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We propose several physical phenomena based on nanoscale helical wires. Applying a static electric field
transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the
applied voltage. A similar idea can be applied to “geometrically” construct one-dimensional systems with
arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the
transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a
device could be used as a standard for the high-precession measurement of the electric current. The inverse
effect implies that passing an electric current through a helical wire in the presence of a transverse static
electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nanoscale
electromechanical motors. Finally, our methodology also enables ways of controlling and measuring the elec-
tronic properties of helical biological molecules such as the DNA.
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I. INTRODUCTION

Helical nanostructures occur ubiquitously in self-
assembled form in both inorganic materials1–4 and in the
biological world.5,6 In this paper, we propose several physi-
cal phenomena based on nanoscale helix wires. First, when a
uniform electric field is applied perpendicular to the helical
direction, the electrons moving in the nanowire experience a
periodical potential due to the potential-energy difference.
Consequently, such a uniform electric field can induce a gap
in the electron energy spectrum, which drives the nanowire
from a metallic state to an insulating state if the electron
density is commensurate. The general principle behind such
a simple phenomenon is that a uniform electric field can
generate a nonuniform potential acting on a quantum wire if
the quantum wire itself has a curved shape. More generally,
one can obtain a quasi-one-dimensional �1D� system in an
arbitrary electric potential by applying a uniform electric
field to a quantum wire with proper shape. Recent advances
in nanotechnology enable this design principle.7

A more interesting phenomenon occurs when the applied
electric field is slowly rotated. When the system has a com-
mensurate filling and stays in the insulator state, a slow
enough rotation of the electric field satisfies the adiabatic
condition and the system will stay in the instantaneous
ground state. During each period T of the electric field rota-
tion, integer number of charge will be pumped through the
nanohelix, thus generating a quantized charge current. In
such a way, the nanohelix in a rotating electric field provides
a new realization of the quantum-charge pumping effect pro-
posed by Thouless.8 The principle behind this charge-
pumping effect is exactly the quantum analog of the cel-
ebrated Archimedean screw invented more than two
millenniums ago. By making use of such an effect, one can
design a quantized and controllable current source. The re-
verse effect can also be studied, leading to the possibility of
a quantum nanomotor driven by electric current.

To begin with, we consider a helical wire �as shown in
Fig. 1� where the diameter of the wire is d, the radius of the
helix is R, the helical angle is �, the pitch length of the helix
is P=2�R tan �, and the net length of one period is L
=2�R /cos �. The carrier density of the wire is denoted by n.
In the present work, we will focus on the case when the
helical wire is sufficiently thin so that the electron motion
can be considered as one dimensional, and then discuss later
in detail the conditions imposed on the one-dimensionality.

In the continuum limit, the one-dimensional Hamiltonian
of a single electron in the nanohelix is simply written as

H0 = −
�2

2m
��

2, �1�

with m the effective mass and � the length coordinate of the
helix. When a transverse electric field is applied, a potential-
energy term is induced in the Hamiltonian. To write it down
explicitly, one can define the cylindrical coordinate system
�r ,� ,z� as shown in Fig. 2�a�, with the z axis defined as the
axis of the helix. The coordinate of a point with length co-
ordinate � is

r = R, � =
2��

L
�mod 2��, z = � sin � . �2�

FIG. 1. �Color online� �a� Schematic picture of a nanohelix. �b�
The definition of length scales d ,R , P ,L shown for one pitch period
of a helical wire.
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II. QUANTUM HELICAL TRANSISTOR

When a transverse uniform electric field E=E�cos �x̂
+sin �ŷ� is applied, as shown in Fig. 2�a�, the potential en-
ergy is given by

Hel = eE · r��� = eER cos�2��

L
− �� , �3�

in which R is the radius of the helix �Fig. 1� and e is the
electron charge. Thus the combined single-electron Hamil-
tonian takes the form of H=H0+Hel. In this case, the con-
tinuous quadratic-energy spectrum will split into energy
bands, with first Brillouin-zone k� �−� /L ,� /L�. The typical
band structure is shown in Fig. 2�b�. The gap between the
nth and �n+1�th bands can be calculated by perturbation
theory as Eg�n��eER�eER /E0�n−1 in the limit eER	E0

��2�2 /2mL2. For concreteness, we shall focus on the first
gap n=1 since it is the largest, corresponding to Eg�eER.
The transverse electric field can be generated by applying a
voltage Vg=Vg1−Vg2 on the gate electrodes as shown in Fig.
3�a�. Assuming that the helical wire just fits into the gate
electrodes, the resulting electric field is E=Vg /2R, and there-
fore the band gap is simply given by Eg�eVg /2, which is
independent of the radius R of the helix. On the other hand,
the average potential Va= �Vg1+Vg2� /2 relative to the source-
drain potential �Vs+Vd� /2 can be used to tune the chemical
potential of the wire and thus the electron-density n. When
the chemical potential lies in the first gap, the system is an
insulator and the corresponding one-dimensional filling frac-
tion is n1D=2 /L, that is, two electrons per helical period. The
factor of two arises from the spin degeneracy.

Since the system with such a filling is gapless and con-
ducting before applying electric field, the transverse electric
field leads to a metal-insulator transition in the nanohelix,
and thus defines a new type of nanoscale transistor switch,
the status of which is “on” when the electric field is turned
off, and “off” when electric field is turned on, as illustrated in
Fig. 3�a�. Such a switch can work under a source-drain volt-
age Vsd
Vg /2, so that the chemical potential of both leads
lie inside the gap.

To make our discussions here and below more concretive,
we can regularize Hamiltonian �1� to a tight-binding model
�TB�

HTB = − t�
i=1

N−1

�ci
†ci+1 + H.c.� + eER�

i=1

N

cos�2�a

L
i − ��ci

†ci

+ �
i=1

N

�ici
†ci �4�

in which a is the lattice constant and N is the total number of
sites. The last term stands for quenched disorder, with the
random potential 		�i� j

=�ijW

2. To study the transport prop-
erties in such a mesoscopic system, we need to include the
effect of leads, which in this one-dimensional model can be
described by the terms below,9,10

HLead =
V

�
�
k

�c1
†aLk + cN

† aRk + H.c.�

+ �
k

�
�=L,R

���k� − ���a�k
† a�k, �5�

with aLk and aRk standing for the annihilation operators of
electron in the left and right leads, respectively. Then the
conductance can be calculated by10,11
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FIG. 2. �Color online� �a� Definition of coordinates and direc-
tion of transverse electric field. �b� Lowest four subbands under
transverse field eER=0.02�2 /2ma2 and L=30a, with a being the
lattice constant. The dashed line shows the band structure in the
reduced zone scheme when E=0.
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gap

FIG. 3. �Color online� �a� Illustration of the on and off state of
the nanohelix switch. The gate voltage is given by Vg=Vg1−Vg2 and
source-drain voltage is given by Vsd=Vs−Vd. �b� dc conductance of
the nanohelix connected with two metallic leads. The blue dash-dot
line and red solid line stand for the cases with eER=0 and eER
=0.2t, respectively, where the error bar stands for the impurity ef-
fect with the impurity potential W=0.05t. The dashed line is the
conductance without impurity under the same electric field eER
=0.2t. The arrow marks the first gap induced by electric field. All
the calculations are done under the temperature T=0.01t for the
helix system with N=200, L=20, and � /2�=0.1t. The inset shows
the temperature dependence of conductance with the electric field
eER=0 �blue line� or eER=0.2t �red line�.
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G�E� =
2e2

h
 dE�−

� f�E�
�E

��t1,−1�E��2, �6�

t���E� = �	i��Gr�E��i�
 , �7�

in which �=2�V2nF with nF the density of state on the fermi
surface of each lead, and a factor 2 from spin degeneracy has
been included. For later convenience, the scattering ampli-
tude t�� is defined, in which �i1
= �1
 and �i−1
= �N
 are the
local Weinner states on the left and right end site of the
nanowire, respectively. Gr�E� is the retarded Green function
of the nanohelix, Gr�E�= �E+ i�−HTB−��−1. Under
wide-band approximation9 �	�Fl , tl, the self-energy is
�=− i

2���1
	1�+ �N
	N��. Here �Fl and tl are the fermi energy
and bandwidth of the leads, respectively.

The typical behavior of conductance is shown in Fig.
3�b�, in which the conductance with and without external
electric field is compared. The metal-insulator transition in-
duced by the electric field can be seen explicitly from the
temperature dependence of the conductance, as shown in the
inset of Fig. 3�b�. Another important information from this
calculation is that weak impurity W	eER can further widen
the insulating region induced by electric field since the
electric-field-induced subband is much narrower than the
original energy band in the helix, and thus much easier to be
localized by disorder. As shown in Fig. 3�b� under the same
disorder strength, the first subband of the system with elec-
tric field is fully localized, while the one without electric
field remains metallic.

However, a strong disorder W�eER can dominate the
effect of electric field and thus kill this metal-insulator tran-
sition. Another important issue in this system is the electron-
electron interaction. According to the Luttinger liquid theory,
repulsive interaction will make periodical potential more rel-
evant and thus further stabilize this switch effect.12 In sum-
mary, the terms that may harm this effect are attractive inter-
action and strong impurity. Although we won’t involve more
quantitative discussion in the present paper, a lower-limit
estimate to the stability of the present effect can be given as
W	Eg and V	Eg, with W ,V as the characteristic energy
scale of impurity random potential and phonon-induced at-
tractive interaction, respectively. Under such a condition, the
electric field-induced potential scattering dominates the inter-
action and impurity effect and thus the switching effect �and
also the charge-pumping and motor effect shown below� re-
mains robust.

The device concepts discussed so far depend only on the
periodically curved nature of the helical wire, and do not
depend on the net helicity of the wire. Therefore, these con-
cepts can be equally well implemented by patterning a
quasi-1D wire in a periodically curved form, e.g., a sine-
wave form, on a plane, and by applying a transverse voltage.
The helical wire perhaps has the advantage of being self-
assembled and can be more easily realized in the nanoscale.
In principle, the same idea can be generalized to design
an arbitrary potential in a quasi-one-dimensional system.
Consider a planar quantum wire with the shape of function

y�x� in a uniform electric field E=Eŷ, then the effective one-
dimensional potential V�r� is determined by

Ey��x�
�1 + y��x�2

= −
dV

dr
, �8�

in which r is the arc length of the wire. In this way, one can
obtain a quasi-one-dimensional system in any potential V�r�
by choosing a proper shape y�x�, as shown in Fig. 4. Such a
“geometrical design” of one-dimensional systems takes the
advantage of tunable strength and shape of potential energy,
and thus can help to produce artificial one-dimensional ma-
terials with highly controllable electronic and optical proper-
ties. In particular, our device can possibly realize a light-
emitting diode �LED� with tunable band gap and color,
controlled purely by the external gate voltage.

III. QUANTUM HELICAL PUMP

We now consider an adiabatical rotation of the transverse
electric field, when a more interesting effect emerges in the
nanohelix system. Experimentally, the rotation of electric
field can be realized by a set of quadrupolar electrodes, as
shown in Fig. 5�a�. A rotating electric field with angular fre-
quency � is described by a time-dependent ��t�=�t in
Hamiltonian �3�. In the present work, we are interested in the
adiabatical limit defined as the frequency ��, temperature
kBT, and impurity potential-strength W, all being much
smaller than the subband-gap Eg. In this limit the gapped
system with commensurate filling n1D=2 /L will stay in the
time-dependent ground state. Similar to what Thouless8 pro-
posed by using a sliding linear periodic potential, such an
adiabatical translation of periodical potential on a gapped
electron system can in general lead to a quantized charge
pumping current

J = 2Ne
�

2�
, N � Z , �9�

in the zero-temperature limit, which means N electrons per
spin component are pumped through the wire system during
each period T=2� /�. Intuitively, such a quantized charge
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FIG. 4. �Color online� Schematic illustration of the geometrical
design of one-dimensional potentials. �a� A straight quantum wire in
a sine-wave potential �blue line� is equivalent to �b� a periodically
curved quantum wire in a uniform electric field E. �c� More gener-
ally, a straight quantum wire in an arbitrary-potential V�r� �blue
line� is equivalent to �d� a curved quantum wire in a uniform elec-
tric field E.
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pumping can be easily understood as a quantum version of
Archimedean screw. Due to the electric force, the electron
density in the lower subband is larger on the side nearer to
positive electrode, and a charge-density wave �CDW� is in-
duced by the transverse electric field. Consequently, the
high-density region will follow the rotation of electric field

and thus the coordinate of each electron shifts by one pitch
distance during one period of electric field.

More quantitatively, in the adiabatic limit the current
Jpump induced by a time-dependent electric field can be cal-
culated in tight-binding models �4� and �5� in a similar way
as the dc conductance13,15

Gpump �
Jpump

e�
= 2 dE

2�


0

2� d�

2�
�−

� f�E�
�E

� �
�,�=�1

� Im�t��
� �E,��

�t���E,��
��

� . �10�

A typical result of this calculation is shown in Fig. 5�b�. As
expected by topological protection, random disorder can
only induce fluctuation of G for gapless system, and leaves
the quantized plateaus unchanged. Actually, under zero tem-
perature such a quantized adiabatical-charge pumping is ro-
bust under any deformation of the Hamiltonian, as long as
the subband-gap Eg is not closed. In particular, even if the
two ac voltages applied to the quadrupolar electrodes are not
perfectly harmonic but with some deformations or noises, as
long as the electric field vector E�t� still encircles the �0,0�
point once each period, the quantization of pumping conduc-
tance �in the zero-temperature limit� remains robust without
any correction. In the same way it will remain robust when

the nanohelix has a different shape as shown in Fig. 1�a� but
with the same helical topology.

The pumping-conductance Gpump at finite temperature is
simply a convolution of the zero-temperature result
Gpump�T=0� with the thermo-factor −�f�E� /�E. Conse-
quently, Gpump will deviate from the quantized value. How-
ever, for a quantized-plateau Gpump�T=0�=2N /2� with
width Eg, the deviation �G=Gpump�T�−Gpump�T=0� at the
middle point of the plateau can be estimated by
�G /Gpump�T=0��− 2

e�Eg/2+1
, which is exponentially small

when kBT	Eg. If the frequency � of the pumping becomes
comparable with Eg /�, the pumping becomes nonadiabatic.14

Compared with the earlier approaches to realize Thou-
less’s charge-pumping effect, such as those involving surface
acoustic wave15–17 or deformation potential on a quantum
dot,18 the present realization has the advantage of “coding”
the topological information directly into the geometrical
structure of the self-assembled nanohelix, whose long peri-
odic structure makes the effect more intrinsic and robust. Our
device could have higher precision of the current quantiza-
tion and potentially lead to a standard of current definition.19

IV. QUANTUM HELICAL MOTOR

As a direct-inverse effect of the topological charge pump-
ing, a nanohelix in a transverse electric field can work as a
quantum motor, where a longitudinal current can lead to a
uniform mechanical rotation with the frequency, as shown in
Fig. 6,

� =
�J

Ne
, N � Z . �11�

This is a direct quantum analog of a propeller or a windmill.
In order to realize this effect, both ends of the helical wire
should be attached to some kind of molecular swivel, similar
to those described in Ref. 20, which enables the uniaxial
rotation of the helix. It is also possible to drive an ac J�t�
through a helical wire with fixed ends, which will cause an
ac oscillation of the helix. However, the ac effect is not as
robust as the dc effect since the relation between ac oscilla-
tion and ac is generally not protected by topological reason.

Relation �11� is generally true under any friction or other
perturbations, as long as ��	Eg and kBT	Eg so that the
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FIG. 5. �Color online� �a� Illustration of the quantized charge
pumping effect, with four electrodes causing a rotating electric
field. �b� Pumping conductance Gpump=Jpump /e� under zero tem-
perature �red solid line� and finite temperature T=0.01t �blue
dashed line�. The error bar shows the fluctuation induced by the
disorder-strength W=0.1t. The parameters of the tight-binding sys-
tem are taken as N=100, L=20, eER=0.2t, and � /2�=0.1t.
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adiabatical-evolution condition is satisfied. When there are
more frictions, it will be harder to inject a current, but the
relation between frequency and current remains valid. In the
extreme case, if the nanohelix is fixed, then �=0 and at the
same time J=0, which recovers the switch effect. Suppose
there is a frictional torque T=−�� acting on the helix, then
the energy cost per unit time is P=−T�=��2. Consequently,
one needs a finite-voltage V to drive a constant current in this
helix. The voltage is determined by the energy-equilibrium
condition P=��2=VJ, which implies that the power of the
voltage cancels the friction-energy cost. Thus we get the re-
lation

���J

Ne
�2

= VJ ⇒ R =
V

J
=

�2�

N2e2 , �12�

which relates friction to a resistivity. As has been discussed
in switch effect, the source-drain voltage V must satisfy V

Eg /e so as to keep the adiabatical evolution. Consequently,
for a given friction �, the rotating frequency of such a nano-

motor is restricted by �

�
Ne

Vmax

R =
EgN

�� and also by the
adiabatical-condition ��	Eg.

V. MORE DISCUSSIONS ON EXPERIMENTAL
REALIZATIONS

After proposing these three effects, we now analyze the
detailed experimental conditions for their realizations: �1� the
system is quasi-one-dimensional, which requires Eg	E�

and EF	E� with E� as the transverse excitation gap and
EF=kF

2 /2m the fermi energy. �2� The electron �or hole� filling
is commensurate n1D=2N /L ,N�N. �3� The adiabatical ap-
proximation is applicable, which requires �i� temperature
kBT	Eg; �ii� impurity and attractive interaction energy scale
W ,U	Eg; �iii� rotation frequency of electric field or nano-
helix �	Eg /�. �4� The total length of the nanohelix Ltot

��=
�vF

Eg
, so as to prevent the direct tunneling between the

two ends and protect the topological transport.
To satisfy the requirements above, an ideal nanohelix for

our purpose should have thin-diameter d, large-helix radius
R, long-length Ltot, and also be very clean. Experimentally,

two most possible candidates for this effect are helical nano-
wires made from ZnO, SiC, CB, etc.,1–4 and chiral biological
molecules such as RNA, DNA, and some proteins. To make
the discussion more concrete, here we give an estimate of the
present effects in the deformation-free ZnO nanohelix real-
ized in Ref. 4. The size of that nanohelix is reported as d
�12 nm, ��40°, R=15 nm, and L=6R /cos ��123 nm
�the estimate of L is a little different from the previous one
since the intercept of ZnO helix here is hexagonal rather than
round.� If we approximate the electron effective mass by the
bulk ZnO-value m�0.24me,

21 then the transverse excitation
gap can be estimated as E�� h2

2md2 �44 meV. The filling
corresponding to first gap is n1D=2 /L�1.6�105 /cm, which
in three-dimensional unit gives n3D=2 /L��d /2�2�1.4
�1017 /cm3. The corresponding EF=�2kF

2 /2m�0.1 meV.
Thus the condition EF	E� is always satisfied, and condition
Eg	E��44 meV requires the electric field E	3
�106 V /m or gate-voltage Vg	88 mV. The � in condition
�4� is �=�2kF /mEg�1.6 nm, thus condition �4� is always
satisfied. If we take an electric field E=3.3�105 V /m or
Eg=eER=5 meV, then condition �3� requires �i� T	60 K;
�ii� in condition �3�, W ,U	5 meV; �iii� �	7.6�1012 Hz.
In summary, such an effect should be observable in a wide
temperature range for the ZnO nanowire in Ref. 4, if it is
clean enough and the doping can be controlled well. �To
avoid impurity effect, the filling should be controlled by gate
voltage rather than chemical doping.�

Compared to the inorganic nanohelixes, chiral biological
molecules such as RNA, DNA, or protein may have the ad-
vantage of better one dimensionality, which implies a larger
transverse-gap E� since they can be much thinner than the
nanowires. For the effects proposed here to be observed, one
needs to find molecules which are semiconducting and have
a good one-dimensional energy band. In a recent review
article,6 transport properties of various DNA molecules are
summarized, some of which show semiconducting behavior.
If one can find a molecule with E��1 eV, it’s possible to
observe the effect at room temperature with voltage Vg
�200 meV�2kBT�60 meV.

In summary, in this paper we proposed three related ef-
fects in quantum helical systems under a transverse electric
field. Under a slowly rotating electric field, a nanohelix with
commensurate filling works as a quantum Archimedean
screw. The experimental conditions to realize such effects are
shown to be feasible for present experimental techniques.
Since helical structures occur naturally in the biological
world, the principles discussed here also provide methods to
control and detect biological molecules.
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FIG. 6. �Color online� Illustration of the quantum helical
nanomotor.
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