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Combining ab initio techniques and the analytic properties of the electron Green’s function, we outline a
method for calculating quasiparticle properties under the electron-phonon interaction. The presented scheme is
a generalization of the work by Engelsberg and Schrieffer �Phys. Rev. 131, 993 �1963�� to finite temperatures
and is suitable for being applied to complex materials, where the electronic and vibrational properties are
calculated from first principles. We show that under some circumstances, the low-energy dynamical properties
are well described by quasiparticles, but at the same time the renormalization effects on quasiparticle lifetimes
and energies can be very important. The bare second-order perturbative �such as Fermi’s golden rule� results
for the self-energy are compared with self-consistent ones. The theory is first illustrated with the simple
Einstein and Debye models at finite temperatures. Thereafter we consider realistic materials such as the
1�1 hydrogen-covered �deuterium-covered� W�110� surface and the superconductor MgB2.
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I. INTRODUCTION

The Fermi-liquid theory is based on the idea that close to
the Fermi level, the interacting electron gas has a one-to-one
correspondence with its noninteracting counterpart, and that
due to many-body interactions the actual electronic excita-
tions, i.e., quasiparticles �QPs�, acquire finite lifetimes and
renormalized energies and velocities.1–3 Physically, a quasi-
particle state is viewed as the original noninteracting state,
but dressed—or surrounded—by an “interaction cloud,”4

which is responsible for the renormalization. The actual ve-
locities and lifetimes of quasiparticles have an important im-
pact on thermodynamical and transport properties of real
materials.5,6 This is the reason why understanding the renor-
malization effects caused by electron-phonon interaction has
been subject of intense experimental and theoretical activi-
ties during the last years. The decisive impulse came from
the experimental side, with the advent of high-resolution
angle-resolved photoemission spectroscopy �ARPES�.7,8 Re-
cent developments have led to a very high resolution, i.e., in
the meV range, which, in turn, brings out effects that pose a
challenge for many-body theories. In this line, surfaces and
Shockley-type surface states represent privileged systems for
probing many-body theories, since surfaces are directly ac-
cessible by ARPES. There are several outstanding surface
systems where the strong influence of the electron-phonon
interaction on quasiparticle dispersion and lifetimes has been
clearly demonstrated,9–13 and some review papers14–18 cov-
ering the subject.

The many-body Green’s-function theory1,19 represents the
most appropriate framework for describing and even defining
quasiparticles. In this theoretical framework, an ideal quasi-
particle appears as an excitation with a perfect Lorentzian-
shaped spectral function A���=� / ���−�qp�2+�2�. In this
simplest case, the energy-time uncertainty principle and the
energy width � allow definition of the decay time �=1 /�.
The position of the peak, �qp, provides the quasiparticle en-

ergy. The quasiparticle picture is then well justified as long
as the actual spectral function �measured or calculated�
shows an approximate Lorentzian profile. If only one such
peak is present, one can say, in turn, that a single-
quasiparticle picture is valid. However, it has been found
that electron-phonon interaction introduces more complex
structures than simple Lorentzian functions, and that several
peaks can be observed, as shown theoretically6,20,21 as well
as experimentally in many surface systems9,11,12,17,18,22 and in
high-Tc materials,8,23–26 among others. In all the above ex-
amples, the electron spectral functions show �at least� two
peaks for electron states close to typical phonon energies,
and make it clear that the single-quasiparticle picture breaks
down.9 This was first pointed out by Engelsberg and
Schrieffer20 �ES� in a pioneering theoretical work investigat-
ing simple ideal systems. In particular, ES studied the
electron-phonon interaction in the Einstein and Debye mod-
els at T=0 and demonstrated that considering the Dyson
equation1,6,19 in the full complex plane gives rise to two qua-
siparticle solutions, one behaving similarly to a polaron and
the other one behaving as a damped dispersing electron state.
As far as the authors know, these ideas have only been con-
sidered as a conceptual tool, but without application in real
material systems, until very recently.21

The state-of-the-art of theoretical framework for obtaining
quasiparticle energies and lifetimes consists of calculating
the appropriate Eliashberg function and the subsequent com-
putation of the second-order perturbative electron self-energy
�.10,27–29 The electron lifetimes are directly obtained from
the imaginary part of the self-energy, �I. The real part �R is
commonly considered to be uniquely responsible for the
band distortion or renormalization. This is a simplified pic-
ture because the effects of real and imaginary parts appear
separated, in contrast to the conclusions of the work by ES,
who first showed that both should be considered self-
consistently. The need for a self-consistent treatment is un-
derstood taking into account that the real part of the electron
self-energy is not only a function of real energies, but a func-
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tion of both the real and imaginary components. As will be
shown, the separation of the original complex Dyson equa-
tion into imaginary and real components can be achieved
only by ignoring the effect of the imaginary energies on the
electron self-energy. This would be well justified for elec-
trons with negligible lifetime broadening �in comparison to
the real part of the self-energy�, but this is not generally the
case, particularly in the electron-phonon problem. The only
general method for estimating renormalization corrections is
the so-called quasiparticle expansion approach �to be intro-
duced later�, which assumes a weak imaginary part of the
self-energy, and demonstrates a very limited range of valid-
ity.

In this paper we consider the electron Dyson equation in
the full complex plane, similarly as ES did, but including
finite temperatures and combining it with ab initio electron
structure theory. This allows us to find quasiparticle poles in
a realistic and self-consistent way, without neglecting the
imaginary part of the self-energy. In particular, we show that
the full �complex� Dyson equation shows several quasiparti-
cle solutions. Thus, the formalism provides a broader quasi-
particle interpretation, since several quasiparticles are found
in a natural way, without any ad hoc assumption. In this line,
we investigate under which circumstances the spectral func-
tions are well represented not within a single-quasiparticle,
but rather a multiple-quasiparticle picture, checking if the
multiple peaks observed in the spectral functions can be
traced back to calculated multiple quasiparticles.

We consider three example systems in order to illustrate
the theory. These are the simple Einstein and Debye models,
which we treat quite in detail, bulk MgB2, and the 1�1
hydrogen-covered �and deuterium-covered� W�110� surface.

II. THEORY

In standard many-body perturbation theory,1–4,19 the self-
energy �k�r� ,r ,E� and the electron Green’s function
Gk�r� ,r ,E� are the two key quantities. Gk�r� ,r ,E� describes
the propagation of an electron with momentum k from r� to
r within an interacting many-body system,1 and �k�r� ,r ,E�
encodes the information about the scattering processes. De-
noting by G0 the noninteracting Green’s function, the geo-
metric sum of the perturbative series G=G0+G0�G0

+G0�G0�G0
¯ formally leads to the well-known Dyson

equation, expressing the exact relation between G and �,

G�r,r�,E� = �G0�r�,r,E�−1 − ��r,r�,E��−1, �1�

and the equation for the quasiparticle poles,

Det�Gk
0�r,r�,E�−1 − �k�r,r�,E�� = 0. �2�

Equation �2� is the nonlocal version of the Dyson equation,
and represents a nonlinear eigenvalue problem for the quasi-
particle energies zqp�k ,n�=ER�k ,n�+ iEI�k ,n� and wave
functions �k

qp�n ,r�. n labels the different possible solutions.
If �k�r ,r� ,E� were an energy-independent function, the sys-
tem would become linear, and one would obtain a unique
solution for each electron wave vector k. Thus it is the en-
ergy dependence of � �the nonlinearity� that enables the ex-
istence of several quasiparticle states for the same k.

At the moment, we have considered E as a purely real
variable. However, it is well known that quasiparticles with
mere real energy �infinitely long living� do not exist in the
thermodynamic limit,3 and thus the corresponding poles
must have finite imaginary components. The review by Farid
in Ref. 3 treats this subject in detail. In order to obtain the
complex poles of the Dyson equation, we must extend the
theory into the complex plane. In other words, � and G need
to be considered not only as complex functions, but also as
functions of complex energy. However, simply replacing E
with its complex counterpart z does not work; i.e., it leads to
a Dyson equation without solution. This is easily shown as
follows. Replacing E with z in G and �, one obtains that
these functions follow the reflection property

��z�� = ��z��, G�z�� = G�z�� . �3�

Thereby G�z� is the analytic continuation of G�E� from the
real axis into the entire upper half plane,1 where G is analytic
everywhere for Im�z�	0 as implied by causality.30 This is
the reason why the branch in the upper �lower� half plane is
commonly referred to as the �un�physical Riemann sheet.
This leads us to the contradiction, however, that Eq. �3� im-
plies poles in both half planes, because if zqp is a pole of
G�z�, so should �zqp�� be, and causality implies the existence
of poles only in the lower half plane �if any�. Thus, one
concludes that substituting G�z� and ��z� in the Dyson equa-
tion does in general not provide any solution, except for the
real axis in some exceptional �academic� cases.3 From Eq.
�3�, it is also clear that ��z� and G�z� are discontinuous
across the real axis if �I�E+ i0+� is finite.

The solution to this apparent problem is well known1,3

and consists of considering the analytic continuation of G
from the upper into the lower half complex plane. Thus, in
order to find a meaningful Dyson equation, one must proceed
as follows. Replace E with z in G for the upper half plane,
and analytically continue �by whatever method� the so-
obtained G�z� from the upper to the lower half plane. In this
way we obtain a Green’s function which is analytic for
Im�z�	0, but at the same time has all its possible poles
located in the lower half plane. As an example, one could
calculate G�z� for Im�z�
0 by means of standard second-
order perturbation theory, and then consider a Padé approxi-

mation for Im�z��0. In the following, we will refer by G̃�z�
the so-obtained analytically continued function, in contrast to
G�z� which exhibits reflection symmetry, i.e., G�z��=G�z��.

The true quasiparticle equation is then

Det�G̃k
0�r,r�,z�−1 − �̃k�r,r�,z�� = 0, �4�

with G̃�z� and �̃�z� referring to the functions obtained by the
above described procedure. Writing Eq. �2� in the basis of the
unperturbed set of electron eigenstates �i,k

0 , we obtain

Det��z − �i,k�i,j − �̃i,j,k�z�� = 0, �5�

where �̃i,j,k�z���� j,k
0 �r����̃k�r ,r� ,z���i,k

0 �r��. Equation �5�
demonstrates that neglecting the nondiagonal components,
we obtain a simpler Dyson equation with the same form as
found for homogeneous systems,
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z − �i,k − �̃i,k�z� = 0, �̃i,k � �̃i,i,k. �6�

In principle, the quasiparticle wave functions �i,k
qp�r� are

also available from Eq. �4�. Calculating �k
qp�r� in real space

would directly visualize the “dressing” of quasiparticles, but
as far as the authors know, such calculations have not been
performed so far.

In the following, we will only consider the diagonal form
of the Dyson equation. The real and imaginary components
of Eq. �6� constitute two coupled nonlinear equations

ER�k� = �i,k + Re��̃i,k�ER + iEI�� ,

EI�k� = Im��̃i,k�ER + iEI�� . �7�

The complex solutions zqp�k ,n�=ER�k ,n�+ iEI�k ,n� repre-
sent the energies �ER�k ,n�� and lifetimes �1 /�=EI�k ,n�� of
the quasiparticle states, with the index n labeling them. In
principle, Eq. �7� must be solved self-consistently, and the
main problem consists of obtaining the analytically contin-

ued self-energy �̃�z�. Staying on the real axis, one can, of
course, avoid any analytic continuation. Hence, as already
mentioned, it is customary to simply neglect the effect of the
imaginary part of the energies in the argument of the self-
energy:

ER
�1��k� = �i,k + Re��̃i,k�ER

�1� + i0+�� , �8�

EI
�1��k� = Im��̃i,k�ER

�1� + i0+�� . �9�

The upper index �1� indicates that we consider this as a first
approximation. We will refer to these equations also as first
renormalization. The advantage of Eqs. �8� and �9� is that
they appear to be decoupled, and that the imaginary part of
the self-energy, EI

1, directly provides an approximate inverse
lifetime. Unfortunately, there is no justification for the above
approximation, since the basic assumption is to ignore EI
inside the self-energy, while it is well known that in the
electron-phonon problem, real and imaginary parts of � are
generally of the same order. In any case, Eq. �8� gives the
correct quasiparticle dispersion close to the Fermi level and
T=0 because EI→0 in this limit. At T=0 and just at the
Fermi level, where Eqs. �8� and �9� are still valid, the effec-
tive mass of quasiparticles is enhanced by m=m0 / �1+��,
where m0 is the bare electron mass, and � is a dimensionless
parameter.6 � reflects the strength of the electron-phonon
coupling and is defined as

� � − ��R�E�/�E�E=0. �10�

In the low-energy, low-temperature range, the quasiparticle
dispersions are renormalized compared to the unperturbed
values �i,k, according to the first renormalization, i.e., ER

�1�

=�i,k / �1+��. In Sec. II A we will make a step beyond the
above approximation �Eqs. �8� and �9��, by including a first
correction arising from the imaginary part of the poles.

A. Quasiparticle expansion

The so-called quasiparticle expansion is the most popular
approximation for improving over the results obtained by

Eqs. �8� and �9�, which completely ignore the effect of the
imaginary part of the poles in the argument of the self-
energy. Opposite to the procedure in which one obtains the

analytic continuation �̃ exactly for the lower half complex
plane, here the idea is to treat the continuation only approxi-
mately. This is done by means of a first-order Taylor expan-

sion of ��z� around z0=ER
�1�+ i0+, i.e., by considering �̃�z�

	��z0�+ �z−z0����z0� in the Dyson equation. In this way,
ER

�1�, given by Eq. �8�, is considered as a first estimate, and
the improved but still approximate Dyson equation reads

zk
qp − �k − 
��ER

�1��k�� + �zk
qp − ER

�1��k�����ER
�1��k��� 	 0.

�11�

The inferred pole zk
�2�,qp is straightforwardly equated from the

above equation, and its real and imaginary parts are

ER
�2��k� = ER

�1��k� − �I�ER
�1��k��Im

1

1 − ���ER
�1��k��

, �12�

EI
�2��k� = �I�ER

�1��k��Re
1

1 − ���ER
�1��k��

. �13�

Thereby we have made use of Eqs. �8� and �9�. The denomi-
nators in Eqs. �12� and �13� represent the imaginary and the
real parts of the quasiparticle renormalization factor

Zqp�z� �
1

1 − ���z�
. �14�

Thus the above equations may be rewritten as

ER
�2��k� = ER

�1��k� − EI
�1��k�Im
Zqp�ER

�1��k��� , �15�

EI
�2��k� = EI

�1��k�Re
Zqp�ER
�1��k��� . �16�

Equation �15� shows that ER
1�k� is shifted due to the imagi-

nary parts of both � and Zqp. The imaginary part of the poles
is renormalized by the real part of Zqp.

We will refer to this step as a second renormalization,
representing the first correction due to the imaginary part of
the poles in the energy argument of the self-energy. Unfor-
tunately, the range of validity of the above equations is really
limited, mainly because of the poor quality of the analytic
continuation obtained by means of a first-order Taylor expan-
sion. Note, for instance, that the quasiparticle renormaliza-
tion factor Zqp diverges for ���1, a limit easily reached in
electron-phonon interaction. Therefore the importance of Eq.
�15� is mainly conceptual, as it shows that the real and
imaginary parts of the quasiparticle poles are strongly
coupled, and that a simple expansion cannot cope with the
problem.

In the following sections, we will deal with the solution of
the full Dyson equation instead of the simplified Eq. �8� or
�15�, and the energies without index �ER and EI� will indicate
the complete solution.

B. Quasiparticle spectral function

It is convenient to introduce the spectral function before
analyzing the complex Dyson equation. The imaginary part
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of the electron Green’s function gives the electron spectral
function as a function of energy,

Ak�E� = −
1

�
Im�Gk�E + i0�� = −

1

�
Im�G̃k�E + i0�� .

�17�

Let us suppose for a moment that the analytically continued
Green’s function

G̃�z� =
1

z − �i,k − �̃k�z�
�18�

has only one pole located at zk
qp=ER�k�+ iEI�k� in the lower

half of the complex plane. Then the first-order Laurent ex-

pansion of G̃�z� around zqp is given by

GL�z� =
Zk

qp

z − zk
qp , �19�

with the renormalization factor Zk
qp �Eq. �14�� evaluated at

zk
qp. Note that Zk

qp is complex in general, and the imaginary
part of the expansion gives rise to two terms,

Ai,k
L �E�� = − Im Zk

qp

E − zk
qp� =

− EI�k��Zk
qp�cos��k

qp�
�E − ER�k��2 + EI�k�2

+
�ER�k� − E��Zk

qp�sin��k
qp�

�E − ER�k��2 + EI�k�2 ,

where we have defined

�k
qp = Im�ln�Zk

qp��, Zk
qp = �Zk

qp�ei�k
qp

. �20�

If �k
qp=0, i.e., if Zk

qp is a real number, the ideal quasiparticle
spectral function is recovered:

Ai,k
L �E� =

− EI�k�/�
�E − ER�k��2 + EI�k�2 .

The real part of the renormalization factor reflects the total
spectral weight of the quasiparticle state,

Wi,k � �
−�

�

Ai,k
L �E�dE = cos��k

qp��Zk
qp� . �21�

A finite imaginary part of Zk
qp ��k

qp�0� plays the role of
distorting the ideal Lorentzian shape but keeping the total
weight constant �see the approximate Eq. �15��. If Zk

qp were
purely imaginary it would not give any net contribution to
the spectral function. This is schematically shown in Fig. 1,
taking a pole located at zqp=2− i as an example. The left
panels refer to the case where Zqp is purely real, while the
ones to the right correspond to the case where �=� /6. In the
bottom and top panels we show the model spectral functions
A�z�=−Im�Zqp / �z−zqp�� /� for a part of the complex plane
and for the real axis, respectively. The contribution of a pole

to G̃�z� behaves like a dipole for A�z� but rotated by an angle
� with respect to the y axis. A pole with a purely real Zqp

produces a perfectly Lorentzian-shaped spectral function
�left panel�, while in case of a finite imaginary component of
Zqp �right panel�, i.e., �qp�0, the spectra shows a distorted

shape, with the peak slightly displaced from the real part of
the pole. We will see that even in the simplest Einstein model
the quasiparticle renormalization factors acquire finite imagi-
nary components, with the consequence that the spectral
peaks do not exactly correspond to the real parts of the qua-
siparticle poles. As mentioned, nothing excludes the possibil-
ity of finding several quasiparticle poles when considering a
Dyson equation in the entire complex plane. In this case, one
would straightforwardly generalize Eq. �19�, for several qua-
siparticle poles, and a multiple-quasiparticle picture could be
defined as the case in which the expansion approximately
coincides with the actual spectral function

A�E� 	 AQP�E� � −
1

�
�

n

Im
Zk,n

qp

E − zqp�k,n�
. �22�

C. Analytic continuation and the Einstein model

The Einstein model is the simplest and most fundamental
problem in the context of electron-phonon interaction. It was
first studied by Engelsberg and Schrieffer at zero
temperature,20 where the analytic continuation was easily ob-

tained due to the special properties of �̃�z� at T=0.
The Einstein model describes a linearly dispersing elec-

tron state, interacting with a single phonon mode with energy
�0. This is a highly idealized case, but as will be demon-
strated below it is very useful even when treating realistic
systems with ab initio quality. For this system, the second-
order self-energy in integral form6 is

FIG. 1. �Color online� Schematic representations of the analyti-

cally continued Green’s function G̃�z� and the corresponding spec-
tral function. We consider the two examples where Zqp is purely
real �left panels�, i.e., �qp=0, and where �qp=� /6 �right panels�.
The quasiparticle pole is located at zqp=2− i in both cases. The two
lower panels show a contour plot of the spectral function Ai,k

L �z�
� Im G̃�z�, with the dashed lines indicating the position of the real
axis. The upper panels exhibit the corresponding spectral functions
evaluated at the real axis.
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�Ei�E,�0� �
��0

2
�

−�

� n��0� + 1 − f�E��
E − E� − �0

+
n��0� + f�E��
E − E� + �0

�dE�, �23�

with �= �g�2 /�0 and �g� as the electron-phonon matrix ele-
ment. Each of the two terms inside the large parenthesis
contains two different scattering processes. One of them de-
scribes the scattering from an initial state with energy E into
another state with energy E� through the emission of a single
phonon with energy �0. It is weighted by the statistical factor
�1− f�E����1+n��0��. The other process is of truly many-
body nature taking into account how the occupied states at
E� are prevented to scatter by absorption into the �now oc-
cupied� state at E, because of the Pauli principle. This gives
a factor of f�E��n��0� and the summation of both gives
n��0�+1− f�E��. The second term is similarly obtained by
considering the absorption processes of state E and the for-
bidden emission processes for the occupied states with en-
ergy E�, leading to the weight �1− f�E���n��0�
+ f�E���n��0�+1�=n��0�+ f�E��.

As will be shown in Appendix A, the analytic continua-
tion of �Ei�E ,�0� from the upper to the lower half complex
plane can be expressed in terms of the digamma function �.
Setting �g�2=��0=1,

�̃Ei�z,�0� = − i�n��0� +
1

2
� +

1

2
�1

2
+ i

�0 − z

2�T
�

−
1

2
�1

2
− i

�0 + z

2�T
� . �24�

Thus, �Ei�z� and �̃Ei�z� are identical for the entire upper half
plane including the real axis, but for the lower half, �Ei�z� is
simply the reflection of the upper half �Ei�z��=�Ei�z��, and
hence it is a discontinuous function across the real axis. In

contrast, �̃Ei is analytic everywhere except at isolated simple
poles at negative Matsubara frequencies �plus ��0�, zj

p

= ��0− i��2j+1�kBT, with j=0, . . . ,�. In the following, we
set kB=1 for simplicity.

Equation �24� is the required continuation to be consid-
ered in the complex Dyson equation, i.e., Eq. �6�. As men-
tioned, an alternative could be a Padé approximation �or a
Taylor expansion�, but we have found that using Eq. �24�
offers various practical advantages. The Dyson equation for
complex poles is then

zk = �k + �̃Ei�zk,�0� , �25�

and the solutions must be found numerically. A simple “brute

force” method would consist of calculating �̃Ei�z ,�0� for a
sufficiently fine grid spanning the lower half of the complex

plane and to check whether �z−�k− �̃Ei�z ,�0��� for arbi-
trary small . Instead, we have considered the complex ver-
sion of the Newton method, i.e., iterating the map

zj+1 = zj −
F�zj�
F��zj�

, �26�

with

F�z� � z − �k − �̃Ei�z,�0� , �27�

until convergence. Note that we need an initial guess for the
poles z0 to start the iterative process. If one were choosing
z0=ER

�1��k�, the first iteration of Eq. �26� would be equivalent
to the quasiparticle expansion or the second renormalization.
Hence it seems convenient at this point to refer to the above
approach as the self-consistent renormalization, in contrast to
the first or second renormalization as already described.

In order to find all possible solutions of Eq. �25� �for the
same k�, one must consider several initial values zj=0, distrib-
uted over the relevant part of the complex plane, say, 0
�Re�z0��4�0 and 0	 Im�z0��−4�0. In practice, the basin
of attraction for each solution of the map �Eq. �26�� is gen-
erally a fractal, and a relatively dense sampling is need. We
typically consider about 103 of such z0 points.

ES studied the Einstein model at zero temperature. In this
temperature limit, the continued electron self-energy has the
following symmetry properties:

�̃R
Ei�ER − iEI� = �̃R

Ei�ER + iEI� ∀ ER �28�

and

�̃I
Ei�ER − iEI�

=�− �̃I
Ei�ER + iEI� , �ER� � �0

− �̃I
Ei�ER + iEI� + 2�̃I

Ei�ER + i0+� , �ER� 
 �0.
�
�29�

In other words, for real electron energies smaller than the
phonon frequency �0, the continued self-energy exhibits the

reflection property �̃Ei�z��= �̃Ei�z��, and for �ER�
�0 one
must consider the jump due to the imaginary part. ES fol-
lowed these properties in order to obtain the continuation of
�, but, unfortunately, this procedure is only valid precisely
for T=0. The advantage of considering Eq. �24� instead is
that it is analytic for all temperatures and contains also the
correct T=0 limit.

The left panels of Fig. 2 show the quasiparticle disper-
sions, i.e., the dependence of the real part of the poles, ER, on
the unperturbed energy �k

0 for the three different tempera-
tures, T=0 �top panel�, T=�0 /10 �middle panel�, and T
=�0 �bottom panel�. The solid �black� lines represent the
solution of the complex Dyson equation �Eq. �25��, while the
thin �gray� line is the solution of approximate equation con-
sidering only real quantities �Eq. �8��. The renormalization
factor Zqp, evaluated at the self-consistently calculated poles,
is depicted in the right panels as a function of ER. The solid
thick lines �red� represent the real part of Zqp, while the thin
�green� line corresponds to the imaginary part Im�Zqp�. In
Fig. 3 the imaginary part of the poles, EI, is shown as a
function of ER for T=0 �top panel�, T=�0 /10 �middle panel�,
and T=�0 �bottom panel�. The solid �black� line is the solu-
tion of the complex Dyson equation �Eq. �25��, while the
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dashed �red� line is the imaginary part of the bare self-
energy, EI

�1� �see Eq. �9��.
In Fig. 2, the quasiparticle dispersions at zero temperature

�top panel� are similar to the ones calculated by ES,20 except
for the case ��k

0���0, where ES found two quasiparticle
states, while we obtain only one. However, the expansion of

Eq. �24� around z=0 and T=0, �̃Ei�z���z, shows indeed
that only one quasiparticle state exists for ER→0, namely,

z − �k − �z 	 0, z 	 �k/�1 + �� . �30�

As in the work by ES, for �k
0 	�0 we also find two solutions

of the Dyson equation. The one at ER��0 behaves similarly
to a polaron state, practically without dispersion. This elec-
tron state is localized due to the heavy phonon cloud origi-
nating from the virtual-phonon processes, which have maxi-
mum amplitude at ER��0. At zero temperature, the lifetime
of this state is infinite �EI=0�, explaining why it coincides
with the approximate solution �Eq. �8�; Fig. 2, thin gray
line�. The other state at ER	�0 is not restricted to virtual-
phonon processes only, but is energetically allowed to emit

also real phonons. Hence it acquires a finite lifetime. This is
appreciated in Fig. 3. At T=0, the self-consistent imaginary
part of the self-energy, EI, �solid line� follows the same
qualitative behavior as the bare one �dashed line�, but is sig-
nificantly enhanced for electron energies just above the pho-
non frequency �ER��0�. This means that the electron state
for ER	�0 is damped at an even higher rate than predicted
by the bare self-energy ��I� �Eq. �9��, where the former is
basically equivalent to Fermi’s golden rule. The enhance-
ment of EI with respect to �I is due to band renormalization,
i.e., due to the deformation of the quasiparticle bands by
electron-phonon interaction. This behavior was anticipated
by the quasiparticle expansion approach in a qualitative way,
where the renormalization effect was partially accounted for
by considering a Taylor expansion EI

�2�=EI
�1� Re�Zqp�ER

�1���.
However, Zqp calculated using Eq. �8� �not shown� diverges
for certain energies E�2�, showing an unphysical behavior.
Note that this problem is solved when considering the self-
consistent solution of Eq. �25�. At T=�0 /10, the polaron
kind of state remains practically unchanged compared to the
T=0 result, the main difference being that several additional
states appear close to ER	�0. The middle panel of Fig. 2
�right� demonstrates that the spectral weight of most of these
states is negligible since Re�Zqp� is relatively small. How-
ever, the states with �EI��2�0 are still physically meaning-
ful. For example, the damped electron-state shearing part of
the ER	�0 range shows a reasonable behavior with the
renormalization factor developing continuously from zero to
unity for high energies.

(b)

(a)

(c)

FIG. 2. �Color online� Left: QP band structure for the Einstein
model for the coupling parameter �= �g�2 /�0=1 at temperatures T
	0 �top panel�, T=�0 /10 �middle panel�, and T=�0 /10 �bottom
panel�. The solid thick �black� lines represent the real part of the
poles, ER, obtained from the complex Dyson equation �Eq. �6��. The
solid thin �gray� line is the solution of the approximate Dyson equa-
tion considering only real quantities �Eq. �8��. Right: the quasipar-
ticle renormalization factor Zqp as a function of ER. The solid thick
�red� line shows the real part of Zqp, while the thin �green� line is
the imaginary part Im�Zqp�.

FIG. 3. �Color online� Imaginary part of the quasiparticle poles,
EI, as a function of the real part ER for different temperatures, i.e.,
T=0 �top panel�, T=�0 /10 �middle panel�, and T=�0 �bottom
panel�. The thick solid �black� lines are the self-consistent solutions
obtained by means of Eq. �6�, while the �red� dashed line is the
imaginary part of the self-energy, EI

�1�=�I�ER+ i00� �see Eq. �9��.
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Since we have considered a coupling constant given by
�=−��R�E� /�E �E=0=1, the real part of the renormalization
factor at the Fermi level �ER=0� is Re�Zqp�	1 / �1+��
	1 /2 at E=0, for both T=0 and T=�0 /10. Note that
Re�Zqp� vanishes continuously when going to ER→�0. At
higher temperatures, such as T=�0, the same qualitative be-
havior is observed, but Re�Zqp� is significantly weakened for
ER��0. For all temperatures and ER��0 the damped elec-
tron dominates the full spectral weight since Re�Zqp�→1 for
high energies.

Figures 4 and 5 show the electron spectral functions for
�k=2 at temperatures T=0 and T=�0 /10, respectively. The
bottom panels represent the analytically continued spectral

function Ak�z�=−Im�G̃k�z�� /� for �k=2�0. The top panels
demonstrate Ak�ER� in the real axis. At T=0, two poles are
clearly visible �bottom panels�, one located at the real axis at
ER�0.8�0 and the other one at �ER�1.8�0 , EI�−2�0�.
The first one corresponds to the polaron state, while the other
one is a damped electron. At finite temperatures, these two
states are again discernible, but several additional states
show up with smaller spectral weight.

D. Momentum-dependent self-energy in real materials

Besides the electron and phonon band structures, a key
ingredient for calculating electron-phonon interaction related
properties is the Eliashberg function6

�2Fi,k��� = �
q,�

j

�gq,�
i,j �2�� − �q,����n�,k+q − �n,k� . �31�

This function is basically the phonon density of states
weighted by the electron-phonon matrix elements, and gives

the probability of an electron-phonon scattering event trans-
ferring energy � at T=0. i and j label the different electron
bands, k and q are the electron and phonon wave vectors,
and �q,� and gq,�

i,j stand for the phonon energy and the
electron-phonon matrix elements �related to the phonon
mode ��, respectively.

The Eliashberg function corresponding to the Einstein
model with phonon energy �0 and matrix element g,

�2FEi��� =
�g�2

�0
�� − �0� , �32�

is basically a Dirac delta function. Thus Eq. �31� may be
reinterpreted as the superposition of effective Einstein modes
with energies � and �2Fi,k��� playing the role of the inter-
action strength. In this way, the total second-order self-
energy for an electron with band index i and momentum k
may be written as a sum of contributions of effective Ein-
stein modes.

�̃i,k�z� = �
0

�

d��2Fi,k����̃Ei�z,�� . �33�

�̃i,k�z� is analytic across the real axis because so is �̃Ei�z ,��.
Hence one can use Eq. �33� in the complex Dyson equation
to describe any arbitrary system.

III. IMPLEMENTATION

Equation �33� gives the analytic continuation of the re-
tarded electron self-energy from the upper into the lower half
complex plane, i.e., from the physical into the unphysical

FIG. 4. �Color online� Representations of the analytically con-

tinued spectral function Ak�z�=−Im�G̃k�z�� /� for �k=2�0 and T
=0. The bottom panel shows Ak�z� in the complex plane, and the
top panel demonstrates Ak�ER� in the real axis.

FIG. 5. �Color online� Representations of the analytically con-

tinued spectral function Ak�z�=−1 /� Im�G̃k�z�� for �k=2�0 and T
=�0 /10. The bottom panel shows Ak�z� in complex plane, and top
panel demonstrates Ak�ER� in the real axis.
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Riemann sheet. Since analyticity implies that real and imagi-
nary parts of the self-energy fulfill the Cauchy-Riemann re-
lations separately,

��̃R�E,��
�E

=
��̃I�E,��

��
,

��̃I�E,��
�E

= −
��̃R�E,��

��
, �34�

these functions are harmonic:

�2�̃R =
�2�̃R�E,��

�2E
+

�2�̃R�E,��
�2�

= 0,

�2�̃I =
�2�̃I�E,��

�2E
+

�2�̃I�E,��
�2�

= 0. �35�

As a consequence, the problem of obtaining the analytic con-

tinuation is equivalent to solving the Laplace equation for �̃R

and �̃I. The boundary conditions would be given by the
function values at the real axis together with the normal de-
rivatives �with respect to the real axis�. In addition, it must
be imposed that these functions are bounded in the upper
half plane due to causality. These conditions read

�̃R�E,0� = �R�E,0� ,

�̃R�E,+ i�� = 0,

��̃R�E,��/����=0 = − ��I�E,0�/�E , �36�

and

�̃I�E,0� = �I�E,0� ,

�̃I�E,+ i�� = 0,

��̃I�E,��/����=0 = ��R�E,0�/�E . �37�

This is a Cauchy boundary-value problem and, in principle,

�̃R�E ,�� and �̃I�E ,�� could be obtained if �̃R and �̃I were
known in the real axis. Thus, Eq. �33� formally generalizes
the solution given by the Poisson kernel31 for the upper half
plane. The practical difficulty of numerically evaluating Eq.

�33� resides in that the pole contributions of �̃Ei�z ,�� at zp
=−�i�2n+1�T��, with n=0,1 , . . ., induce a difference be-
tween the integral of the analytical continuation and the ana-
lytical continuation of the integral.19 This problem would be
unimportant if the integral of Eq. �33� were known analyti-
cally, which does not occur except for some ideal systems
such as the Debye model. In any case, an accurate numerical
approximation can be achieved by considering the analytic
integral of the piecewise cubic �or higher-order� interpolation
of the �2F��� function. An equivalent procedure is to twice,
or more times, integrate by parts Eq. �33� in such a way that
the continuity of the second derivative of the Eliashberg
function is imposed explicitly:

�̃i,k�z� = �
0

�

d�
�2�2Fi,k���

��2 �̃�2�
Ei �z,�� . �38�

The subindex �n� in Eq. �38� denotes the nth integral of the
Einstein self-energy, i.e.,

�̃�1�
Ei �z,�� � �

0

�

d���̃Ei�z,��� ,

�̃�n+1�
Ei �z,�� � �

0

�

d���̃�n�
Ei �z,��� . �39�

Opposite to �̃Ei�z ,��, it is verified that �̃�n�
Ei �z ,�� for n
2

are bounded for zp=−�i�2j+1�T��, with j=0,1 , . . .. In this

way, the numerical evaluation of �̃i,k�z� using Eq. �38� be-

comes plausible. The explicit formulas for the functions �̃�n�
Ei

are given in Appendix C. Appendix B provides the technical
details regarding the numerical treatment of Eq. �38� in terms

of �̃�n�
Ei . In the next subsection, where we will discuss the

Debye model, we show that if the Eliashberg function �or its
first or second derivative� contains a discontinuity, it must,
however, be handled explicitly.

Debye model

The Debye model describes the interaction of an electron
state with acoustic phonons in a solid. The corresponding
Eliashberg function is defined to be simply proportional to
the phonon density of states,

�2FD��� �
��2

�D
2 ���D − �� . �40�

� is the Heaviside function.
Proceeding to integrate Eq. �33� by parts, the first deriva-

tive of �D
2 F��� is given by

��2FD���
��

=
2��

�D
2 ���D − �� −

��2

�D
2 ��D − �� . �41�

In this way,

�̃D�z,�D� = − �
0

�

d�
��2FD���

��
�̃�1�

Ei �z,��

= − �
0

�

d�
2��

�D
2 �̃�1�

Ei �z,�����D − �� + ��̃�1�
Ei �z,�D� ,

�42�

and repeating once more the same integration procedure one
finally obtains

�̃D�z,�D� =
2�

�D
2 ��̃�3�

Ei �z,�D� − �̃�3�
Ei �z,0�� −

2�

�D
�̃�2�

Ei �z,�D�

+ ��̃�1�
Ei �z,�D� . �43�

Equation �43� gives the temperature-dependent electron
self-energy for the Debye model compactly, and represents
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the analytic continuation from the upper into the lower half
complex plane. ES published a result �Eq. 5.5 of Ref. 20� for
the analytically continued � for the Debye model at T=0,
but a careful check shows that it does not fulfill the harmo-
nicity requirement. In our formalism, the T=0 limit is
reached by considering the first term of the expansion of Eq.
�43� around T=0,

�̃D�z,�D� =
��D

3
�− i� −

z

�D
+ 1 −

z3

�D
3 �log i

2
��D − z��

+ 2
z3

�D
3 log−

iz

2
� − 1 +

z3

�D
3 �

�log−
i

2
��D + z��� . �44�

Thus, Eq. �44� revises the result of ES for this case.
For the sake of completeness, we have solved the

temperature-dependent complex Dyson equation. The con-
clusions are very similar to the ones found for the Einstein
model; hence the results are not described in detail here. In
any case, the left panels of Fig. 6 show the quasiparticle
dispersions and the renormalization factors for T=0 �top
panel�, T=�D /10 �middle panel�, and T=�D /2 �bottom
panel�. The right panels show the complex renormalization
factors for the same temperatures.

Figure 7 shows the imaginary part of the poles, EI, as a
function of ER for T=0 �top�, T=�D /10 �middle panel�, and
T=�D /2 �bottom panel�. The solid �black� line is the solu-
tion of the complex Dyson equation, Eq. �25�, while the
dashed �red� line is the imaginary part of the bare self-
energy, EI

�1� �see Eq. �9��. These figures demonstrate the ex-
istence of a polaronic state also in the Debye model, and that
the lifetimes are enhanced for quasiparticles below
�D—approximately by a factor of 2—while suffering a re-
duction for states above �D.

IV. APPLICATIONS

A. 1Ã1 H/W(110) and D/W(110) surfaces

Probably, the strongest experimental evidence for quasi-
particle band splitting comes from the hydrogen- and
deuterium-covered 1�1 W�110� surface �1�1 H/W�110�
and 1�1 D/W�110�, respectively�. For one of the surface
states the angle-resolved photoemission �ARPES�
experiment12 demonstrated the unambiguous appearance of
at least two features in the ARPES spectra, where only one
peak should be expected in the absence of electron-phonon
interaction. The hydrogen and deuterium coverages naturally
have the same unperturbed electron structure, but different
vibrational frequencies and amplitudes. In this way, this sys-
tem provided a textbook example of electron-phonon inter-
action.

Another interesting feature of this surface is that the de-
tected surface states, labeled commonly as S1 and S2, are
spin split and circularly spin polarized with respect to the

high-symmetry point S̄. This behavior could be traced back
to spin-orbit interaction, and relativistic ab initio

calculations21,32 have shown very good agreement with the
ARPES Fermi-surface and band dispersions.33 The spin po-
larization introduces other interesting effects such as sup-
pressing or enhancing the electron-phonon matrix elements
depending on the angle between the initial and final electron
spins.34 For the spin-polarized ARPES and relativistic elec-
tronic structure calculations, we refer to Refs. 12 and 33 as
well as Refs. 21 and 32. In this paper, we include all this
information only implicitly, i.e., built into the Eliashberg
function. Thus, here we concentrate on the quasiparticle
spectra, without worrying about the precise role of the spin.
For more details on the calculated vibrational structure, we
point to Refs. 21 and 35. The helium atom scattering and
electron-energy-loss spectroscopy measurements are de-
scribed in Refs. 36–38.

(b)

(a)

(c)

FIG. 6. �Color online� Left: QP band structures for the Debye
model ��2F���=�

�2

�D
2 ���D−��� for the coupling parameter �=1 at

temperatures T	0 �top panel�, T=�D /10 �middle panel�, and T
=�D /2 �bottom panel�. The solid thick �black� lines represent the
real part of the poles, ER, obtained from the complex Dyson equa-
tion �Eq. �6��. The solid thin �gray� line is the solution of the ap-
proximate Dyson equation considering only real quantities �Eq.
�8��. Right: the quasiparticle renormalization factor Zqp as a func-
tion of ER. The solid thick line �red� shows the real part of Zqp,
while the thin �green� line is the imaginary part Im�Zqp�.
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Some results for the 1�1 H/W�110� surface were pub-
lished recently by two of the authors,21 where we resolved
the angular dependence of the electron self-energy and the
quasiparticle spectra. Below we show the results for both the
hydrogen and deuterium coverages, including additional
complementary details. As in Ref. 21, we focus on the
electron-phonon interaction for the surface state S1, for
which ample measurements exist.12 The Fermi surface of this
system is constituted by two spin-split surface states S1 and
S2, as described in Refs. 21 and 32. These states originate
from a band which is spin degenerate in absence of spin-
orbit coupling. Within a window of �150 meV, correspond-
ing to typical phonon energies in this system, these bands are
well approximated by a linear dispersion.

The vibrational spectra presented in Fig. 8 for the two
systems were calculated within the linear-response
approach.39 The lower phonon bands ��30 meV� are almost
not modified going from H to D coverage, because these
modes basically originate from the W�110� substrate. In con-
trast, the three vibrational modes higher in energy, which are
related to vibrations of H and D, exhibit an almost perfect
scaling by a factor of �2. These hydrogen-derived
�deuterium-derived� modes are commonly labeled36 as the
wagging mode ��90�60� meV�, and the asymmetric
��110�75� meV� and symmetric ��160�115� meV� stretch
modes. The connection between the ab initio calculations
and self-consistent treatment of the quasiparticle poles is
made through the first-principles Eliashberg functions, as de-
scribed in Sec. II D. In Fig. 9 we show the corresponding

calculated Eliashberg functions �2Fk���, of the S1 state in

�̄S̄ direction for the hydrogen �solid black line� and
deuterium �dotted red line� coverages. According to the pho-
non band structure, the lower-energy range of the Eliashberg
function is dominated by the contributions from the tungsten
modes, while the three structures at higher energies are
directly connected to the hydrogen �deuterium�
displacements. To obtain the Eliashberg functions, we used
the method presented in Ref. 40 considering a 40�40�1
grid for both the electron and phonon wave vectors,
where the electron-phonon matrix elements gq,k,�
=��,������,q+k�Vq,����,k��,�� were calculated considering
the full spinor states.

For both systems, we solved Eq. �6� in �̄S̄ direction for
the S1 surface electron. The top and bottom panels of Fig. 10
stand for the hydrogen and deuterium coverages, respec-
tively. The left panels show the calculated quasiparticle dis-
persions for T1=40 K=3.44 meV �gray line� and T2
=150 K=12.93 meV �black line�. They correspond to rela-

FIG. 7. �Color online� Imaginary part of the quasiparticle poles,
EI, as a function of the real part ER for different temperatures, i.e.,
T=0 �top panel�, T=�D /10 �middle panel�, and T=�D /2 �bottom
panel�. The thick solid lines �black� are the self-consistent solutions
obtained by means of Eq. �6�, while the dashed �red� line is the
imaginary part of the self-energy EI

�1�=�I�ER+ i00� �see Eq. �9��.
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FIG. 8. �Color online� Vibrational structures of the hydrogen-
�left panel� and deuterium-covered �right panel� 1�1 W�110� sur-
faces. The lower-phonon-energy branches ��25 meV� correspond
to the W�110� substrate. The three vibrational branches higher in
energy are hydrogen-derived �deuterium–derived� phonon modes.

FIG. 9. �Color online� The Eliashberg function �2F��� for the

S1 surface state along the high-symmetry direction �̄S̄. The solid
�black� line corresponds to the hydrogen coverage, while the dotted
�red� line stands for the deuterium coverage.
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tively low temperatures, since for the hydrogen coverage, the
maximum phonon energy is �m�160 meV;. Thus, T1
�0.02�m and T2�0.08�m. The dashed �orange� lines indi-
cate the calculated dispersions at T1 using the approximation
given by Eq. �8�.

The lowest-energy splitting at �20 meV roughly corre-
sponds to the main peak of �2F��� observed in the low-
energy range in Fig. 10, and is common to both surfaces. As
in the Einstein model, a band splitting reflects a boundary
between two different interaction regimes. For example, the
electron above �20 meV is energetically allowed to emit all
tungsten-related phonon modes ���20 meV� but below
this energy, the virtual excitations become the protagonists.
As a consequence, the effective mass of electrons at E
�20 meV gets considerably enhanced and reduced for
larger energies. This picture is similarly true for the rest of
the main structures of the Eliashberg function, and is the
origin of the predicted multiple band splittings. The next
phonon modes are located at �90 meV for hydrogen, and at
�65 meV for deuterium on top of the tungsten surface. For
electron states between �20 meV and those energies
��90 meV for 1�1 H/W�110� and �65 meV for 1�1

D/W�110��, there is an interplay between the real emission
processes of the lowest-energy phonon modes and the virtual
emission processes of the highest-energy phonon modes. A
minor additional splitting is also predicted at �160 meV for
1�1 H/W�110� and at �120 meV for 1�1 D/W�110�.
From these results it is clear that the origin of the band split-
ting observed by Rotenberg and co-workers12 is a conse-
quence of two effects, i.e., the full dressing of the electron
states and the appearance of multiple quasiparticles. In con-
trast, the approximate solution �Eq. �8�; Fig. 10, dashed line�
provides only one quasiparticle state for all wave vectors.

The imaginary part of the quasiparticle poles is shown in
the right panels of Fig. 10. The gray and black lines �solid
and dashed� correspond to the calculations for T1 and T2,
respectively. The solid lines indicate the fully renormalized
inverse lifetimes �Eq. �6��, while the dashed lines stand for
the bare imaginary part of the self-energy, given by the ap-
proximate expression �Eq. �9��. We should keep in mind that
the former approximation is equivalent to the well-known
Fermi’s golden rule. As an example, at T1 the inverse lifetime
of the lowest-energy quasiparticle state in the left panel of
Fig. 10 monotonically increases until a value of �EI�
�15 meV is achieved at ER�20 meV. But there are some
energy ranges for which EI decreases for increasing energy.
Note, for instance, that the quasiparticles at very low ener-
gies live longer than predicted by the bare imaginary self-
energy EI

�1�. For electron energies close to the main peaks of
�2F���, a similar trend is found. The electron lifetimes are
considerably enhanced just below the most important peaks
of the Eliashberg function and reduced above. For the
damped electron state above all phonon energies, we find
that �EI� �solid line� approaches �EI

�1�� asymptotically, but
maintaining �EI�	�I�ER� as in the Einstein model.

In Fig. 11 we show the calculated renormalization factor
Zqp as a function of the real part of the quasiparticle poles.
The top �bottom� panel corresponds to the hydrogen �deute-
rium� coverage. The thick �red� line indicates the real part of
Zqp, while the thin �green� line is the imaginary part. This

(b)

(a)

FIG. 10. �Color online� Calculated quasiparticle bands and in-
verse lifetimes for the hydrogen- �top panels� and deuterium-
covered �bottom panels� W�110� surfaces. Left: fully renormalized
electron bands �solid lines�, calculated from the complex Dyson
equation �Eq. �6�� at T1=3.5 meV	40 K �gray line� and T2

=12.93 meV	150 K �black line�. The thin dashed �orange� line is
the solution of the approximate Dyson equation at T1 considering
only real quantities �Eq. �8��. Right: imaginary part of the QP en-
ergies �EI�=1 /� �black line� versus the real energy of the QP poles,
ER. The imaginary part of the bare electron self-energy �dashed
line� is shown for comparison.

(b)

(a)

FIG. 11. �Color online� The calculated renormalization factor
Zqp as a function of the real part of the quasiparticle poles. The top
�bottom� panel corresponds to the hydrogen �deuterium� coverage.
Real and imaginary parts are indicated by thick �red� and thin
�green� lines, respectively.
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figure is better understood in comparison with Fig. 10, since
the relative spectral weight of each quasiparticle band in Fig.
10 is given by the real part of Zqp. In the case of the hydro-
gen �deuterium� coverage, we detect four �three� main physi-
cally meaningful quasiparticle bands with a non-negligible
spectral weight. As mentioned, the imaginary part of Zqp in-
dicates the distortion of the quasiparticle contributions to the
spectral functions. Thus the calculated poles are not in exact
correspondence with the peaks in the spectral functions.21

Note, however, that �Im�Zqp�� is generally less than �0.2,
and we should expect a close correspondence between the
real part of the poles and the spectral features.

The top and bottom panels of Fig. 12 depict the calculated
spectral functions at T1=40 K �thick black line� and T2
=150 K �thin gray line�, respectively. The left panels show
the full calculated spectral functions A�ER�=−Im�G�ER�� /�,
while the right panels display the same quantity, but calcu-
lated out of the quasiparticle contributions alone, as given by
Eq. �22�. An ideal quasiparticle state would give one perfect
Lorentzian contribution to the spectral function, but Fig. 12
demonstrates that at least two main features exist for several
ranges of the electron wave vector. It is remarkable that the
function AQP�ER� �right�, being constructed from the contri-
butions of the QP states alone, reproduces so well the full
spectra �left�. Thus this figure demonstrates that even when a
single-quasiparticle picture breaks down, the quasiparticle
picture itself could still be valid, but with the extension to
several quasiparticles.

B. Bulk MgB2

A prototypical class of materials where electron-phonon
coupling plays an important role are that of natural supercon-
ductors with phonon-mediated Cooper pairing. Such a mate-
rial with a particularly high critical temperature of 40 K is
MgB2. Hence in this subsection, we have applied our method
to bulk MgB2, predicting similar behavior as found above for
the surface system. The left panel of Fig. 13 shows the Fermi
surface. It is composed of two concentric “cylindroids” in
the inner part of the Brillouin zone. The Eliashberg function
depicted in the right panel corresponds to the outermost cy-
lindroid along the high-symmetry direction AL, as indicated
in the figure. We refer to Ref. 40 for more details regarding
the computational details as well as the electron and vibra-
tional structures.

The left panels of Fig. 14 show the calculated quasiparti-
cle dispersions at T1=0 �top panel� and at T2=8 meV
��m /10 �bottom panel�. In these panels, the real part of the
poles is depicted as a function of the unperturbed electron
energy �red line�, and the black envelope indicates the real
part of the renormalization factor, Re�Zqp�. Thus the “width”
of each band highlights the relative importance of the state
regarding its contribution to the spectral function. The gray
line represents the solution of the approximate Dyson equa-
tion considering only real quantities. Note that the self-
consistent calculation predicts a splitting of the quasiparticle
bands at �k

0 �100 meV, while in the solution of Eq. �8� one
must go to �k

0 �150 meV to find a strong deviation from the
bare dispersion. Again, this is due to the imaginary part of
the poles that are self-consistently accounted for in Eq. �6�
but not in Eq. �8�. At T1=0 the fully renormalized bands are
qualitatively similar to the ones found in the Einstein model,
and the splitting occurs approximately at the maximum of
the phonon energies. At T2=8 meV �lower right panel� the
polaron and the damped electron bands are detected again,
but even more quasiparticle bands appear at typical phonon
energies. Most of these bands have a relatively weak quasi-
particle renormalization factor although it is not negligible
for some of the bands. In the right panels, we show the
imaginary part of the poles �x axis� as a function of the real
part �y axis�, again at T1 �top panel� and T2 �bottom panel�.
The dashed �red� line is the bare imaginary part of the self-
energy, EI

�1�=�I, and the thick solid �black� line is the self-
consistently calculated imaginary part EI. In both cases, EI

(b)

(a)

FIG. 12. Spectral functions Ak��� at T=40 K �thick black line�
and T=150 K �thin gray line� of 1�1 H/W�110� �top panels� and
1�1 D/W�110� �bottom panels� for different momenta compared to
their counterparts in the multiple-quasiparticle approximation
Ak

QP��� as given in Eq. �22�.

FIG. 13. �Color online� Left: Fermi surface and irreducible part
of the Brillouin zone for MgB2. Right: the Eliashberg function cor-
responding to the high-symmetry direction AL for the �2 band �out-
ermost Fermi sheet�.
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qualitatively follows �I, but is enhanced for E��m
�90 meV and reduced for E��m, as found in all the other
examples. All the results for MgB2 are very similar to the
ones in Debye model with �D=�m �not shown�.

V. CONCLUSIONS

In conclusion, we have investigated the Dyson equation
of the electron-phonon problem, considering the effect of the
imaginary part of the poles self-consistently. The approach
proposed by Engelsberg and Schrieffer20 several decades ago
has been extended in such a way that calculations for real
materials are possible, and the effect of the temperature can
be studied. We compare this theory with the most popular
approximations for the Dyson equation in which the imagi-
nary parts of the poles are neglected or considered partially
through a quasiparticle expansion. The formalism demon-
strates that the former two approximations can be understood
in a more general context considering the self-consistent so-
lution of the Dyson equation. In order to illustrate the pre-
sented theory, we have investigated the Einstein model, and
the Debye model, as well as the spin-polarized 1�1 H�D�/
W�110� surface and bulk MgB2 at several temperatures.
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APPENDIX A: RELATION BETWEEN THE SELF-
ENERGY AND THE POLYGAMMA FUNCTIONS

In this appendix we transform the second-order perturba-
tive expression for the electron self-energy into an equivalent
form in terms of the polygamma functions �see Appendix D�,

I�E,�� � �
−�

� n��� + 1 − f�E��
E + i − E� + �

+
n��� + f�E��

E + i − E� + �
�dE�.

�A1�

If we replace E with the complex-valued quantity z in the
integrand of Eq. �A1�, one generally obtains a discontinuous
function across the real axis. The objective is to find the
analytic continuation from the upper into lower half of the

complex plane, i.e., a complex function Ĩ�z ,�� which is the
same as I�z ,�� for the upper half of the complex plane but
analytic across the real axis. At the moment, we assume that
E is above the real axis but infinitesimally close to it, E
�E+ i0+. First, we split the integral into two pieces,

I�E,�� = I1�E,�� + I2�E,�� , �A2�

where

I1�E,�� = �
−�

�  n��� + 1

E − E� + �
+

n���
E − E� − �

�dE� �A3�

and

I2�E,�� = �
−�

�

f�E�� 1

E − E� + �
−

1

E − E� − �
�dE�.

�A4�

The first integral is straightforwardly solved considering the
residue theorem and the poles at E�=E+ i+� and E�=E
+ i−�,

I1�E,�� = − 2i��n��� + 1/2� . �A5�

The integrand of I2�E ,�� has poles at E�=−�2k−1�i�T for
k=0, . . . ,� due to the Fermi distribution f�E�� and at E�
=E+ i+� and E�=E+ i−� due to the denominators. Con-
sidering a contour integral for a closed path in the upper half
plane,

I2�E,�� =� F�z�dz , �A6�

the sum over all residues gives

I2�E,�� = 2i��f�E − �� − f�E + ���

+ 2i��
k=0

�  − T

E + � − i�2k + 1��T

−
− T

E − � − i�2k + 1��T
� ,

and after further algebra

FIG. 14. �Color online� Calculated quasiparticle bands and in-
verse lifetimes of MgB2 in direction AL ��2 band�. Left: fully renor-
malized electron bands, calculated from the complex Dyson equa-
tion �Eq. �6�� at T=8 meV�92 K��m /10. The black envelope
indicates the real part of the renormalization factor and the thin
�red� line inside stands for the calculated quasiparticle pole. The
thin �gray� line is the solution of the approximate Dyson equation
considering only real quantities �Eq. �8�� at T=0. Right: the fully
renormalized imaginary part of the quasiparticle energies is indi-
cated by the solid �black� line, while the dashed �red� line stands for
the bare imaginary part.
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I2�E,�� = i��tanhE + �

2T
� − tanhE − �

2T
��

+ �
k=0

�

� 1

1

2
+ i

E − �

2�T
+ k − 1

−
1

1

2
+ i

E + �

2�T
+ k − 1� .

As the expansion of the digamma function reads

��x� = − � + �
k=0

1

k
−

1

x + k − 1
� , �A7�

we obtain

I2�E,�� = �i�tanhE + �

2T
� − tanhE − �

2T
��

+ �1

2
+ i

E − �

2�T
� − �1

2
+ i

E + �

2�T
� . �A8�

The reflection property of the digamma function

�� 1
2 + ix� − �� 1

2 − ix� = i� tanh��x� �A9�

allows us to further simplify the expression

I2�E,�� = �1

2
− i

E − �

2�T
� − �1

2
− i

E + �

2�T
� , �A10�

and finally we obtain

I�E,�� = − 2�in��� +
1

2
� + �1

2
+ i

� − E

2�T
�

− �1

2
− i

� + E

2�T
� . �A11�

We now have evaluated Eq. �A1� for E with an infinitesimal
positive imaginary component. As opposite to Eq. �A1�, sub-
stituting E with complex z in Eq. �A11� gives now a function
which is analytical across the real axis. This is so because the
integral has been already accomplished analytically,

�̃Ei�z,�� = − �in��� +
1

2
� +

1

2
�1

2
+ i

� − z

2�T
�

−
1

2
�1

2
− i

� + z

2�T
� . �A12�

Thus, Eq. �A12� is the required analytic continuation of
Eq. �A1� from the upper to the lower half of the complex
plane.

APPENDIX B: NUMERICAL EVALUATION OF THE
ANALYTICALLY CONTINUED SELF-ENERGY

In Sec. III, we demonstrated the convenience of evaluat-
ing the integral for the electron self-energy as

�̃�z� = �
0

�

d�
�2�2F���

��2 �̃�2�
Ei �z,�� . �B1�

In this appendix, we treat the problem of numerically han-
dling Eq. �B1� when �2�2F��� /��2 is given as a numerical

array yi=�2�2F��� /��2 ��=�i
, calculated at a set of discrete

energies �i. We only need to impose that �2�2F��� /��2 is
piecewise linear,

�̃�z� 	 �
i
�

�i

�i+1

d��̃�2�
Ei �z,��yi + �� − �i�

�yi

��i
� ,

�B2�

where we have used the definitions ��i=�i+1−�i and �yi
=yi+1−yi. Finally, a directly computable expression is ob-
tained in terms of the integrals of Einstein self-energy �see
Appendix C�,

�̃�z� 	 �
i
yi+1�̃�3�

Ei �z,�i+1� − yi�̃�3�
Ei �z,�i� −

�yi

��i
��̃�4�

Ei �z,�i+1�

− �̃�4�
Ei �z,�i��� .

APPENDIX C: THE INTEGRALS OF THE EINSTEIN
SELF-ENERGY

In Secs. II C and III several integrals of �̃Ei emerged
when performing the integration by parts in Eq. �33�. In this

appendix, we provide the explicit formulas for �̃�n�
Ei �z ,��. We

treat the Bose-Einstein occupation term in Eq. �A12�,
−2�i�n���+ 1

2 �, exactly in the same way as the polygamma-
function contributions are treated. However, this term con-
tributes with a mere temperature-dependent constant—z
independent—and it may be treated separately by direct in-
tegration in Eq. �33�.

These integrals are obtained by considering the integra-
tion property of the polygamma ���n ,z�� and the polyloga-
rithmic functions ���n ,z�� �Ref. 41� of order n,

� dz��n,a + bz� = ��n − 1,a + bz�/b �C1�

� dz��n,ez� = ��n + 1,ez� . �C2�

Thus, considering Eqs. �A12�, �C1�, and �C2� it is found that

�̃�1�
Ei �z,�� = i�T�2�− 1,

1

2
−

iz

2�T
� − �− 1,

1

2
− i

� + z

2�T
�

− �− 1,
1

2
+ i

� − z

2�T
� +  �

2T
− log�1 − e�/T��� ,

�̃�2�
Ei �z,�� = 2�T�i��− 1,

1

2
−

iz

2�T
� + �T��− 2,

1

2

− i
� + z

2�T
� − �− 2,

1

2
+ i

� − z

2�T
��� +

1

4
i���2

+ 4T2��2,e�/T�� ,
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�̃�3�
Ei �z,�� =

1

12
i��3 + i��T�2�− 1,

1

2
−

iz

2�T
�

− 4�3T3�− �− 3,
1

2
+ i

� − z

2�T
�

+ 2�− 3,
1

2
−

iz

2�T
�

− �− 3,
1

2
− i

� + z

2�T
��� + i�T3��3,e�/T� ,

�̃�4�
Ei �z,�� =

1

48
i��4 +

1

3
i�T�3�− 1,

1

2
−

iz

2�T
�

+ 8�3T3��T�− 4,
1

2
+ i

� − z

2�T
�

− �T�− 4,
1

2
− i

� + z

2�T
� − i��− 4,

1

2

−
iz

2�T
�� + i�T4��4,e�/T� .

APPENDIX D: THE POLYGAMMA FUNCTIONS

The polygamma functions constitute a set of special func-
tions related to the Euler gamma function in the following
way. First of all, the convention is to define the digamma
function as the polygamma function of order n=0, i.e.,
��z����n=0,z�, where the latter is defined as the loga-
rithm derivative of the Euler gamma function

��z� �
���z�
��z�

. �D1�

The successive derivatives of ��n=0,z� provide the higher-
order polygamma functions. In this way, the nth derivative of
��z� defines the polygamma function of positive order n,

��n,z� � dn��z�/dzn, �D2�

and in turn, the nth integral gives polygamma functions of
negative n order,

��− n,z� � �1

¯ �n

��z�dzn. �D3�

The former are sometimes regarded as negapolygamma
functions.42 In fact, as we are interested in the integrals of
the Einstein self-energy, we concentrate on the former. The
polygamma function of order n=−1 is simply defined as the
Log ��z� function

��− 1,z� = Log ��z� , �D4�

where Log ��z� is not exactly the same as the logarithm of
the � function, log���z��, but can differ up to an additive
constant 2i�n, due to the branch cut structure introduced by
the logarithmic function. Instead, Log ��z� is defined to have
a single branch cut along the negative real axis.

In order to numerically evaluate the ��n ,z� functions, we
used the appropriate asymptotic expansions, which provide
very accurate results for large enough z �typically �12-digit
precision for Re�z��15�. Additionally, the recurrence rela-
tions ��n ,z+1�=��n ,z�+Fn�z� allow for the deduction of
��n ,zs� for small zs, using some ��n ,zl� evaluated for large
zl. For ��−1,z�, the recurrence relation is evident consider-
ing ��z+1�=z��z�,

R−1�z� = ��− 1,z + 1� − ��− 1,z� = log�z� , �D5�

and the asymptotic expansion reads

��− 1,z� � − 1 + log
1

z
�z +

1

2
log�2�� + log

1

z
� +

1

12z

−
1

360z3 +
1

1260z5 −
1

1680z7 +
1

1188z9 ¯ .

The recurrence relations up to n=−3 are written as

R−2�z� = ��− 2,z + 1� − ��− 2,z� = z�log�z� − 1� + 1
2 log�2��

�D6�

and

R−3�z� = ��− 3,z + 1� − ��− 3,z�

=
z

4
�2z log�z� − 3z + 2 log�2��� + log G +

1

4
log�2�� .

�D7�

Higher-order expressions are obtained considering the inte-
grals ��n ,z+1�=�0

z+1��n−1,z��dz�:

R−n�z� = ��− n,z + 1� − ��− n,z�

= �
0

z

R−�n−1��z��dz� + �
0

1

�„− �n − 1�,z…dz .

�D8�

We have used the following expansions for the polygamma
functions of orders n=−4, −3, and −2 �for n=0 see Ref. 43�:

��− 2,z� � −
3

4
−

1

2
log

1

z
�z2 +

z

2
�1 + log�2��� + log

1

z
z

+ log G −
1

12
log

1

z
� +

1

720z2 −
1

5040z4

+
1

10 080z6 −
1

9504z8 +
691

3 603 600z10 + ¯ ,

��− 3,z� � −
11

36
−

1

6
log

1

z
�z3 + 3

8
+

2

8
log�2���z2

+  z2

4
log

1

z
� + −

1

12
+ log G −

1

12
log

1

z
�z +

��3�
8�2

−
1

720z
+

1

15 120z3 −
1

50 400z5 +
1

66 528z7

−
691

32 432 400z9 + ¯ ,

SELF-CONSISTENTLY RENORMALIZED QUASIPARTICLES… PHYSICAL REVIEW B 79, 245103 �2009�

245103-15



��− 4,z� � −
25

288
−

1

2
log

1

z
�z4 +

z3

72
�11 + 6 log�2���

+ 6 log
1

z
z3 +

1

48
− 3 + 24 log G − 2 log

1

z
�z2

+
��3�z
8�2 +

− 11 + 6 log
1

z
− 720���− 3�

4320

−
1

30 240z2 +
1

201 600z4 −
1

399 168z6

+
691

259 459 200z8 + ¯ ,

where ��z� is the Riemann zeta function, with ��3�
=1.202 056 903 and ���−3�=0.005 378 576 4, and G is the
Glaisher constant, G=1.282 427 129.
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