initial guesses, and weights on each residual—the four
factors that are involved in a weighted nonlinear least-squares fitting. The resulting potential is able to yield
good agreement with the structure and energetics of Mo molecules, two-dimensional Mo structures, three-
dimensional Mo crystals, small S molecules, and binary Mo-S crystal structures. We illustrate the capabilities
of the new potential by presenting results of the simulation of friction between MoS2 layers. The results are
consistent with our previous static potential surface calculations using density-functional theory.
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I. INTRODUCTION AND BACKGROUND

Molybdenum disulphide �MoS2� is widely used as a solid
lubricant, as a hydrodesulfurization catalyst, and as a mate-
rial for electronic devices.1,2 Unsurprisingly, therefore, it has
attracted considerable attention in the simulation community.
A number of first-principles electronic-structure calculations
have been performed to characterize the structural,1,3–5

electronic,1,5–9 tribological,7,10–13 and catalytic
properties1,3,5,14–20 of MoS2. Quantum mechanics based first-
principles calculations are, however, less able to simulate
dynamic and kinetic problems, such as tribological sliding,
than molecular dynamic �MD� methods using empirical po-
tentials. Nevertheless, very few molecular dynamic simula-
tions have been performed on MoS2 since no many-body
empirical potential for Mo-S systems has yet been devel-
oped. In this paper we introduce a reactive many-body inter-
atomic potential for the Mo-S system. We anticipate that a
reactive potential for use in MD simulations will lead to
powerful insights into the tribological properties of MoS2.

The framework we adopt for this Mo-S potential is simi-
lar to that used for the reactive empirical bond-order �REBO�
�Refs. 21 and 22� potential, which has proved so successful
for carbon-based systems. We find that this potential is able
to yield good agreement with the structure and energetics of
Mo molecules, two-dimensional �2D� Mo structures, three-
dimensional �3D� Mo crystals, small S molecules, and Mo-S
binary crystal structures.

Abell-Tersoff23–27 and REBO potentials introduce a pa-
rametrized bond-order function into a pair potential to de-
scribe the many-body effects and chemical bonding of a
given system. The bond-order function allows these poten-
tials to use the same parameters to describe several different
bonding states associated with a system. Thus, at least to
some extent, the potential is able to characterize chemical
reactions correctly. The analytic forms for the bond-order
term in the original Tersoff potentials were first parametrized
to group IV elements such as carbon, silicon, germanium,
and their compounds. For example, the Tersoff potential for
Si was parametrized to a number of properties of diatomic
and solid-state structures including their energetics, elastic

properties, and vacancy formation energy. By recognizing
that the Tersoff empirical bond-order scheme is also capable
of describing bonding in molecular single-component sys-
tems such as hydrogen and oxygen, Brenner21 developed the
REBO potential for hydrocarbon systems where single,
double, and triple bonds, as well as radicals and conjugated
bonds, were correctly treated, and the subsequent second-
generation formalism22 improved its performance. Though it
does not treat electrons explicitly or include any quantum
effects, the REBO potential has proved that it can nearly
always be qualitatively predictive and often quantitatively
accurate. Moreover, it is able to model large systems �many
millions of atoms� on standard workstations for relatively
long times �several nanoseconds�, which would be computa-
tionally impossible for more accurate first-principles ap-
proaches.

Unlike other empirical potentials, the REBO potential al-
lows for bond breaking and bond formation to occur over the
course of a simulation. There is also an updated parametri-
zation: the adaptive intermolecular reactive empirical bond
order �AIREBO�,28 which adds another level of refinement
albeit at a computational cost. In 2004, the second-
generation REBO was extended to both CHF �Ref. 29� and
CHO �Ref. 30� systems.

Importantly, for the Mo-S system, Brenner31 showed that
the Tersoff-based approach is fundamentally the same as the
embedded-atom method �EAM� �Refs. 32 and 33� approach,
which is widely used to describe metallic bonding. Indeed,
we have successfully parametrized a many-body potential
based on the Tersoff formalism to describe face-centered-
cubic �fcc� Cu.34

Here, building on the proven framework of the REBO
potential, we develop a many-body Mo-S potential energy
expression that primarily focuses on the structural and elastic
properties of MoS2 while maintaining its transferability to
other systems such as pure Mo structures, low coordinated S
structures, and some other binary structures.

In Sec. II the analytic formalism of this many-body Mo-S
potential is presented. This is followed by an overview of the
fitting scheme used for the parametrization. Within the fitting
framework, the paper gives the fitting results of pairwise
parameters in Secs. II C–II E. To separate the coordination
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contribution from the angular contribution to many-body ef-
fects, a coordination function is introduced to the bond-order
term in the Mo-S potential. This coordination function re-
flects the change in the binding energy as a function of bond
density in a manner similar to that used in the EAM �Refs.
32 and 33� approach. The parameters in the
Lennard-Jones35,36 potential are also given to characterize the
van der Waals �vdW� interaction between the S-Mo-S trilay-
ers. Section III demonstrates the capabilities of the newly
developed many-body Mo-S potential for the case of nanot-
ribology of sliding MoS2 /MoS2 surfaces.

II. MANY-BODY MOLYBDENUM-SULFUR POTENTIAL

MoS2 has a lamellar crystal structure formed by stacking
S-Mo-S trilayers �Fig. 1�. Each Mo atom lies at the center of
the triangular prism formed by its six neighboring S atoms,
thereby forming a MoS6 unit. The bonding in each S-Mo-S
trilayer is mainly covalent in nature and thus strong. By con-
trast, the S-Mo-S trilayers are weakly bonded to each other
by vdW forces.

A. Analytic form of the Mo-S potential

The Mo-S many-body empirical potential has the form

Eb =
1

2�
i�j

f ij
C�rij��VR�rij� − bijV

A�rij��

=
1

2�
i�j

f ij
C�rij���1 +

Q

rij
�A · e−�·rij − bijB · e−�·rij	 , �1�

where Eb is the binding energy of a system and rij is the
interatomic separation between atoms i and j. VR�rij� and
VA�rij� in Eq. �1� are the pairwise repulsion and attraction,
respectively. In addition, f ij

C�rij� is the cutoff function and bij
is the bond-order term. Thus, the first part of Eq. �1� estab-
lishes that the pair interaction between an atom i and a neigh-
bor j depends on the distance between the two atoms, but the

strength of this bond is modified by the bond-order term, b.
The bond-order term can be regarded as a measure of bond
strength, which is determined by the many-body interactions
of the environment on atom i. Thus, this formula allows the
use of the same pairwise parameters to characterize the dif-
ferent bonding states of a system. The first part of Eq. �1� is
the master formula underlying the Abell,23 Tersoff,24–27 and
REBO �Ref. 22� potentials, which was first introduced by
Abell.23 In his original paper, Abell23 argued that the coordi-
nation number is the dominant topological variable in the
determination of the bond order and thus the binding energy.
Generally, the bond-order value decays quickly with increas-
ing coordination number and saturates at high coordination
number.

The pairwise repulsion VR�rij� in Eq. �1� is identical to
that in the second-generation REBO �Ref. 22� potential. In
particular, unlike the Abell and Tersoff potentials, this poten-
tial follows REBO by including a Q /rij term in VR�rij�,
which can adjust the stiffness of the repulsion. The single
exponential decay term in the attractive term, VA�rij�, is the
same as in the original Tersoff potential and simpler than the
sum of exponentials in REBO. The cutoff function, f ij

C�rij�, is
the same as in Tersoff and REBO; it is described below. The
Q, A, �, B, and � in Eq. �1� are pairwise parameters. Since
each type of bond �Mo-Mo, S-S, and Mo-S� has one set of
pairwise parameters, there are three sets of pairwise param-
eters associated with this potential.

The bond order, bij, in Eq. �1� consists of two many-body
terms: the bond angle term, G, and the coordination term, P,

bij = �1 + �
k�i,j

f ik
C�rik� · G�cos��ijk�� + P�Ni�	−1/2

. �2�

P�Ni� is given as

P�Ni� = − a0 · �Ni − 1� − a1 · e−a2·Ni + a3, �3�

where a0–a3 are parameters and Ni is the number of neigh-
bors of atom i, independent of their type, i.e.,

Ni = Ni
Mo + Ni

S, �4a�

where

Ni
Mo = �

k�i,j

Mo

f ik
C�rik� �4b�

and

Ni
S = �

l�i,j

S

f il
C�ril� , �4c�

where f ik
C�rik� and f il

C�ril� are the cutoff functions. Their form
is identical to that of the Tersoff and REBO potentials and is
given by

FIG. 1. Crystal structure of MoS2.
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f lk
C�rij� = 
1 rij � Rlk

min

�1 + cos��rij − Rlk
min��/�Rlk

max − Rlk
min���/2 Rlk

min � rij � Rlk
max

0 rij � Rlk
max.

 �5�

P�Ni� is a newly introduced function to this potential to sepa-
rate the coordination term from the bond angle term. It is
constructed based on the relationship between a summation
of both the angular term and the coordination term �Mtot� and
coordination number �Ni�, where Mtot is defined as

Mtot = � 1

bij
�2

− 1 = �
k�i,j

f ik
C�rik� · G�cos��ijk�� + P�Ni� .

�6�

Assuming the mean value of G�cos��ijk�� is a0 in Eq. �3�,
Mtot thereafter can be expressed alternatively in terms of a1,
a2, and a3,

Mtot = − a1 · e−a2·Ni + a3. �7�

The �ijk in Eqs. �2� and �6� is the angle between bonds ij and
ik. G�cos��ijk�� has the same form as for the hydrocarbon
REBO potential,22 which is a sixth-order polynomial,

G�x� = b0 + b1x + b2x2 + b3x3 + b4x4 + b5x5 + b6x6, �8�

in which b0–b6 are parameters that are fitted. The choice of
this selection for G�cos��ijk�� is justified in Sec. II F. The
many-body parameters, i.e., parameters in G�cos��ijk�� and
P�Ni�, are functions only of the element type, i, and are
independent of the bond type. Thus there are only two sets of
many-body parameters in this Mo-S potential, one for Mo
and one for S.

The cutoff function in Eq. �5� gradually reduces the inter-
actions to zero over the range Rij

min to Rij
max. However, this

artificial termination of interactions is not without problems.
In particular, an unrealistically large force is generated for
interatomic distances in this range. So as to minimize the
effect for any given bond length, it is best to maximize the
separation between Rij

min and Rij
max. It is also important to

make an appropriate choice of the cutoff radius in this Mo-S
potential. The bond length of Mo in body centered cubic
�bcc�, the stable structure in nature, is 2.73 Å, with the
second-neighbor distance being 3.16 Å. It is essentially im-
practical and extremely undesirable to set the cutoff radius
such that only the first nearest neighbors of the bcc structure
are considered. Thus, the cutoff for Mo-Mo bonds is set at
RMo

min=3.5 Å, which is beyond the second-neighbor distance
and allows about 11% strain in the bcc structure before it
reaches RMo

min. The exponential decay of the binding energy
with interatomic separation, as shown in Eq. �1�, makes the
contributions to the energy from third neighbors and beyond
very small. As is well known, the structure of S at 300 K and
1 atm consists of an eight-membered ring, in which the first-
neighbor distance is 2.04 Å and second-neighbor distance is
3.06 Å. Thus, it is reasonable to set RS

min such that only first
nearest neighbors in sulfur will be considered. Generally

speaking, the second nearest Mo-S bonds in any of Mo-S
binary structures �metal sulfides� are much larger than the
first-nearest-neighbor Mo-S bonds. For example, the first
nearest Mo-S bond length in MoS2 is 2.42 Å �see Fig. 1�,
whereas the second nearest Mo-S bond length is 4.56 Å,
which makes their contribution to the energy of the system
negligible. The cutoff radius of Mo-S bonds thus is set so as
to include first-nearest-neighbor interactions only.

With the choice of cutoff, Mo-Mo interactions would be
included in the MoS2 structure for which the Mo-Mo bond
distance is 3.16 Å �see Fig. 1�. Physically, the short-ranged
bonds in MoS2 have both ionic and covalent characters.
Therefore Mo atoms in MoS2 are partially positively charged
with a shorter effective atomic radius than they have in the
neutral state. That is to say, the equilibrium Mo-Mo bond
length within MoS2 when they are in a positively charged
state is shorter than when they are in a neutral state. As a
result, the predicted bond energy as well as bond length of
the Mo-Mo bond in some binary structures will be overesti-
mated based on this charge-free formalism. We compensate
for the charge-free form of the potential by penalizing the
binding energies of some structures that do not exist in na-
ture in the parametrization process �Sec. II B�. Nevertheless,
as we shall see the final fitted potential is still able to de-
scribe the properties of the following structures relatively
well: Mo molecules, two-dimensional Mo structures, three-
dimensional Mo crystals, small S molecules, such as S2 and
S3, and Mo-S binary crystal structures except the hypotheti-
cal ZnS and CsCl structures.

B. Overview of the fitting scheme

The database used for parametrization of the Mo-S poten-
tial is obtained from density-functional theory �DFT� calcu-
lations. However, given the general concern of using conven-
tional DFT to describe vdW forces in layered structures,37,38

two vdW-related parameters of MoS2 are fit to experimental
values for the lattice parameter c and elastic constant c33. All
of the DFT calculations are performed with the plane-wave
density-functional theory software code Vienna Ab initio
Simulation Package �VASP� �Refs. 39–43� using the general-
ized gradient approximation �GGA� �Refs. 44–46� pseudo-
potentials with the core electron correction for Mo. The en-
ergy cutoff is 600 eV. Though it tends to underestimate the
binding energy and give larger lattice constants,1 the GGAs
of Perdew and Wang46 have been widely used in solid-state
applications and have been proved to be quite successful in
predicting relative energetics, elastic properties, and lattice
constants of different phases. It is therefore used in this
work.

Fitting the many-body Mo-S potential consists of three
steps: �1� conducting DFT calculations to obtain the data-

PARAMETRIZATION OF A REACTIVE MANY-BODY… PHYSICAL REVIEW B 79, 245110 �2009�

245110-3



bases that are used for the fitting; �2� fitting the pairwise
parameters and bond-order values of different structures; and
�3� fitting the many-body parameters by treating the pairwise
parameters from the second step as known parameters. In the
first step, a range of structures with different bonding envi-
ronments, including molecules, 2D lattices, and 3D crystals,
is considered. For each structure, the internal energy vs unit
volume �lattice parameter for 2D structures and bond length
for molecules� has been calculated using DFT by homoge-
neously expanding and shrinking the structure. Within the
nearest-neighbor approximation, the resulting energy per
bond Ebond near the bond energy minimum �no more than
�1% strain of equilibrium bond length of each structure� is
fit to a simple parabolic function of the bond length, r,

Ebond�r� = c0 + c1r + c2r2, �9�

where c0, c1, and c2 are parameters. The equilibrium bond
length �

−c1

2c2
�, bond energy, and bond stiffness �the second de-

rivative of the bond energy over the bond length at the equi-
librium state, i.e., 2c2� can be obtained from Eq. �9�. As
discussed above, there are three types of bonds in this Mo-S
system. The databases �bond energy or atomization energy,
bond length, and bond stiffness of different structures� ob-
tained from Eq. �9� are categorized to Mo-Mo, S-S, and
Mo-S databases and presented in Secs. II C–II E, respec-
tively. These three databases are the main training set for
both pairwise parameter and many-body parameter fittings.
In addition to these databases, two more important properties
of MoS2 are calculated using DFT and are considered only in
the parametrization process of many-body terms: the energy
of the stacking fault on the basal plane S �0001� in a single
S-Mo-S trilayer and the elastic constants c11 and c33 of a
single S-Mo-S trilayer. The details of these two properties
are given in Sec. II F.

The fitting algorithm used for the second and third steps is
a weighted nonlinear least-squares method �LSM� with the
Levenberg-Marquardt �LM� �Refs. 47 and 48� minimization.
The fitting algorithm requires a model or function�s� that
relates the response data to the predictor data with one or
more unknown coefficients �parameters�. The algorithm
starts from the initial guesses for the potential parameters
and, based on the functional forms and the fitting data, com-
putes the summation of the weighted square of residuals. The
summed squared residual is then minimized by the LM itera-
tion method. Finally, the fitting returns the optimized poten-
tial parameters and the value of the squared two norms of the
residual �residual norm�. To minimize the arbitrariness of the
results that may be introduced by the choice of initial
guesses, the whole process is iterated using the returned pa-
rameters from previous fitting as initial guesses for the next
fitting iteration step. The residual norm is used to evaluate
the quality of the model and/or functions: the smaller the
residual norm is, the better the functions reproduce the data
used for the fitting. Thus, the residual norm is dependent on
four factors involved in this LSM-LM fitting algorithm:
function�s�, database�s�, initial guesses, and weights on each
residual. In addition to iterating during the LSM-LM fitting,
a number of strategies to optimize the selection of these four

factors are also used in the following parametrization process
of pairwise and many-body parameters.

In the second step, the pairwise parameters �A, Q, B, �,
and �� in Eq. �1� and discrete bond-order values of different
structures of different bond types �Mo-Mo, S-S, and Mo-S�
are fit to the corresponding Mo-Mo, S-S, and Mo-S data-
bases, respectively. Using Mo bonds as an example, a flow
chart of the fitting of pairwise parameters is given in Fig. 2.
The energy per atom or atomization energy in the database is
associated with the bond energy in Eq. �1�. The bond length
and bond stiffness in the Mo-Mo database are associated
with the first and second derivatives of the binding energy
�Eq. �1��, respectively. Thus the model or functions used for
the present LSM-LM fitting �Fig. 2� contain Eq. �1� and its
first and second derivatives. We equally weigh these three
properties of the bond. Within each property �atomization
energy/energy per atom, bond length, and bond stiffness�, the
weight of different structures is chosen to be proportional to
the binding energy per atom of each structure. Thus the more
stable structures �i.e., those with the largest negative ener-
gies� will be more heavily weighted in the LSM-LM fitting.
This weighing strategy is applied to all of the LSM-LM fit-
ting procedures used in this paper. It is worthwhile to note
that not all the data points are used in this parametrization
process. For example, the bond stiffness values of the Mo
molecules are excluded because they are less relevant to the
systems of interest here and because fitting to them decreases
the accuracy of other more relevant properties. The bcc
structure of Mo is of particular interest because it is the
stable bulk phase. Because the ratio of the second- to first-
neighbor distance in bcc is only 1.15 �the first eight neigh-
bors are at 0.866 of the bcc lattice constant, with the 6 s
neighbors at one lattice constant�, it is not appropriate to
consider just the first nearest neighbors, which is the assump-
tion of present fitting scheme. Thus the data points from the
bcc structure of Mo bonding are intentionally excluded. The
same parametrization process has been applied to S-S and
Mo-S systems. The results of the pairwise parameter fitting
for Mo-Mo, S-S, and Mo-S bonds are given in Secs.
II C–II E, respectively.

FIG. 2. Flow chart of the process for fitting the pairwise param-
eters for Mo bonds.
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As discussed in Sec. II A, there are two sets of many-
body parameters in this binary system, one for Mo and one
for S. For each parameter set, there are 11 unknown many-
body parameters �a0–a3 and b0–b6�. The parametrization
process in the third step contains three substeps: �1� fitting
the a1, a2, and a3 based on bond-order values obtained from
the pairwise fitting; �2� iterating the weighted nonlinear
LSM-LM fitting on a0 and b0–b6 and on a1, a2, and a3
alternately using the Mo-Mo and S-S databases for the cor-
responding Mo and S many-body parameters, respectively;
and �3� an overall consideration on both Mo many-body pa-
rameters and S many-body parameters using all the data-
bases �Mo-Mo, S-S, and Mo-S databases and two properties
of S-Mo-S single trilayer� except those excluded for the rea-
sons described above. The flow charts of the first two sub-
steps and the third substep are given in Figs. 3 and 4, respec-
tively.

To reduce the number of parameters to be fit, we start the
third step by fitting a1, a2, and a3 in Eq. �7� to Mtot values as
shown in Fig. 3. As suggested in Eqs. �3�, �6�, and �7�, Mtot is
independent of a0, which is assumed to be the mean value of
G�cos��ijk��. The Mtot values can be directly calculated from
discrete bond-order values of different Mo structures �Eq.
�6��, which are obtained from the pairwise parameter fitting.
The returned a1, a2, and a3 are then considered as known
parameters for the next step of fitting parameters a0 and
b0–b6, where the residual is computed based on the Mo-Mo
database and Eq. �1�, in which the bond-order value is cal-
culated based on Eqs. �3�, �5�, and �8�. The way to compute
Eq. �1� here is not limited to first nearest neighbors. Thus the
bcc phase of Mo is included in the training set from the
second substep onward. The outputs of a0 and b0–b6 are then
used as known parameters to compute the bond-order value
in the next LSM-LM fitting of a1, a2, and a3. The initial
guesses of a1, a2, and a3 for this step of fitting are the outputs
from first substep. The outputs will again be regarded as the
known parameters for the iteration of fitting on a0 and b0–b6.
We repeat this weighted nonlinear LSM-LM fitting until the
residual norm is minimized. The same fitting processes are
applied to the S atoms.

Ideally, the many-body parameters obtained from fitting
to the pure systems would be directly transferable to binary
structures. However, as discussed at the end of Sec. II A, this
charge-free formalism fails to describe some bond properties
in some binary structures. Since the primary focus of this
study is the tribological properties of MoS2, the highly coor-
dinated S structures and some binary structures, in particular
the CsCl and ZnS structures, are not used in the third sub-
step. As shown in Fig. 4, an iteration of two fitting processes,
one process for Mo many-body parameters and the other for
S many-body parameters, is used to optimize the overall fit-
ting results. For the first iteration run, we use the output
parameters from the second substep as input guesses for the
fitting process. The fitting results provide better estimates of
those parameters for the next iteration step. When the fitting
process is applied to the Mo many-body parameters, the S
many-body parameters from previous outputs are considered
as known parameters. In turn, the many-body parameters for

TABLE I. DFT calculated database used in fitting scheme for Mo-Mo bonds.

Structures Coordination number
Bond length

�Å�
Energy per atom

�eV�
Energy per bond

�eV�
Bond stiffness

�eV /Å2�

Dimer 1 1.95 −6.41 −12.82 55.5a

Trimer 2 2.24 −6.53 −6.53 26.1a

Hexagonal 3 2.35 −7.78 −5.19 15.3

Square 4 2.47 −8.25 −4.13 12.4

Diamond 4 2.49 −8.61 −4.31 11.8

Triangle 6 2.61 −8.41 −2.80 6.9

sc 6 2.62 −9.58 −3.19 9.2

bccb 8/14c 2.75a�2.73b� −10.80a −2.70a 8.0a

fcc 12 2.84 −10.38 −1.73 4.8

aNot used in the fitting process of pairwise parameters.
bExperimental value.
c8 is for first-nearest-neighbor consideration and 14 is for first- and second-nearest-neighbor considerations.

FIG. 3. Flow chart of first two substeps of parametrization of the
many-body parameters for Mo.
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Mo are regarded as known when we fit the many-body pa-
rameters for S. The iteration stops when the return residual
norm is minimized. The final results of many-body param-
eters fitting are given in detail in Sec. II F.

In summary, the fitting scheme used here is optimized by
a systematic consideration of the selection of appropriate ini-
tial guesses, the choice and the weighing of the parameters in
the training databases, and functional forms of the terms in
the potential.

The process outlined here is quite general and can be
customized to optimize different training parameter sets and
be used to fit different empirical potentials.

C. Pairwise parameters for Mo

So as to explore as wide a range of bond lengths and bond
angles as possible, the fitting database for Mo systems con-
sists of the Mo dimer, Mo trimer, two-dimensional triangle
�tri�, hexagonal �hex�, and square �squ� lattices, and three-
dimensional simple cubic �sc�, diamond �dia�, bcc, and fcc
crystals. The structural information and properties calculated
by DFT are listed in Table I, where the first-neighbor inter-
actions only are assumed in calculating the bond energy and
bond stiffness.

Since the dimer has only one neighbor, it has no many-
body interactions. Thus both G and P in Eq. �2� are zero and
the bond order of the dimer is unity. The 2D square and 3D
diamond structures both have four first neighbors. The dif-
ference of bond properties between these two structures is
attributable to the different angle distributions, as well as the
different bond lengths. The square structure has two 90° and

one 180° bond angles per atom, whereas diamond has three
109° bond angles. For the same reason, the bond properties
are different in the triangular structure �with the angle distri-
bution of two 60°, two 120°, and one 180°� and simple cubic
structures �with the angle distribution of four 90° and one
180°�. Since the bond-order term is dependent on both the
angle distribution and the coordination numbers, each struc-
ture has a unique bond-order value. As discussed in Sec.
II B, the bond stiffness of the dimer and trimer and the bond
properties of the bcc structure excluded in the pairwise pa-
rameter fitting. Following the fitting scheme in Fig. 2, the
resulting pairwise parameters for Mo bonds are given in
Table II. The selection of the cutoff radii in Eq. �5� for Mo

TABLE II. Parameters for Mo-Mo pair terms.

Q=3.41912939005919 A=179.008013654688 B=716.946492819159

�=1.0750071299934 �=1.16100322369589 Rmin=3.5 Å, Rmax=3.8 Å

FIG. 4. Flow chart of third substep of parametrization of the
many-body parameters.

(a)

(b)

(c)

FIG. 5. Plots of the pair term properties of Mo using the param-
eters in Table II. Top: energy per atom vs bond length, middle:
energy per bond vs bond length, and bottom: bond stiffness vs bond
length.
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bonds is also listed since they are associated with the pair-
wise parameters.

Figure 5 compares the energy per atom �atomization en-
ergy�, energy per bond �within the nearest-neighbor shell�,
and bond stiffness as a function of equilibrium bond dis-
tances in different structures as calculated from DFT and
from the fitted potential �Fit�. As the number of neighbors in
the different structures increases �see Table I�, the strong
electron-electron repulsion increases the equilibrium bond
length �Fig. 5�; as a result, the energy per bond �bond energy�
and bond stiffness decrease as indicated in the middle and
bottom plots in Fig. 5. The only exception is the bond stiff-
ness of bcc �8.0 eV /Å2�, which is larger than that in the
lower coordinated triangle structure �6.9 eV /Å2�, an
anomaly that is attributable to the first-neighbor approxima-
tion, in which all the interactions are ascribed to the first-
nearest-neighbor bonds only. Thus the calculated bond en-
ergy and bond stiffness are larger than they should be. The
overestimation is much greater in the bcc crystal than in the
rest of the structures since the second-neighbor interactions
within the bcc structure contribute more to the bonding than
they do in other structures. To quantify the quality of the fit,
the normalized root-mean-square deviation �NRMSD� of
each bond property in Fig. 5 has been calculated with Eq.
�10�,

NRMSD =
RMSD

xmax − xmin
=

��
i

n

�x̂i − xi�2/n

xmax − xmin
, �10�

where x̂i is the predictor value �open squares in Fig. 5� and xi
is the corresponding response value �solid diamonds in Fig.
5�. The xmax and xmin are the maximum and minimum values
of the response database, respectively. Each difference be-

tween the predictor and response values, i.e., x̂i−xi, is taken
to be the residual. Lower values of NRMSD correspond to
more accurate fits. The NRMSDs for the energy per atom,
energy per bond, bond length, and bond stiffness in Fig. 5 are
0.1%, 1.1%, 5.0%, and 11.1%, respectively. The relatively
large deviation for bond stiffness is primarily due to the big
residuals of the bond stiffness for dimer and trimer structures
�13.7 and 9.8 eV /Å2�, which is not a concern of this study.
In general, the fitting results of bond energy, atomization
energy, equilibrium bond length, and bond stiffness are in
good agreement with the calculated DFT database. It is thus
evident that this formalism is capable of describing the bond-
ing properties of Mo structures using a single set of param-
eters over a large range of interatomic distances and a variety
of structures, including molecules, 2D lattice, and 3D crys-
tals.

D. Pairwise parameters for S

In parametrizing the pairwise interactions for S, we have
also included a variety of different bonding environments.
The DFT results are given in Table III. As is well known, the
stable structure of S at 300 K and 1 atm is the cyclo-
octasulfur molecule, which is an eight-membered ring. The
same fitting scheme that was used for the Mo was used in
this case, and the resulting parameters are given in Table IV,
while the fits to the DFT results are given in Fig. 6. The
NRMSDs for the energy per atom, bond length, and bond
stiffness of S structures are 2.9%, 3.7%, and 2.3%, respec-
tively, which indicate the good agreement between the pre-
dictor data and response data calculated by DFT.

E. Pairwise parameters for Mo-S

A similar parametrization algorithm is used for Mo-S bi-
nary bonds, where the following structures are constructed:

TABLE III. DFT calculated database used in fitting scheme for S-S bonds.

Structures Coordination number
Bond length

�Å�
Energy per atom

�eV�
Energy per bond

�eV�
Bond stiffness

�eV /Å2�

Dimer 1 1.91 −3.28 −6.55 19.68

Trimer 2 2.03 −3.86 −3.86 11.56

Cyclo-octasulfur 2 2.04 −4.06 −4.06 11.42

Hexagonal 3 2.32 −3.30 −2.20 7.67

Square 4 2.38 −3.62 −1.81 5.63

Diamond 4 2.51 −3.13 −1.56 4.87

Triangle 6 2.54 −3.09 −1.03 3.50

sc 6 2.59 −3.51 −1.17 3.67

fcc 12 2.83 −2.84 −0.47 1.64

bcc 8 2.75a −3.01a −0.75a 2.35a

aNot used in the fitting process of pairwise parameters.

TABLE IV. Parameters for S-S pair terms.

Q=0.254959104053671 A=1228.43233679426 B=1500.21248794408

�=1.10775022439715 �=1.1267362361032 Rmin=2.6 Å, Rmax=2.9 Å
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zinc blend �ZnS�, sodium chloride �NaCl�, cesium chloride
�CsCl�, fluorite �CaF2�, quartz �Quartz�, cristobalite �Cristo�,
rutile �TiO2�, and molybdenum disulphide �MoS2�. The
Mo-S database calculated from DFT is given in Table V. The
pair terms for Mo-S bonding are given in Table VI and the
resulting energy per unit and bond stiffness vs bond length is
plotted in Fig. 7. The NRMSD for the energy per unit, equi-
librium bond length, and bond stiffness for Mo-S bonds are
about 1.1%, 15.4%, and 9.2%, respectively.

F. Many-body parameters in the bond-order term

A number of analytic formulas for the bond-order term
have been developed. In the traditional Tersoff potential,24

the bond-order value decays exponentially with the summed
value over the bond angles, which implicitly includes the

effect of coordination number since the number of bond
angles equals the coordination number minus one. The bond-
order term in the second-generation REBO �Ref. 22� poten-
tial is captured in separate angular and coordination terms.
The explicit coordination term �P�Ni� in Eq. �2�� in the
REBO potential is numerically fit to a number of cubic
spline functions depending on the number of neighbors and
the element type of those atoms. This selection of coordina-
tion term provides sufficient freedom to capture the chemical
reactions that take place in the complex hydrocarbon sys-
tems.

In REBO, the angular term, G�cos���� in Eq. �2�, is se-
lected to be a sixth-order polynomial of the cosine of the
angle.22 This can be regarded as the first seven terms of a
Taylor expansion. Since the cosine value varies from −1 to 1
and the inverse factorials in the coefficients decrease rapidly
with increasing order, the first seven terms in the expansion
are adequate to provide an accurate description of the angu-
lar effects. The sixth-order polynomial format also gives a
smooth function up to sixth derivatives, which might be re-
quired for high-order predictor-corrector algorithms. In
REBO, the fitting process for many-body effects starts with
finding the specific G�cos���� values for specific values of �
in pure systems, tentatively assuming that the coordination
effect in the pure systems is zero. Since this assumption is
obviously not appropriate, the fitted G�cos���� is then modi-
fied by another function and the final bond-order values of
the binary systems are adjusted by the coordination term in
REBO.

Unlike the fitting scheme in REBO, we start the many-
body parameter fitting by finding the general trend of the
coordination effect, which is of greatest importance. The
analytic function of the coordination effect is prescribed
ahead of time and takes the form shown in Eq. �3�. It is
actually constructed based on the plot of the summation of
the angular and coordination terms �Mtot� vs coordination
number �Ni�, where Mtot equals �1 /b�2−1, where b is equal
to the bond-order values that are the output parameters of the
previous pairwise parameter fitting.

Figure 8 indicates that as the coordination number in-
creases the bond order decreases; thus, the value of Mtot also
increases. The coordination number has a more significant
effect on the bond order for lower coordinated structures
than for higher coordinated structures, asymptotically ap-

(a)

(b)

FIG. 6. Plots of the pair term properties of S using the param-
eters in Table IV. Top: energy per atom vs bond length and bottom:
bond stiffness vs bond length.

TABLE V. DFT calculated database used in fitting scheme for Mo-S bonds.

Structures No. of bonds per unit
Bond length

�Å�
Energy per unit

�eV�
Energy per bond

�eV�
Bond stiffness

�eV /Å2�

Cristo 4 2.23 −19.67 −4.92 16.22

Quartz 4 2.25 −19.72 −4.93 15.84

ZnS 4 2.32 −14.89 −3.72 13.97

TiO2 6 2.41 −20.09 −3.35 11.63

MoS2 6 2.44 −21.53 −3.60 13.16

NaCl 6 2.49 −14.47 −2.41 8.51

CaF2 8 2.55 −19.47 −2.43 8.10

CsCl 8 2.62 −15.15 −1.89 6.25
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proaching a zero value as the number of neighbors ap-
proaches infinity. These observations are consistent with the
argument of the effect of electron density or bond density on
bond order proposed by Abell23 for Tersoff24 potentials and
by Daw and Baskes for EAM.32,33,49 If the bond order, b,
exponentially decays with the coordination number as de-
scribed in the Abell and Tersoff forms, the squared bond-
order values b2 should also exponentially decrease as the
coordination number increases, but with a different rate.
Thus, Mtot, which is defined as �1 /b�2−1, can be mathemati-
cally expressed as Eq. �7�. The fitted Mtot values are indi-
cated by open squares in Fig. 8. The good agreement be-
tween the calculated and fitted Mtot values validates the
appropriateness of the functional form in Eq. �7�. The slight
difference in Mtot for the structures with the same number of
neighbors, for example, 2D square and 3D diamond struc-
tures, is attributable to the different angular distributions in
those structures. If we assume the mean value of G�cos���� is
a0, and combine Eqs. �6� and �7�, the analytic function of
P�Ni� can thereafter be expressed as Eq. �3�.

As discussed in Sec. II B, the energy of the stacking fault
on basal plane S �0001� in a single S-Mo-S trilayer and the
elastic constants c11 and c33 of a single S-Mo-S trilayer are
considered in the third substep of the step of the fitting
scheme. As indicated in Fig. 1, each atomic layer in S-Mo-S
trilayer is a 2D triangular lattice with one atom at each lattice
point. Based on the relative position of the 2D lattice, there
are three equivalent arrangements, namely, A, B, and C. If it
is assumed that the stacking sequence within a S-Mo-S
trilayer is ABA, the stacking fault on basal plane S �0001�
results in an ABC stacking. The energy difference between
the ABC and ABA stackings is the stacking fault energy in

Table VII. The elastic constants c11 and c33 are obtained by
homogeneously shrinking or expanding a single S-Mo-S
trilayer and then fitting the resulting energies to Eq. �9�,
where the thickness of a single S-Mo-S trilayer is assumed to
be the spacing between two S atom planes. The calculated
results from DFT calculations are listed in Table VII.

Following the overall fitting scheme described in Figs. 3
and 4, the resulting angular and coordination functions of
Mo and S atoms are given in Figs. 9 and 10, respectively.
The fitting results of the stacking fault energy and elastic
properties for single S-Mo-S trilayer are listed in Table VII
together with the results of DFT calculations.

The fitting results of the Mo angular term, G�cos��ijk��,
are given as the solid and dashed lines in Fig. 9. Since the
cutoff radius of Mo-Mo bond is 3.8 Å �Table II�, the second
nearest neighbors in bcc Mo and MoS2 structures are consid-
ered. With this form of G�cos��ijk��, the energy well at the
zero bond angle �ijk, i.e., cos��ijk�=1, will cause the second
nearest neighbors to line up with the first nearest neighbors.
To avoid this spurious energy well, a second angular function
	�cos��ijk�� is introduced and coupled with G�cos��ijk��. The
total angular function retains the value, first derivative and
second derivative at �ijk from 60° to 180° �solid line in Fig.
9� and gradually transitions to 	�cos��ijk�� at 0° �dotted line
in Fig. 9�. Thus, the revised angular function Gnew�cos��ijk��
for Mo atoms is given by

Gnew�cos��ijk�� = G�cos��ijk��

+ 
�cos��ijk���	�cos��ijk�� − G�cos��ijk��� ,

�11�

where the function 
�cos��ijk�� is defined as11


�cos��ijk�� = �0 cos��ijk� � 0.5

�1 − cos�2��cos��ijk� − 0.5���/2 0.5 � cos��ijk� � 1.
� �12�

A similar drop at �ijk from 0° to 60° is observed for the S
angular function. With the cutoff radius 2.9 Å for S-S bonds,
the interactions of the second nearest neighbors are termi-
nated artificially. Within the first nearest-neighbor distance,
the pairwise repulsion in bond jk will be prohibitively high if
atom k lines up with bond ij. Thus, a revised angular func-
tion is not necessary for S atoms.

The coordination term P�Ni� is plotted on a reverse axis
to better display its effects on the bond order or potential
energy. The general trend shown in Fig. 10 is quite similar
to the embedding function in EAM potential for Mo.49 This
is one illustration of Brenner’s observation31 that the EAM

potential formalism is equivalent to the Tersoff potential with
a constant G�cos���� value. The slope of P�Ni� at large co-
ordination number is close to the mean value of G�cos����,
which indicates the saturation of bond-order value at large
coordination number, as suggested in Abell’s original
paper.23

We believe that the above fitting scheme provides a rea-
sonable approach to distinguish between angular and coordi-
nation contributions in neutral systems. The method andana-
lytic functions provided in this potential is general and can
be extrapolated to other systems.

TABLE VI. Parameters for Mo-S pair terms.

Q=1.50553783915379 A=575.509677721866 B=1344.46820036159000

�=1.1926790221882 �=1.26973752204290 Rmin=2.72 Å, Rmax=3.02 Å
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G. Parameters for Lennard-Jones potentials

MoS2 has a lamellar structure. As indicated in Fig. 1, each
MoS2 unit cell consists of two S-Mo-S trilayers and the
S-Mo-S trilayers are bonded to each other by vdW attraction
between S atoms. The vdW interaction in this potential is
described by the well-known Lennard-Jones35,36 form,

ELJ�r� = 4���

r
�12

− �

r
�6	 , �13�

where r is interatomic distance and � and  are parameters.
For nearest-neighbor interactions, the equilibrium Lennard-
Jones spacing r0 is related to  as r0

6=26. Based on Fig. 1,
the distance between two adjacent S atoms from two trilayers
is 3.5 Å. Thus r0 is set to 3.5 Å, i.e.,  is 3.13 Å. Assuming
the vdW interactions from Mo atoms are negligible, the elas-
tic constant c33 of MoS2 unit cell is a result of a serial alter-
native connection of two contributions, one from a single
S-Mo-S trilayer and the other from vdW interactions of S
atoms. Since each MoS2 unit cell contains two S-Mo-S
trilayers and two vdW springs, the c33 for the MoS2 unit cell
can be theoretically expressed as c33=k1k2 /2�k1+k2�, where
k1 is the spring constant for a single S-Mo-S trilayer and k2 is
the spring constant for the vdW interaction of S atoms. The
experimental value of c33 for MoS2 is 52 GPa and the calcu-
lated c33 for a single S-Mo-S trilayer �k1� is 493 GPa �Table
VII�. The elastic constant for vdW interaction �k2� is there-
fore 131 GPa.

A system in which the relative positions of atoms within
the S-Mo-S trilayers are fixed and only the spacing between
two adjacent trilayers is allowed to change is generated to
calculate the c33 of one MoS2 unit. The c33 of this system is

obtained by calculating the energy vs lattice parameter c of
the system. We vary the parameter � in Eq. �13� until the
resulting c33 is 131 GPa. The parameters for the Lennard-
Jones potential for S are given in Table VIII.

H. Predicted structural and mechanical properties of Mo and
MoS2

Using the newly developed many-body Mo-S potential,
the calculated structural and mechanical properties of Mo
and MoS2 together with experimental �Expt.� values and
DFT calculation results are listed in Tables IX and X, respec-
tively.

The lattice parameter and bulk modulus of bcc Mo in
Table IX are two of the 27 data points in Table I. However,
the c11 and c12 values for Mo bcc phase were not part of the
fitting database. Since the bcc structure is cubic, the bulk
modulus B is theoretically related to elastic constants accord-
ing to B= �c11+2c12� /3 in an isotropic system. Based on this
relation, the values of c11 and B calculated by this potential
are used to give the value of c12=306 GPa.

In Table X, the lattice parameter c and elastic constant c33
of MoS2 are optimized by fitting the Lennard-Jones poten-
tial. It is, thus, not surprising that this potential gives a per-
fect fit to the experimental values. The rest of the properties
�lattice parameter a, bulk modulus, and elastic constant c11�
of MoS2 are also part of the fitting database. The fitting
scheme used in this study, however, is an overall consider-
ation of many properties listed in Table I, III, V, and VII, not
particularly focused on lattice parameter a, bulk modulus,
and elastic constant c11 of MoS2. After the compromise made

TABLE VII. Some properties of S-Mo-S single trilayer in
MoS2.

Method
Stacking fault
�eV/MoS2 f.u.�

c11

�GPa�
c33

�GPa�

DFT 0.37 528 500

Fitted Result 0.44 493 511

(a)

(b)

FIG. 7. Plots of the pair term properties of Mo-S using the
parameters in Table VI. Top: energy per unit vs bond length and
bottom: bond stiffness vs bond length.

FIG. 8. The bond order �b� varies as a function of the coordi-
nation numbers in different Mo structures. Plotted is the summation
of the angular and coordination terms �Mtot� vs coordination num-
ber, where Mtot equals �1 /b�2−1. The solid diamonds �Cal� are Mtot

values calculated from discrete bond-order values obtained from
pairwise parametrization process, while the open squares �Fit� are
fitted values of Mtot to Eq. �7�.
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in neglecting the effect of charge, this potential fits the train-
ing database and nonfitted parameters quite well.

I. Summary

Building upon the proven framework of the Abell,23

Tersoff,24–27 and REBO �Refs. 21 and 22� potentials and our
successful experience in potential development,29,30,34 we
have extended the REBO potential to Mo-S systems, espe-
cially MoS2. An analytic function is introduced to the bond-
order term to characterize the effects of the coordination
number on the binding energy. No atomic charges or Cou-
lombic interactions have been included in this Mo-S poten-
tial. In addition, the Lennard-Jones potential has been imple-
mented to properly describe vdW interactions between
trilayers in MoS2.

Within the formalism framework of this Mo-S potential,
the parametrization procedure is similar to the fitting scheme
used in Tersoff’s24–27 and Brenner’s21,22 papers but has been
optimized by a systematic consideration of the four key fac-
tors that are involved in a weighted nonlinear least-squares
fitting.

Followed the improved fitting scheme, this newly devel-
oped many-body potential is capable of predicting reason-
ably good results in energetic, structural properties of pure
Mo systems, S molecules, and selected binary systems. More
importantly, this potential has successfully reproduced the
structural and elastic properties of MoS2, which is the major
interest of this study.

III. CASE STUDY: TRIBOLOGY OF
NANOMOLYBDDENUM DISULPHIDE

MoS2 is the most widely used solid lubricant in aerospace
applications. Results from macroscopic studies of MoS2 have

contributed much to the phenomenological understanding of
its tribology.51–53 However, the macroscopic studies of inter-
actions between two sliding surfaces are influenced by com-
plex factors, including surface topology, which have pre-
cluded the development of an atomic understanding of the
friction and adhesion.51–53 Recently, Liang et al.10 calculated
the static energy surface using DFT calculations to analyze
the sliding MoS2 /MoS2 interface. Limited by the computa-
tional capacity of first-principles methods, the system in that
study consisted of 96 atoms and only considered purely static
effects.

To more realistically analyze frictional sliding, a supercell
with dimensions of 17.4�18.9�6.2 nm3 �Fig. 11� is con-
sidered for our molecular dynamic �MD� simulation of slid-
ing using the MD code that was originally written by
Brenner.21 The system consists of a small S-Mo-S single
trilayer flake of 551 atoms sliding over an extended S-Mo-S
substrate of 11 520 atoms. Periodic boundary conditions are
applied within the plane of the substrate �the X, Y plane�. To
avoid interactions between images along the Z direction, a
5-nm-thick vacuum is added above the flake in this direction.
The load is simulated by manually displacing the S-Mo-S
flake downward toward the substrate in the negative Z direc-
tion. The displaced system is then equilibrated with the at-
oms in the top layer of the flake and the bottom layer of the
substrate being fixed. The resulting force on the top and bot-
tom layers is about 600 nN, i.e., about 2 GPa. The com-
pressed relaxed system is then used to simulate the sliding of
the small flake over the extended S-Mo-S surface. As indi-
cated in Fig. 11, the top S layer of the flake is set to be rigid
but is moved manually at a constant rate of 1 m/s in the Y
direction. The bottom S layer of the substrate is fixed. A
Langevin54 thermostat is applied to the two sides of the sub-

TABLE VIII. Parameters in Lennard-Jones potential.


�Å�

�
�eV�

S-S 3.13 0.00693

TABLE IX. Structural and mechanical properties of Mo.

Mo
a

�Å�
B

�GPa�
c11

�GPa�
c12

�GPa�

Expt.a 3.15 230 450 173

DFTa 3.18 266 444 176

This potential 3.15 239 339 306b

aReference 50.
bCalculated value based on B= �c11+2c12� /3.

FIG. 9. G�cos���� in Eq. �8� vs cos��� for both Mo and S atoms.
The solid and dashed lines are unconstrained fits results of Mo
angular term. To avoid the spurious drop as cos���→1, G�cos����
of Mo is adjusted to solid and dotted lines.

FIG. 10. P�Ni� in Eq. �3� vs coordination number Ni for both
Mo and S atoms. The slope at large coordination number values is
close to the mean value of G�cos����, which indicates the saturation
of bond-order value when the coordination number approaches
large values �Ref. 23�.
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strate such that temperature of the system equilibrates to
�100 K. This thermostat configuration is appropriate, as
thermal transport occurs most strongly in MoS2 within indi-
vidual trilayers rather than between trilayers. The simulation
lasts a total of 5�106 MD steps, and the time step to 0.6 fs.

We track the output structure every 10 000 steps, i.e., 6 ps
or 0.006 nm of sliding. The displacements of the output
structure with respect to the starting structure in the X, Y, and
Z directions of atoms at the bottom layer of the flake are
plotted in Fig. 12�a�. At the same time, the lateral force
�along the sliding direction or the Y axis� and the load �nor-
mal to the sliding direction or the Z axis� on the rigid moving
atoms �top S layer of the flake� and the fixed atoms �bottom
S layer of the substrate� are also calculated. The overall
forces are calculated by averaging the lateral force and load
from the top layer and the bottom layers. The averaged lat-
eral force, load, and the ratio between them are plotted in
Fig. 12�b�.

The MoS2 substrate provides a periodic 2D potential sur-
face, qualitatively identical to the static energy surface pre-
viously determined in our earlier DFT calculations �see Fig.
6 in Ref. 10�. However, our empirical potential cannot quan-
titatively reproduce the height of the energy barriers. In par-
ticular, while the energy barrier to sliding calculated by DFT
is �0.03 eV /atom, the potential gives a value of only 0.003
eV/atom. Thus while it can be expected to reproduce the
correct dynamic path during friction, the MD simulations can
be expected to yield significantly lower friction coefficients.
This limitation in the fidelity of the potential is not unex-
pected since the REBO as applied to graphite yields similarly
lower potential barrier than predicted by DFT.

While the flake is dragged at 1 m/s along the Y axis over
the MoS2 potential surface, the Y displacement �Y disp in
Fig. 12�a�� of the bottom layer of S in the flake increases

linearly, but with slight waviness, indicative of “stick-slip”
phenomena. The X displacement in Fig. 12�a� suggests that S
atoms at the top of the sliding interface periodically move
about 0.04 nm to the right and return to the original X posi-
tion. The zigzag route of atoms at the interface is completely
consistent with the predicted sliding pathway �path I in Fig. 6
in Ref. 10� from DFT calculations. Comparing Fig. 6 in Ref.
10 with the Z displacement and the load curve in Fig. 12, the
load �along Z direction�, as well as the displacement in Z
direction, has an instant response to the potential surface.
However, the lateral force is unable to follow the potential
surface adiabatically, as indicated in dashed line L in Fig.
12�b�. The ratio of the lateral force to load ratio varies be-
tween −0.8 and 0.9 during sliding. A 50-period moving av-
erage of the ratio is also plotted in Fig. 12�b�. The moving
average of the F// / load ratio fluctuates from −0.2 to 0.3 with
the mean value of 0.17, which is consistent with the low

TABLE X. Structural and mechanical properties of MoS2.

MoS2

a
�Å�

c
�Å�

B
�GPa�

c11

�GPa�
c33

�GPa�

Exp.a 3.16 12.29 76 238 52

DFTa,b 3.10 12.47 68 237 41

This potential 3.16 12.29 75 242 52

aReference 19.
bThe mean values from the literature.

FIG. 11. �Color online� System configuration for friction study
consists of a small flake of MoS2 sliding over an extended MoS2

surface.

(a)

(b)

FIG. 12. �Color online� �a� Displacement �with respect to the
relaxed system� of atoms at the interface in X �X disp�, Y �Y disp�,
and Z �Z disp� directions; �b� load, lateral force �F//�, and F// / load
ratio vs sliding distance. Red dotted line �Mov. Avg.� is the 50-
period moving average of the ratio.
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values of friction determined experimentally for MoS2. At
position A, the calculated ratio in this study is about 0.42,
which is significantly lower than the value of 1.38 deter-
mined from the static DFT energy surface. As argued in Ref.
10, the static energy surface calculation is a significant over-
simplification of the experimental situation because, in a dy-
namic sliding process, not all the atoms settle fully into their
local minima.

In summary, this newly developed Mo-S potential can be
readily applied to examine tribology in MoS2 systems with
MD simulations and has the potential to provide powerful
insights of the tribological properties of this material.

IV. CONCLUSIONS

The paper introduces a many-body empirical potential for
Mo-S systems using the master formula that underlie the
Abell, Tersoff, and REBO potentials. A coordination function
inside the bond-order term is constructed based on the gen-
eral trend of bond-order values over the coordination number
in different structures, which in turn reflects the coordination
contribution to the binding energy properly. Following the
same parametrization sequence in the Tersoff and REBO po-
tentials, we have optimized the fitting scheme by a system-

atic consideration of the four key factors that are involved in
the fitting. The resulting potential yields good agreement
with the structural and mechanical properties of Mo and
MoS2. Both the fitting scheme and analytic functions used in
this potential are general and can be customized for the spe-
cific interests of the study of other systems.

A case study of sliding a MoS2 flake on a periodic MoS2
surface is carried out to test the validity of the newly devel-
oped potential. The results from this case study are consistent
with DFT calculations that are used to simulate the static
potential surface of a similar sliding process. With those ob-
servations during the sliding, we therefore believe that the
newly developed Mo-S potential is capable of capturing the
fundamental physical processes associated with sliding. A
systematic study of tribological properties of MoS2 using this
potential is ongoing.
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