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We develop a theory for the energy relaxation of hot Dirac fermions in graphene. We obtain a generic
expression for the energy relaxation rate due to electron-phonon interaction and calculate the power loss due to
both optical and acoustic phonon emission as a function of electron temperature Te and density n. We find an
intrinsic power loss weakly dependent on carrier density and nonvanishing at the Dirac point n=0, originat-
ing from interband electron-optical phonon scattering by the intrinsic electrons in the graphene valence
band. We obtain the total power loss per carrier �10−12–10−7 W within the range of electron tempera-
tures �20–1000 K. We find optical �acoustic� phonon emission to dominate the energy loss for
Te� �� �200–300 K in the density range n=1011–1013 cm−2.
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I. INTRODUCTION

Graphene is a two-dimensional �2D� plane of carbon at-
oms in a hexagonal lattice, with the motion of the electrons
near the Brillouin zone K point �the ‘Dirac point’� obeying
the massless Dirac equation. This unusual quasirelativistic
property implies a linear energy dispersion �k�=��vk of the
conduction band ��=1� and the valence band ��=−1� inter-
secting at the Dirac point, with a constant Fermi velocity
v=106 ms−1. The recent experimental discovery of this new
2D material has sparked enormous interest in understanding
its fundamental transport properties; for low electric fields,
carrier transport is determined by the behavior of the carriers
close to the Fermi level and has been quite extensively stud-
ied both experimentally and theoretically.1

What still remains as an interesting open arena for explo-
ration is the carrier transport in graphene under high electric
fields and in nonequilibrium �i.e., “hot-electron”� conditions.
With the application of a high electric field, carriers gain
energy at a rate much faster than that for them to lose energy
to the lattice, creating a nonequilibrium carrier population
which subsequently comes to an internal thermal equilibrium
�among the carriers themselves but not with the lattice�
through carrier-carrier scattering. These carriers �called hot
carriers�, having a higher temperature Te than the lattice tem-
perature TL, will then relax toward a thermal equilibrium
with the lattice by losing energy to the lattice. As transport
properties at high fields are determined by these hot carriers,
a quantitative understanding of this hot carrier energy relax-
ation process is therefore of central importance in high-field
carrier transport; furthermore, it is a crucial issue affecting
the performance characteristics of ultrafast, high-field de-
vices.

Experimentally, this energy relaxation process can be
studied, following excitation with an ultrashort laser pulse,
by measuring the transmission spectrum2–4 �pump-probe
spectroscopy� or the luminescence spectrum5 �photolumines-
cence spectroscopy� from the sample. In particular, the lumi-
nescence spectrum yields directly the temperature of the hot
carriers, and when combined with electrical �instead of opti-
cal� excitation of the carriers with a steady-state electric cur-

rent, can provide a direct means to measure the carrier tem-
perature as a function of the energy-loss rate.6

In this paper, we develop a theory for the energy relax-
ation of hot electrons in graphene, incorporating the energy
loss channels due to optical phonon emission and acoustic
phonon emission. Note that electron-electron interaction can
only lead to energy equilibration within the carrier system
�i.e., establishing an electron temperature�, but cannot con-
tribute to the overall energy loss from the carriers to the
lattice. We derive an expression for the energy relaxation rate
�i.e., power loss� of hot electrons in graphene due to
electron-phonon �e-ph� interaction and obtain the power loss
as a function of electron temperature and density. We find an
intrinsic power loss that is present at all doping levels and
does not vanish at zero doping arising entirely due to inter-
band electron-optical phonon scattering by the intrinsic elec-
trons in the valence band; and an extrinsic power loss which
scales with doping density. We also find that the power loss
is predominantly due to acoustic phonon emission below
�200–300 K �depending on the doping density� with opti-
cal phonon emission taking over as the dominant energy loss
mechanism above this temperature range. The temperature
throughout this paper refers to the electron temperature with
the lattice assumed to be held at a low temperature.

II. THEORY

The rates of change of the electron and hole distribution
functions describing the electron-phonon scattering are given
by �r and t dependence of the distribution functions are
suppressed for clarity, and we set �=1 throughout unless
specified�:
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where � ,�= �1 is the chirality index for electron
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�� ,�=1� in the conduction band or hole �� ,�=−1� in the
valence band, fk� is the electron ��=1� or hole ��=−1� dis-
tribution function,7 
k�=�vk−�c is the quasiparticle energy
rendered from the chemical potential �c, Nq is the phonon
distribution function at the phonon energy �q, �k,k−q

�� is the
e-ph coupling strength which, for graphene, has a nontrivial
chiral and momentum dependence arising from the graphene
band structure and the e-ph interaction vertex.8–10 In Eq. �1�,
the first term within the brackets on the right hand side de-
scribes the scattering of an electron in the state �k ,�� into
another state �k−q ,�� via the emission �i.e., 
k�−
k−q�=�q�
or absorption �
k−q�−
k�=�q� of a phonon and the second
term follows with an analogous physical meaning. The sum
over �= �1 takes into account both intraband ��=�� and
interband ����� scattering processes through phonon emis-
sion or absorption.

We now state the assumptions for our model: �1� After the
initial rapid carrier-carrier scattering, the electron gas has
established an internal thermal equilibrium at an electron
temperature Te described by the Fermi distribution function
fk�=nF�
k��, where nF�
�=1 / �exp�
 /kBTe�+1	 is the Fermi
function. �2� We take into account the fact that the emitted
optical phonons can decay into low-energy acoustic phonons
due to anharmonic phonon-phonon scattering, which is char-
acterized phenomenologically by a finite optical phonon life-
time �ah. �3� Acoustic phonons emitted by the electrons or
produced through the decay of optical phonons thermalize
immediately with the lattice �acting as a heat bath� which is
maintained at a lattice temperature TL�Te. Recent ultrafast
optical spectroscopy experiments on graphene3,4 find that the
time for the electrons to equilibrate among themselves spans
�100 fs, and the subsequent thermalization of the electron
gas with the lattice lasts for �1 ps. It is within this picosec-
ond time scale that the electrons lose most of their energy
through e-ph scattering as electron-electron scattering does
not dissipate energy from the electron gas as a whole.

We first ignore the effect of a finite phonon lifetime by
taking �ah=0, assuming that the emitted phonons immedi-
ately thermalize with the lattice and all the energy lost from
the electrons to the phonons is also immediately lost to the
lattice. The energy loss rate dEk� /dt of a single electron with
momentum k can be obtained from Eq. �1� by inserting the
energy change 
k−q�−
k� of the electron due to scattering
under the q integral. The total energy loss rate P of the entire
system of electrons then follows by summing the resulting
single-electron energy loss rate over all states of momentum
k and chirality �, taking into account the degeneracy
factors due to spins gs=2 and valleys gv=2 to give
P=−gvgs���kdEk� /dt. Making use of the integral identities
	�
k�−
k−q���q�=�d�	�
k�−
k−q�+��	��q��� in the ex-
pression of dEk� /dt obtained above, we arrive, after some
algebra, at the following expression for the total power loss
from the electrons:

P = 2�
q
�

−�

� d�

�
��nB

L��� − nB
e ���	Im �ph�q,��Im D�q,�� ,

�2�

where nB
e,L���=1 / �exp�� /kBTe,L�−1	 stand for the Bose dis-

tribution functions evaluated at the electron Te and lattice TL

temperatures respectively, D�q ,��=2�q / ��2−�q
2+ i0+� is the

phonon Green function,

�ph�q,�� = gvgs�
k��

�k,k−q
�� nF�
k�� − nF�
k−q��

� + 
k� − 
k−q� + i0+ , �3�

is the phonon self-energy10 at the electron temperature Te,
and “Im” in Eq. �2� stands for the imaginary part. Equation
�2� generalizes the Kogan formula11 for the power loss in an
e-ph-coupled system widely used in regular metals and
semiconductors12 with a parabolic energy band to a chiral
two-band system �to which graphene belongs as a special
case�, embodying both intraband and interband electronic
transitions as well as the nontrivial chiral and momentum
dependence of the e-ph coupling.

III. OPTICAL PHONONS

We first consider the energy relaxation due to optical pho-
non emission. The LO phonon mode at the Brillouin zone
center � in graphene is characterized by the phonon
energy �0=196 meV and e-ph coupling8–10 �k,k−q

��

=gop
2 �1−�� cos��k+�k−q−2�q�	 /2, where �k=tan−1�ky /kx�

and gop= ���v /b2�
� /�A�0 is the e-ph coupling constant,
with � being the graphene mass density, A the area of the
graphene sample, b=a /
3 the equilibrium bond length be-
tween adjacent carbon atoms, ��2 a dimensionless param-
eter that gives the change of the nearest-neighbor tight-
binding matrix element with respect to the bond length b.8

The imaginary part of the phonon self-energy Eq. �3� de-
scribes the damping of the phonon mode due to electron-hole
pair excitations. For the � point optical phonons in graphene,
�ph is different from the graphene polarizability13 � due to
the different chiral and momentum dependence in the e-ph
coupling. We have obtained an exact analytical expression
for the Im �ph at zero temperature, which is, however, too
lengthy to include here.14 The finite-temperature phonon
self-energy is then obtained from the zero-temperature ex-
pression as:15

Im �ph�q,�;T,�c� = �
0

�

d�c�
Im �ph�q,�;0,�c��

4kBT cosh2���c − �c��/2kBT	
,

�4�

here, we have written out the dependence of Im �ph on the
temperature T and the chemical potential �c�T� explicitly for
clarity. �c�T� is determined by requiring that the integral
over all the electronic states of the Fermi function gives the
electron density n=�d
��
� / �exp��
−�c�Te�� /kBTe	+1
,
where ��
�=gvgs
 /2�v2 is the graphene electronic density
of states. Unlike in regular 2D parabolic system, a closed
form for �c cannot be obtained in the case for graphene, and
one must numerically solve for the root �c of the following
equation which results from the integration of the Fermi
function:

n = − �2�kBTe�2

�v2 �Li2�− exp� �c

kBTe
�� , �5�

where Li2�z�=�k=1
� �zk /k2� is the dilogarithm function.
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In Eq. �3�, we can identify two contributions to the pho-
non self-energy at zero temperature �ph=�+

ph+�−
ph; with �+

ph

originating from the extrinsic carriers and therefore depen-
dent on the Fermi level; �−

ph from the intrinsic electrons in
the valence band �i.e., the “Dirac sea”� and independent of
the Fermi level. For optical phonons, both the extrinsic and
the intrinsic parts contribute to the total power loss
P= Pext+ Pint, and as the extrinsic carrier density n is tuned to
zero, Pext goes to zero, but Pint remains finite even at zero
extrinsic carrier density n=0. The intrinsic part of the pho-
non self-energy Im �−

ph has a simple form,

Im �−
ph�q,�� = −

�gop
� �2

4

�2 − �vq�2��� − vq� , �6�

which allows for an exact analytic derivation of the intrinsic
power loss Pint from Eqs. �2�–�4�:

Pint

N
=

�0
2

12�
�gop

� �2��0


F
�2

�nB
L��0� − nB

e ��0�	nF�− �c� , �7�

here N=nA �A is the sample area� is the number of extrinsic
carriers and �gop

� �2=gop
2 A /�2v2 the dimensionless e-ph cou-

pling for optical phonons.9 Physically, Pint corresponds to the
power loss due to optical phonon emission through interband
transitions of the valence band electrons and is only weakly
dependent on the extrinsic carrier density through �c in the
Fermi function. We find that this intrinsic power loss is not
small, and for Te=300–700 K at n=1013 cm−2, the intrinsic
power loss per unit area Pint /A�103–105 Wm−2.

Recent experiments16 and theory17 show that �ah for
graphene is of the order of picoseconds and therefore anhar-
monic phonon-phonon scattering occurs at a comparable
�and slower� rate than e-ph scattering, causing an accumula-
tion of non-equilibrium optical phonons �known as “hot
phonons”�. Some of these hot phonons are then reabsorbed
back by the electron gas, thus reducing the overall power
loss. We now take this effect into account by incorporating18

a finite phenomenological �ah in our theory. In the steady
state as in the DC heating experiment6 of measuring the
power loss, the rate of change of the phonon distribution
function, which is given by

� �Nq

�t
�

col
= − 2gvgs� �

k,�,�
�k,k−q

�� �Nq	�
k� − 
k−q� + �0�

− �Nq + 1�	�
k� − 
k−q� − �0�	fk��1 − fk−q�� ,

�8�

must be balanced by the phonon decay rate
�Nq−nB

L��0�	 /�ah. This gives the nonequilibrium phonon dis-
tribution function as Nq= ��ah

−1nB
L��0�+�−1nB

e ��0�	 / ��ah
−1+�−1�,

where we have written �−1=−2 Im �ph�q ,�� as the phonon
damping rate due to electron-hole pair excitation. Substitut-
ing this expression for Nq in Eq. �1� and following the same
lines that lead to Eq. �2�, we find that the expression of the
power loss taking account of the hot phonon effect can be
written as

P = − �
q
�

−�

� d�

�
��nB

L��� − nB
e ���	

Im D�q,��
��q,�� + �ah

. �9�

IV. ACOUSTIC PHONONS

At lower electron temperatures, electrons do not have
enough energy to emit high-energy optical phonons, and
acoustic phonon emission becomes the dominant energy loss
mechanism. The LA mode acoustic phonon in graphene
at the � point has an energy dispersion �q=csq and e-ph
coupling8 �k,k−q

�� =gac
2 �q��1+�� cos��k−q−�k�	 /2, where

cs=2�104 ms−1 is the phonon velocity, gac�q�
=Dq
� /�A�q is the e-ph coupling constant and D=16 eV
the deformation potential.

In contrast to the case of optical phonons, we note that
�k,k−q

�� for acoustic phonons has the same chirality and mo-
mentum dependence as in the graphene polarizability, and
therefore the phonon self-energy for LA phonons is given by
Eq. �3� simply by �ph�q ,��=gac

2 �q���q ,��, with ��q ,��
being the polarizability in Ref. 13.

As in the case for optical phonons, the acoustic phonon
self-energy contains an extrinsic contribution �+

ph and an in-
trinsic contribution �−

ph; however, we find that the intrinsic
part does not contribute to the power loss and the power loss
due to acoustic phonon emission originates entirely from the
extrinsic contribution P= Pext. Physically, the intrinsic contri-
bution corresponds to interband electron transitions across
the conduction and the valence bands. The acoustic phonon
mode, having an energy �q=csq with cs smaller than the
graphene band velocity v, does not provide a possible chan-
nel for interband transition, which requires an energy greater
than vq. Emission of acoustic phonons is therefore only pos-
sible through intraband transitions.

V. NUMERICAL RESULTS

We now calculate the power loss Poptical due to optical
phonons �we use �ah=3.5 ps from Ref. 17� and Pacoustic due
to acoustic phonons as a function of Te and n, with �c�Te�
determined at each Te and the finite-temperature phonon self-
energy obtained by evaluating Eq. �4�. The lattice tempera-
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FIG. 1. �Color online� Power loss per carrier versus inverse
electron temperature 1 /Te for optical phonons �black� and acoustic
phonons �red/gray� at different electron densities n=1011, 1012,
1013 cm−2. The slopes of the curves for optical phonons are ap-
proximately given by �0 at low Te.
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ture is taken as zero TL=0. Figure 1 shows the power loss
per carrier P /N from the two contributions versus inverse
electron temperature 1 /Te. The approximate exponential be-
havior of Poptical versus 1 /Te is due to the fact that the elec-
trons capable of emitting optical phonons have an amount of
energy higher than �0, which lie in the high-energy tail of
the Fermi distribution with a population �exp�−�0 /kBTe�.
As the phonon energy is quite high �0=196 meV in
graphene, the power loss through optical phonons decreases
with Te about an order-of-magnitude faster than that in GaAs
�where �0=36 meV�. On the other hand, Pacoustic decreases
with Te much more slowly, lying within the range of
10−12–10−9 W for Te=100–1000 K.

The total power loss is given by the sum of the contribu-
tions from the optical phonons and acoustic phonons �Fig. 2�.
At small values of 1 /Te �high temperatures�, the energy loss
is predominantly through optical phonon emission, with the
power loss behaving approximately exponentially. Poptical de-
creases as temperature is decreased, and the power loss
through acoustic phonons Pacoustic becomes increasingly im-
portant. The crossover of the energy loss from predominantly
optical phonon emission to predominantly acoustic phonon
emission depends on the electron density, occurring at an
increasing temperature with density Te�200 K for
n=1011 cm−2, �250 K for 1012 cm−2, and �300 K for
1013 cm−2.

We show in Fig. 3 the total power loss as a function of
electron density n for different values of Te. At Te=100 K,
the energy loss is mainly due to acoustic phonon emission,
and P /N increases with density. For Te�300 K, P /N shows
an upturn as n is reduced toward zero, reflecting the portion
of intrinsic power loss coming from optical phonon emission
which must give P /N→� as n→0 since Pint is finite at
n=0.

VI. CONCLUSION

In conclusion, we emphasize that the intrinsic power loss
has its origin from the presence of the intrinsic carriers in the
Dirac sea in graphene, and therefore energy relaxation result-
ing in such intrinsic power loss occurs not just for undoped
graphene with n=0, but for doped graphene at all carrier
densities n�0 as well. We find that the total power loss per
carrier taking account of both optical and acoustic
phonon emission �10−12–10−7 W for electron temperatures
Te�20–1000 K. Our results obtained for TL=0 should re-
main valid as long as TL�Te is satisfied in experimental
situations.

Note: Recently a preprint �arXiv:0901.4159 by R. Bis-
tritzer and A. H. MacDonald� appeared reporting some of the
results of carrier cooling in graphene that we obtain in this
work.
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