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Valence force model for phonons in graphene and carbon nanotubes
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Many calculations require a simple classical model for the interactions between sp>-bonded carbon atoms, as
in graphene or carbon nanotubes. Here we present a valence force model to describe these interactions. The
calculated phonon spectrum of graphene and the nanotube breathing-mode energy agree well with experimen-
tal measurements and with ab initio calculations. The model does not assume an underlying lattice, so it can
also be directly applied to distorted structures. The characteristics and limitations of the model are discussed.
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Graphene and carbon nanotubes are remarkable materials,
notable for both their fascinating properties and their techno-
logical promise.! In both contexts, it is often necessary to
calculate the phonons for problems where the use of ab initio
methods is not feasible. For graphitic systems, this has usu-
ally been approached by approximating the force-constant
matrix with terms coupling atoms up to some maximum
distance.?"® This approach has many appealing features, but
it has two important limitations. First, the terms in the force-
constant matrix decay smoothly with distance between
atoms,’ so in practice it is necessary to truncate the expan-
sion long before it has converged. Second, this approach is
generally restricted to describing phonons in the ideal crys-
tal. It has required some ingenuity and inconvenience even to
extend these models to nanotubes, based on an idealized
curved-graphene structure.’-¢

In order to treat phonons in large low-symmetry systems,
such as rumpled graphene or bent nanotubes, one would like
a model that explicitly gives the energy as a function of
atomic positions, without reference to any underlying crystal
structure. In principle one could use the general-purpose em-
pirical interatomic potentials that are available for carbon,
such as Ref. 10. But phonon applications typically require
higher accuracy than such general-purpose models can pro-
vide.

For diamond- and zinc-blende-structure semiconductors,
the problem was largely solved by the use of “valence force”
models. These models use a smaller number of more com-
plex terms, which may be more or less physically
motivated.!! However, to date only one valence force model
has been proposed for graphene;'>!3 and it explicitly refer-
ences the graphene lattice, hindering application to distorted
structures.'*

Here we present a valence force model for sp?-bonded
carbon. The model explicitly gives energy as a function of
atomic positions, without reference to any underlying crystal
structure. The only restriction is that the local geometry be
consistent with sp2 bonding, i.e., three neighbors not too far
from 120° apart. Thus it can be directly applied not only to
graphene but also to nanotubes and fullerenes, in relaxed or
distorted configurations. We have tested the model for
phonons in graphene and carbon nanotubes. We first describe
the model itself and the fitting procedure. We then present
and discuss the phonon spectrum, which is obtained after
fitting the model parameters to selected experimental and
theoretical data. Finally we discuss the overall accuracy and
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limitations, along with some related issues such as anharmo-
nicity.
We write the energy as
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where v;;=v;—v;, with v; being the atomic position vector of
atom i and the bondlength is r;j=[v;[. In the summations,
j i means j runs over three neighbors of atom i, j<kei
means j and k are both neighbors of i (ordered to avoid
double counting), restriction j<k<[ leaves only one possi-
bility for the three neighbors of i, while restriction j# k <</
gives three terms for each i.

The bond length in the ground state of graphene is

r9=0.142 nm; &r;;=r;;—r,. We further define
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where j, k, and [ are the three neighbors of i.

The first two terms in Eq. (1) represent the bond-
stretching stiffness B, and bending stiffness 3., as in the
Keating model.!> However, the form here avoids the large
and unphysical anharmonicities of the Keating model. The
third term 3, provides stiffness against out-of-plane vibra-
tions. The fourth term f,. is motivated by bond-order
potentials.'” The fifth term B, gives stiffness against mis-
alignment of neighboring 7 orbital. The last term f3,. couples
bond stretching and bond bending.

In fitting such a model, one typically chooses a set of data
that one desires to reproduce and defines a weighted error,
which is to be minimized. As a straightforward test of the
model and its ability to reproduce realistic phonon disper-
sions, we first try fitting to published local-density approxi-
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FIG. 1. (Color online) Phonon band dispersions. Green dotted
curves are LDA calculations (Ref. 7). Red solid curves are results of
the model [Eq. (1)] fitted to these LDA calculations. The corre-
sponding parameters are given in Ref. 16.

mation (LDA) calculations.”!® The result is shown in
Fig. 1. [We follow the spectroscopic convention of
reporting phonon energies in cm™!, where 1 cm™' means
he/(1 ¢cm)=0.124 meV.] The rms error is only 22.6 cm™,
substantially less than the best previous fit to GGA disper-
sions using a valence force model with five parameters.'3

By giving more weight to one feature or another in the
fitting, it is straightforward to improve the description of,
e.g., the acoustic branches at the cost of worsening the opti-
cal branches. However, regardless of how we weighted the
data, we could not reproduce the dips in the highest phonon
bands at I" and K while keeping a reasonable overall disper-
sion. This issue was also mentioned in Ref. 13. Electron-
phonon interactions are known to affect phonon dispersions
even in bulk semiconductors,’ and such interactions are par-
ticularly important for the highest bands of graphene near I'
and K due to the Kohn anomaly.'” Thus we cannot expect to
describe these dips with short-range classical interactions. It
would therefore seem logical to fit the bands away from I’
and K and accept that the model gives energies that are too
high for the top bands at those points. However, because the
optical phonon energy at I' is a widely used reference, we
have chosen to fit this point accurately.

We find that the Poisson ratio calculated with our model
fitted to the LDA calculations alone is v=0.4, larger than the
experimental value of v=0.17. This suggests that elastic
properties should be included in the fitting. Also, the experi-
mental and theoretical data are not in perfect accord. We
have therefore chosen to fit a mixture of published experi-
mental phonon data, ab initio phonon calculations, and elas-
tic constants. The resulting parameter values are listed in
Table I, and the corresponding phonon dispersion is shown
as a solid curve in Fig. 2. The corresponding elastic constants
are given in Table II. (We equate in-plane elastic properties
of graphene and graphite using the experlmental layer spac-
ing ¢=6.7 A and volume per atom V,=3\3r5c/8.)

TABLE I. Parameters of the model [Eq. (1)] used in Fig. 2 based
on best fit to the experimental data and LDA calculations. Units are
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FIG. 2. (Color online) Phonon band dispersion, comparing fitted
model with experimental data and ab initio calculations. Red solid
curve is our model [Eq. (1)] with the parameters given in Table I.
Green dotted curve is an LDA calculation (Ref. 7). Blue symbols
are experimental data: electron energy-loss spectroscopy from Refs.
18-20 (respectively, squares, diamonds, and filled circles), neutron
scattering from Ref. 21 (open circles), and x-ray scattering from
Ref. 22 (triangles). Data for Refs. 18-22 are taken from Ref. 23.

Overall we consider the agreement in Fig. 2 and Table 11
to be quite good. The quality of the fit is a highly nonlinear
function of the parameters, so there may be entirely different
sets of parameters that give a similar or even better agree-
ment with the same data.

The longitudinal and transverse
(v=dw/dq at g=0) within our model are

U2=E 4ﬁrlB¢ 2Br2:80 Brc
T 4128, + 278, - 6B, - 188,

sound velocities

3
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where M - is the mass of a carbon atom. The model velocities
vra=~13.3 km/s and v;,=21.2 km/s are very close to the
experimental values of v, =~ 14 km/s and v;,~24 km/s.'3
The elastic constants are related to the sound velocities:
VoCeo=M cv7 and VoCy =M 7.2

The lowest-energy ZA acoustic (or flexure) mode shows a
quadratic rather than linear dispersion near I, i.e,
wu=q* k! p. where « is a bending stiffness, and
p=4M_c/ (3\3r0) is the mass density. In our model the bend-
ing stiffness is given by

REY
K= 4(/% +2438,). )

For the parameters of Table I, k=2.1 eV. In Fig. 2, the
calculated dispersion appears to agree well with experiment
and with LDA calculations.

TABLE II. Elastic constants from the experiment and the model
(in GPa). Note a relation among elastic constants (Refs. 14 and 25)
for hexagonal symmetry: Cge=(C;;—C}5)/2 and v=C,/Cy;.

in eV. Ci Ci Cos v
B B. B, B B, Bre Experiment?® 1060 180 440 0.17
Model 1024 210 407 0.20
18.52 4.087 1.313 4.004 0.008051 4.581

4Reference 24.
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TABLE III. Exact coefficients «; for the analytical expressions
[Eq. (5)] of phonon energies at high-symmetry k points.

fhw
k point Mode (ecm™) a a. @ an @, a,,
r Z0 889 0 0 54 0 0 0
LO/TO 1583 12 27 0 -6 0 -18
M ZA 452 0 0 6 0 1296 0
70 640 0 O 24 0 648 0
TA 740 0 12 0 0 0 0
LA 1286 8 0 0 0 0 0
LO 1357 4 27 0 2 0 -6
TO 1429 12 3 0 -6 0 -6
K ZO/ZA 544 0 0 135 0 10935 0
TA 1110 0 27 0 0 0 0
LO/LA 1177 6 675 0 1.5 0 -4.5
TO 1487 12 0 0 -6 0 0

It is often convenient to have analytic expressions for the
phonon energies at symmetry points (e.g., for verifying a
numerical implementation). From Eq. (1),

o = (Mcr)™ 2 i, (%)

where the index i runs over (rl,c,v,r2,p,rc) and coeffi-
cients ¢; are given in Table III.

Turning from graphene to carbon nanotubes, we calculate
the RBM for tubes of different diameter and chirality. This
mode corresponds to a radial stretching or compression of
the tube. The mode emerges from the lowest-energy acoustic
phonon modes in graphene. The RBM acquires finite energy
at zero wave vector due to the nanotube curvature, with a
simple ~1/d scaling of energy with diameter. As a result,
RBM measurements are widely used to identify the diam-
eters of single-walled carbon nanotubes.

For a given tube, we first relax the atomic positions and
allow the lattice constant to adjust to minimize the energy.
We then calculate the RBM energy. The results for all tubes
in the diameter range from 0.5 to 4.0 nm are shown in Fig. 3.
Simple scaling arguments based on continuum elasticity sug-
gest that RBM energies should scale with diameter as
hwgpy=A/d. Experimental data are typically fitted with the
phenomenologically adapted form #Awggy=A/d+B. For
tubes of d=1 nm, experimental phonon energies A+B are
reported in the range of 226—248 cm~!,?7-33 while ab initio
calculations suggest A+B=234 or 226 cm~'.2"32 The con-
stant offset was reported in the range from B=—6 cm™! to
B=27 cm™'. Recently, it was reported* that a nonzero offset
B is caused by the interaction with a substrate, while for
freely suspended nanotubes B should be zero.

Within our model, the RBM mode shows accurate A/d
scaling independent of chirality, with B=0 and
A=~225 cm™! (where d is in nm) as shown in Fig. 3. From
the theory of elasticity, A=2%v;, which gives
A=225 cm™! for the parameters of Table I, in accord with
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FIG. 3. (Color online) Radial breathing mode (RBM) energy as
a function of tube diameter (red open circles) along with the best fit
fiwggy=224.6 cm™'/d (black solid curve). The inset shows the
same results versus inverse diameter.

the numerical result. The model is in good agreement with
the most recent experimental®> and theoretical’> values of
A=227 and A+B=226 cm™' respectively.

In general, a valence force model will have some anhar-
monicity. Since we have not attempted to fit experimental or
ab initio anharmonicities, any anharmonicities are likely to
be unphysical. It is therefore desirable to minimize the an-
harmonicity in the model, and the form of Eq. (1) is designed
with this in mind. One measure of anharmonicity is the
Gruneisen parameter y=—(2w)”!(dw/ds), which represents
the fractional shift in phonon frequency w when the crystal is
subjected to a strain & in all directions. For the doubly de-
generate E,, phonon mode in graphene, our model gives
Ye,,~—0.2. This is much smaller in magnitude than the ex-
perimental value of ¥, ~ 2.0,'33* confirming that our model
is relatively harmonic in this respect.

For nanotubes, we have another form of anharmonicity:
the phonon shifts due to bending of the graphene sheet. We
have calculated the shifts in LO and TO phonons relative to
graphene. The TO mode shift is less than 12 cm™'/d” in our
model (where d is in nm) and the LO mode and the LO-TO
splitting are even less. Experimental shifts are four times
larger in semiconducting nanotubes,® confirming that our
model successfully minimizes any unintended anharmonici-
ties.

In conclusion, we have developed a valence force model
applicable for sp?-carbon-based structures. Our model gives
a good fit of the graphene phonon dispersion and elastic
constants, and describes well the RBM energy of nanotubes.
The model also avoids the unphysical strong anharmonicities
that occur in some valence force models. Most importantly,
in contrast to other phonon models for spz-bonded carbon,
Eq. (1) makes no reference to an underlying lattice, so it can
be directly applied to distorted geometries.

We gratefully acknowledge N. Marzari, O. Dubay, and D.
Kresse for providing data for Figs. 1 and 2, and W. A. Har-
rison and A. Jorio for helpful discussions.
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