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We present a computational scheme allowing for a self-consistent treatment of a dispersive metallic photonic
metamaterial coupled to a gain material incorporated into the nanostructure. The gain is described by a generic
four-level system. A critical pumping rate exists for compensating the loss of the metamaterial. Nonlinearities
arise due to gain depletion beyond a certain critical strength of a test field. Transmission, reflection, and
absorption data as well as the retrieved effective parameters are presented for a lattice of resonant square
cylinders embedded in layers of gain material and split ring resonators with gain material embedded into the
gaps.
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The field of metamaterials1,2 is driven by fascinating and
far-reaching theoretical visions such as, e.g., perfect lenses,3

invisibility cloaking,4,5 and enhanced optical nonlinearities.6

This emerging field has seen spectacular experimental
progress in recent years.1,2 Yet, losses are orders of magni-
tude too large for the envisioned applications. Achieving
such reduction by further design optimization appears to be
out of reach. Thus, incorporation of active media �gain�
might come as a cure. The dream would be to simply inject
an electrical current into the active medium, leading to gain
and hence to compensation of the losses. However, experi-
ments on such intricate active nanostructures do need guid-
ance by theory via self-consistent calculations �using the
semiclassical theory of lasing� for realistic gain materials that
can be incorporated into or close to dispersive media to re-
duce the losses at THz or optical frequencies. The need for
self-consistent calculations stems from the fact that increas-
ing the gain in the metamaterial, the metamaterial properties
change, in turn changes the coupling to the gain medium
until a steady state is reached. A specific geometry to over-
come the severe loss problem of optical metamaterials and to
enable bulk metamaterials with negative magnetic and elec-
tric responses and controllable dispersion at optical frequen-
cies is to interleave active optically pumped gain material
layers with the passive metamaterial lattice.

For reference, the best fabricated negative-index material
operating at around 1.4 �m wavelength7 has shown a figure
of merit �FOM�=−Re�n� / Im�n��3, where n is the effective
refractive index. This experimental result is equivalent to an
absolute absorption coefficient of �=3�104 cm−1, which is
even larger than the absorption of typical direct-gap semi-
conductors such as, e.g., GaAs �where �=104 cm−1�. So it
looks difficult to compensate the losses with this simple type
of analysis, which assumes that the bulk gain coefficient is
needed. However, the effective gain coefficient, derived from
self-consistent microscopic calculations, is a more appropri-
ate measure of the combined system of metamaterial and
gain. Due to pronounced local-field enhancement effects in
the spatial vicinity of the dispersive metamaterial, the effec-
tive gain coefficient can be substantially larger than its bulk
counterpart. While early models using simplified gain

mechanisms such as explicitly forcing negative imaginary
parts of the local gain material’s response function produce
unrealistic strictly linear gain, our self-consistent approach
presented below allows for determining the range of param-
eters for which one can realistically expect linear amplifica-
tion and linear loss compensation in the metamaterial. To
fully understand the coupled metamaterial-gain system, we
have to deal with time-dependent wave equations in metama-
terial systems by coupling the Maxwell equations with the
rate equations of electron populations describing a multilevel
gain system in semiclassical theory.8

In this Rapid Communication, we apply a detailed com-
putational model to the problem of metamaterials with gain.
The generic four-level atomic system tracks fields and occu-
pation numbers at each point in space, taking into account
energy exchange between atoms and fields, electronic pump-
ing and nonradiative decays.8 An external mechanism pumps
electrons from the ground-state level N0 to the third level N3
at a certain pumping rate �pump, which is proportional to the
optical pumping intensity in an experiment. After a short
lifetime �32 electrons transfer nonradiatively into the meta-
stable second level N2. The second level �N2� and the first
level �N1� are called the upper and lower lasing levels. Elec-
trons can be transferred from the upper to the lower lasing
level by spontaneous and stimulated emission. At last, elec-
trons transfer quickly and nonradiatively from the first level
�N1� to the ground-state level �N0�. The lifetimes and
energies of the upper and lower lasing levels are �21,E2 and
�10,E1, respectively. The center frequency of the radiation
is �a= �E2−E1� /� which is chosen to be equal to
2	�1014 Hz. The parameters �32, �21, and �10 are
chosen to be 5�10−14, 5�10−12, and 5�10−14 s,
respectively. The total electron density, N0�t=0�
=N0�t�+N1�t�+N2�t�+N3�t�=5.0�1023 /m3, and the pump
rate �pump are controlled variables according to the
experiment. The time-dependent Maxwell equations are
given by ��E=−�B /�t and ��H=

o�E /�t+�P /�t,
where B=��oH and P is the dispersive electric polarization
density from which the amplification and gain can be ob-
tained. Following the single-electron case, we can show8 that
the polarization density P�r , t� in the presence of an electric
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field obeys locally the following equation of motion:

�2P�t�
�t2 + �a

�P�t�
�t

+ �a
2P�t� = − �a�N�t�E�t� , �1�

where �a is the linewidth of the atomic transition �a and is
equal to 2	�5�1012 Hz or 2	�20�1012 Hz. The factor
�N�r , t�=N2�r , t�−N1�r , t� is the population inversion that
drives the polarization and �a is the coupling strength of P to
the external electric field and its value is taken to be
10−4 C2 /kg. It follows8 from Eq. �1� that the amplification
line shape is Lorentzian and homogeneously broadened.9

The occupation numbers at each spatial point vary according
to
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where 1
��a

E · �P
�t is the induced radiation rate or excitation rate

depending on its sign.
In order to solve the behavior of the active materials in

the electromagnetic fields numerically, the finite-difference
time-domain �FDTD� technique is utilized,10 using an ap-
proach similar to the one outlined in Refs. 10–12. In the
FDTD calculations, the discrete time and space steps are
chosen to be �t=8.33�10−18 s and �x=5.0�10−9 m for
simulations on the structure as shown in Fig. 1, and �t
=8.33�10−19 s and �x=1.0�10−9 m for simulations on
the structure as shown in Fig. 5. The initial condition is that
all the electrons are in the ground state, so there is no field,
no polarization, and no spontaneous emission. Then the elec-
trons are pumped from N0 to N3 �then relaxing to N2� with a
constant pumping rate �pump. The system begins to evolve
according to the system of equations above.

We have performed numerical simulations on one-
dimensional and two-dimensional �2D� systems with gain.13

Previous studies14–18 have considered loss reduction by in-
corporating gain but where not self-consistent �see the

introduction�.14–17 As the first simple model system, we will
discuss a 2D metamaterial system �shown in Fig. 1� which
consists of layers of gain material and dielectric wires that
have a resonant Lorentz-type electric response to emulate the
resonant elements in a realistic metamaterial. We will have to
study whether we will be able to compensate the losses of
the metamaterials associated with the Lorentz resonance in
the wires by the amplification provided by the gain material
layers without destroying the linear response of the metama-
terial. First we generate a narrow-band Gaussian pulse of a
given amplitude and let it propagate through the metamate-
rial without gain, and we calculate the transmitted signal
emerging from the metamaterial which has also Gaussian
profile but the amplitude is much smaller than that of the
incident pulse depending on how much loss occurs in the
metamaterial. Then we introduce the gain and start increas-
ing the pumping rate and find a critical pumping rate,
�pump=2.65�109 s−1, for which the transmitted pulse is of
the same amplitude as the incident pulse. In addition, for
fixed pumping rate, we start increasing the amplitude of the
incident Gaussian pulse and we would like to see how high
we can go in the strength of the incident electric field and
still have full compensation of the losses, i.e., the transmitted
signal equals the incident signal, independent on the signal
strength. In this region we have compensated loss and still
linear response of the metamaterial; here, the shape of the
transmitted Gaussian is only affected by the dispersion but
not dependent on the signal strength.

We have calculated the transmission versus the strength of
the electric field of the incident signal for several pumping
rates close to the critical pumping rate. As shown in Fig. 2,
we found that for a rather broad region of low intensity input
signal we have a linear response all the way up to incident
electric field of 103 V /m. If we use only three layers
�rods-gain material-rods�, the critical pumping rate is
4.85�109 s−1, which is two times higher than the 19-layer
case of Fig. 1. In Fig. 3, we present detailed results for the
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FIG. 1. �Color online� Square lattice of dielectric square
cylinders �blue/light gray� that have a Lorentz behavior embedded
in layers of gain material �red/gray�. The dielectric constant of the
cylinders is given by 
=1+�p

2 / ��p
2 −2i�
−�2�, where fp=�p /2	

=100 THz and 
=2	f , and f takes different values in the cases we
have examined. The dimensions are a=80 nm, wL=40 nm, and
wg=30 nm.
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FIG. 2. �Color online� The transmittance vs probe field
amplitude for the loss-compensated metamaterial of Fig. 1
with gain bandwidth of 5 THz and loss bandwidth of 20 THz
�i.e., f =10 THz�, for different pumping rates �pump. �pump is in-
creased from 2.15�109 s−1 �lowest� to 3.05�109 s−1 �highest� in
steps of 0.1�109 s−1. The metamaterial response is linear in a very
wide range. When the loss-compensated transmission is exactly
unity, the pumping rate �pump=2.65�109 s−1, which is called the
critical pumping rate. For incident fields stronger than 104 V /m
this metamaterial becomes nonlinear.
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critical pumping rate versus the number of layers of the sys-
tem shown in Fig. 1. Notice that, as the number of layers
increases, the critical �pump decreases. The linear regime for
three layers exists up to 104 V /m, and for higher strength
drops slower than that of Fig. 2. In all the following simula-
tions, the strength of the incident signal is chosen to be 10
V/m, which is far away from 103 V /m, so we operate in the
linear regime of the metamaterial. As an example, we have
studied three layers, rods-gain material-rods, to see how
much �pump we need to compensate the losses. As expected,
we found that �pump is proportional to the imaginary part of
the permittivity 
 of the dielectric.

We first present results for three layers of the system
shown in Fig. 1. First, the full width at half maximum
�FWHM� for Lorentz dielectric and gain are chosen to be 5
and 20 THz, respectively. With the introduction of gain, the
absorption at the resonance frequency of 100 THz decreases,
ultimately reaching zero �not shown�. So the gain compen-
sates the losses. In Fig. 4, we plot the retrieved results for the
real and the imaginary parts of 
 without gain and with gain
slightly below compensation �see Ref. 19 for the retrieval
method�. Notice that we can have Re�
��−1 with
Im�
��0 at 102 THz, slightly off the resonance frequency.
From Fig. 4, one can also see that Re�
��2.5 with
Im�
��0 at 97 THz. So one can obtain a lossless metama-

terial with positive or negative Re�
�. Once we introduce
gain, the imaginary part of 
 of our total system with gain is
equal to the sum of Im�
� without gain and the imaginary
part of 
g, the dielectric function of the gain material. This
result is unexpected because there is no coupling between the
2D Lorentz dielectric with the gain material. This is indeed
true because of the continuous shape of the Lorentz dielectric
cylinders and the gain material slabs have zero depolariza-
tion field. In contrast to finite length wires �hence a three-
dimensional �3D� problem� where the dipole interactions be-
tween Lorentz dielectric and gain material would be
dominated by the quasistatic near field O�1 /r3�, here the in-
teraction is order O�� ln�kr��, only via the propagating field,
and much weaker. Therefore, for this 2D model, gain and
loss are approximately independent. The behavior would ob-
viously be different in a 3D situation, which, however, is
computationally excessively demanding. Thus, we consider a
2D version of the split ring resonator �SRR� as a more real-
istic and also more relevant model. Here, the relevant polar-
ization is across the finite SRR gap and, therefore, the cou-
pling to the gain material is in fact dipolelike.

In Fig. 5, we present the unit cell of our SRR system with
gain material embedded in the SRR gap. The dimensions of
the SRR are chosen such that a magnetic resonance fre-
quency at 100 THz results, which can overlap with the peak
of the emission of the gain material. The FWHM of the gain
material is 20 THz and �pump is 1.4�109 s−1. Simulations
are done for one layer of the square SRR. In Fig. 6�a�, we
plot the retrieved results of the real and the imaginary parts
of the magnetic permeability �, with and without gain. With
the introduction of gain, the weak and broad resonant effec-
tive � �FWHM=5.85 THz� of the lossy SRR becomes
strong and narrow �FWHM=1.66 THz�; the gain effectively
undamps the LCR resonance of the SRR. Notice that here
losses in the magnetic effective response are compensated by
electric gain in the SRR gap. So with the introduction of
gain, we obtain a negative � with a very small imaginary
part in an otherwise typical SRR response, which means that
the losses have been compensated by the gain. In Fig. 6�b�,
we plot the retrieved results for the effective index of
refraction n, with and without gain. Note that for a lossless
SRR n is purely real away from the resonance and imaginary
in a small band above the resonance where � is
negative. Comparing Re�n� slightly below the resonance at
97 THz, we find an effective extinction coefficient
�= �� /c�Im�n��3.50�104 cm−1 without gain and
��1.24�104 cm−1 with gain, and hence an effective am-
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FIG. 3. �Color online� The critical pumping rates for different
numbers of layers of the system in Fig. 1. Parameters for gain and
dielectric materials are the same as Fig. 2.
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FIG. 4. �Color online� The retrieved results for the real and the
imaginary parts of the effective permittivity 
, with and without
gain. In addition, we have plotted Im�
g� versus frequency. Below
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FIG. 5. �Color online� Geometry for a unit cell of the square
SRR system with gain. The gain �shown in orange� is introduced in
the gap region of the SRR. The dimensions are a=100 nm,
l=80 nm, t=5 nm, d=4 nm, and w=15 nm.
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plification of ��−2.26�104 cm−1. This is much larger than
the expected amplification ��−1.39�103 cm−1 for the gain
material at the given pumping rate.20 The difference can be
explained by the field enhancement in the gap of the resonant
SRR. The induced electric field in the gap is around 550
V/m, which is still in the linear regime, and the incident
electric field is 10 V/m. Indeed, taking the observed field
enhancement factor in the SRR gap of �55, the energy per
unit cell produced by the gain material inside the gap is �18
times larger than for the homogeneous gain medium, which
compares very well to the factor of �20 between the simu-
lated SRR effective medium and the homogeneous gain me-
dium. If we further increase the pumping rate the magnetic
resonance becomes even narrower �0.96 THz for
�pump=1.8�109 s−1�. When the pumping rate reaches
�pump=1.9�109 s−1, Im��� becomes negative and we have
overcompensated at the resonance frequency. By increasing
�pump even more ��5�109 s−1� one starts seeing lasing
�spasing�21,22 in our system �not shown�, which is not in the
focus of this work. As long as we are in the linear regime, we
do not need to have a self-consistent calculation; our results
agree very well with the results obtained using the suscepti-
bilities given in Ref. 9. However, the self-consistent calcula-

tion is necessary to determine the range of signals for which
we can expect approximately linear response and it is needed
if we have very strong fields and we are in the nonlinear
regime, especially when we want to study lasing.

In conclusion, we have proposed and numerically solved
a self-consistent model incorporating gain in 2D dispersive
metamaterials. We show numerically that one can compen-
sate the losses of the dispersive metamaterials. There is a
relatively wide range of signal amplitudes for which the loss-
compensated metamaterial still behaves linearly; at higher
amplitudes the response is nonlinear due to the gain. As an
example, we have demonstrated that the losses of the mag-
netic susceptibility � of the SRR can be easily compensated
by the gain material. The pumping rate needed to compen-
sate the loss is much smaller than the bulk gain. This aspect
is due to the strong local-field enhancement inside the SRR
gap.
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FIG. 6. �Color online� The retrieved results
for the real and the imaginary parts of �a� the
effective permeability � and �b� the correspond-
ing effective index of refraction n, with and with-
out gain for a pumping rate �pump=1.4
�109 s−1. The gain bandwidth is 20 THz. Notice
that the width of the resonance with gain is 1.66
THz.

FANG et al. PHYSICAL REVIEW B 79, 241104�R� �2009�

RAPID COMMUNICATIONS

241104-4


