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We study the pumping current and the conductance in a Tomonaga-Luttinger liquid in the presence of two
time-dependent pointlike weak impurities, taking into account finite-temperature effects. We investigate the
different regimes which can be established as functions of the frequency, the temperature, and the separation
between the impurity potentials. We show how the previous zero-temperature or single-impurity results are
distorted.
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In recent years there has been an intense focus on the
analysis of nonequilibrium situations in the context of elec-
trons in low dimensionality.1 In particular, the problem of
electronic transport through a time-dependent perturbation
has been studied in relation to the x-ray excitation2 and the
possibility of charge and spin exchange on conductors and
semiconductors.3 The investigation of the role of dynamic
sources in highly correlated electron systems in one dimen-
sion reveals an interesting equivalence with quantum evapo-
ration of helium superfluids experiments.4 It shows that a
phonon source, which represents a time-dependent perturba-
tion, embedded in superfluids, excite particles so that these
acquire an energy greater than the one necessary to escape
from the condensate. Possible experimental realization is a
pump laser applied on a carbon nanotube producing a peri-
odic deformation in the network structure that can be under-
stood as an effective time-dependent impurity.5 If the elec-
tronic transport through the nanotube changes significantly in
the presence of the perturbation, that may be used to gain
information on the causes of the oscillation for the applica-
tion of nanotubes as sensors or detectors.6 Another possible
experimental realization is a Hall bar with a constriction.7

In the study of dynamic impurities in Luttinger liquids,
two observables of special interest are the dc component of
the backscattered current Ibs and the correction to the differ-
ential conductance �G. For a pointlike time-dependent oscil-
latory impurity, the conductance of a one-channel quantum
wire is greater than its background value e2 /h for strong
repulsive interaction �Luttinger liquid parameter K�1 /2�.8
This result was obtained at zero temperature. Later, the effect
of the finite length of the wire and the finite temperature on
Ibs and in the shot noise S were analyzed.9,10 In another di-
rection, some authors have considered the role of extended
impurities �such as rectangular barriers� in the conductance
of Fermi and Luttinger liquids.11,12

More recently, the effect of several time-dependent impu-
rities was considered at zero temperature and infinite length.
For the case of two impurities oscillating with the same fre-
quency, the dc component of Ibs is positive even for weak
repulsive interactions due to the presence of the interference
term induced by spatial correlations.13 The pumping current,
i.e., the persistence of a dc current even in the absence of
external voltage, was studied in Ref. 14, where a power-law

dependence with the frequency with an exponent 2K−1 was
found. These authors also show that this current is propor-
tional to the sine of the phase difference and the sine of the
separation between barriers.

In this work, we study the transport properties in a
Tomonaga-Luttinger liquid in presence of two pointlike
time-dependent impurities, both oscillating with the same
frequency and amplitude. We will consider the effect of finite
temperature and thus expand the results obtained in Refs. 13
and 14 at zero temperature. By performing a perturbative
expansion in the backscattering amplitude and using the
Keldysh technique,15 we obtain an analytical expression for
Ibs. We focus our attention on the value of Ibs at zero external
voltage, showing how it changes in relation to the zero-
temperature case. From Ibs we compute and analyze �G.
These quantities are presented as functions of K and they are
studied in two scale regimes: one that relates the temperature
and the frequency and other that combines the frequency
with the spatial separation between impurities.

As the computational starting point, let us consider the
following Lagrangian density, which is derived using the
usual bosonization technique:

L = L0 + Limp, �1�

where

L0 =
1

2
��x,t��v2�2

�x
2 −

�2

�t
2���x,t� �2�

describes a spinless Tomonaga-Luttinger liquid with renor-
malized velocity v and

Limp = −
gB

���
�
�

��x − x��cos�	t + ���


cos�2kFx/� + 2��Kv��x,t� + eVt/�� �3�

represents the interaction of spinless electrons whit two dy-
namical impurities located at the points x+ and x−, with initial
phases �+ and �− and both oscillating with frequency 	 and
coupling amplitude gb. V is the external voltage applied to
the quantum wire and K measures the strength of the
electron-electron interactions. For repulsive interactions
K�1 and for noninteracting electrons K=1. � is a short-
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distance cutoff. In the above expression we only take into
account the backscattering between electrons and impurities,
because the forward scattering does not change the transport
properties studied here, at least, in the lowest order of the
perturbative expansion in the couplings.

In the absence of the impurities, the background current is
I0=e2V /h. In the presence of the impurities the total current
is I= I0− Ibs. The operator associated with the backscattered
current is defined as13

Îbs�t� =
gBe

���
�
�

cos�	t + ���


sin�2kFx�/� + 2��Kv�̂�x�,t� + eVt/�� . �4�

The backscattered current at any time t is given by

Ibs�t� = 	0
S�− �;t�Îbs�t�S�t;− ��
0� , �5�

where 	0
 denotes the initial state and S is the scattering
matrix, which to the lowest order in the coupling gB, is given
by

S�t;− �� = 1 − i�
−�

�

dx�
−�

t

Limp�t��dt�. �6�

In order to compute Eq. �5� we have first derived the
expression for the vacuum expectation value of exponentials
of the � fields at finite temperature as follows:

	0
exp�i2��Kv�̂�x�,t���exp�− i2��Kv�̂�x,t��0� − 	0
exp�− i2��Kv�̂�x,t��exp�i2��Kv�̂�x�,t���0�

=
���kbT/v�2K2i sin��K���v
t − t�
 − 
x − x�
�


sinh��kbT/v��x − x� − v�t − t����sinh��kbT/v��x − x� + v�t − t����
K
, �7�

where � is the step function.
In realistic systems the frequency 	 is expected to be quite high, so that it is unlikely that the explicit time resolution of

Ibs�t� would be experimentally accessible. Then, it is natural to consider the time average over the period of the impurities,
which can be identified with the dc component of the backscattered current,

Ibs =
	

2�
�

0

2�/	

dt Ibs�t� . �8�

Using Eq. �7� in the computation of Eq. �5� and inserting this in Eq. �8�, we can compute Ibs. Defining the dimensionless
scaling parameters z�= ��eV/��	�

2�kbT , z= �	
2�kbT , y�= a�eV/��	�

v , and y= a	
v , Ibs can be expressed as

Ibs =
egB

2	 sin��K�
4�2�2v2 ��	

v
�2K−2

z1−2K��− i cos�2kFa

�
+ �exp�− Ky/z���1 − K�exp�iy+�

��K − iz+�
��1 − iz+�


F�K,K − iz+,1 − iz+,exp�− 2y/z�� − i
��1 − 2K���K − iz+�

��1 − K − iz+�
+ �� + z+ → z−,y+ → y−, → − � . �9�

In this expression a=x+−x− represents the spatial separation between the two impurities and =�+−�− represents the phase
difference. � is the gamma function and F is the Gauss hypergeometric function 2F1. Thus, we have obtained an analytical
expression for the backscattered current as a function of all the parameters of the system, at the lowest order in the impurity
coupling gb. The variables z and y characterize the scale regimes of the system: z�1 ��1� is the low- �high-� temperature
regime, for fixed frequency, and y�1 ��1� is the high- �low-� frequency regime, with respect to the spatial separation.

We first focus our analysis to the case of pure pumping, V=0. The backscattered pumping current is

Ibs =
egB

2	

2��2v2��	

v
�2K−2

sin�2kFa

�
�sin��exp�− Ky/z�z1−2K� i��K − iz�exp�iy�F�K,K − iz,1 − iz,exp�− 2y/z��

��K���1 − iz�
+ �� . �10�

This expression is the generalization for finite tem-
peratures of the result obtained in Ref. 14. The factors

sin�
2kFa

� � and sin�� are characteristics of a pumping
current in one-dimensional systems and show that the di-
rection of Ibs at zero voltage is determined by the spatial

separation between impurities and by the phase differ-
ence between them. In the scale regime of low temperatures
�z�1�, the pumping current goes as 	2K−1 for small fre-
quency �y�1� and goes as a−K	K−1 for high frequency
�y�1�.
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We note that for low temperatures and K�1 /2, the pump-
ing current becomes large when 	 decreases. Hence, the
perturbative expansion in powers of gB breaks down when
	→0. Using a scaling analysis we can estimate that this
expansion is valid when

gB

�v � �	
v �K−1�1. We remark that ex-

pression �10� does not include the case 	=0, where the
pumping current is zero too. All these statements imply that
the current must be a nonmonotonic function of 	. In order
to determine this function, one has to go beyond the lowest-
order perturbative results of this work.14

For high temperatures �z�1� the asymptotic behavior of
the pumping current depends on the value of y /z=

2�kbTa

�v . For
y /z�1, Ibs goes as 	T2K−2. For y /z�1 the pumping current
is given by the sum of two terms competing with each other:
one proportional to 	T2K−2 and other proportional to
a	T2K−1. Finally, for y /z�1, Ibs goes as sin� a	

v �T2K−1 exp�
−2�KkbTa /�v�. We observe that the collapse at 	�0 dis-
appears and then the pumping current goes to zero when 	
decreases.

Figure 1 shows the ratio between the pumping current
at finite and zero temperatures. For low frequency, Ibs

changes in relation to the case of zero temperature for z�1;
decreases for all K except for very small K �where
Ibs / Ibs�T=0��1�; while, for z�1, Ibs grows �decreases�
slightly for high �small� interactions. For intermediate fre-
quency, a suppression of Ibs occurs for high temperature
and a monotonic decrease with K for intermediate tempera-
ture. Finally, for high frequency, the decrease in the back-
scattered current is more pronounced and tends to occur even
for low temperatures; in any case, Ibs / Ibs�T=0� is a mono-
tonically decreasing function of K. In general, for K→0,
Ibs / Ibs�T=0�→1; this is because for high interactions the
effect of the impurities and the temperature is irrelevant in
any regime.

From expression �9� we can obtain the correction of the

differential conductance �G=−

�Ibs

�V 
V=0 to second order in the
coupling,

�G =
e2gB

2��	�2K−2

2��3v2K

A�z,y = 0,K� + cos� 2kFa

� �cos��A�z,y,K�
2

, �11�

where we have defined

A�z,y,K� =
z2−2K exp��iz − K�y/z���K − iz�

��K���1 − iz�
F�K,K − iz,1 − iz,exp�− 2y/z�����K − iz� − ��1 − iz� − y/z�

+ F�0,1,0,0��K,K − iz,1 − iz,exp�− 2y/z�� + F�0,0,1,0��K,K − iz,1 − iz,exp�− 2y/z�� + �� . �12�

Here � is the digamma function and F�0,1,0,0� and F�0,0,1,0�

represent the differentiation of the function F with respect to
the second and the third arguments, respectively.

Figure 2 shows the change in the conductance of the sys-
tem as a function of K for different scale regimes. In the case
of high temperature, the behavior is independent of the fre-
quency regime; the effect of positive �G only remains in a
small region of K next to zero and then corresponds to very
high electron-electron interaction. For very high tempera-
tures this effect tends to disappear and �G is always negative
and goes to zero for strong interactions.

For intermediate and low temperatures �z�1 and z�1,
respectively� the behavior of the conductance depends on
the frequency regime. In the small-frequency regime the
change in the conductance is almost the same as for a single
barrier at zero temperature; this is because our definition of
this regime is similar to a→0. For intermediate frequency
�z�1� the conductance of the system increases too for small
interactions, this is for K�1 /2, and its value is bigger than
the case of small frequencies. For high frequency, an oscil-
latory behavior of �G occurs as a function of K: the conduc-
tance tends to decrease for high and weak interactions and
increases in intermediate interactions. The specific values of
K, when �G changes sign, vary with y and z.

We stress that the appearance of a pumping current and

the growth of the conductance even for weak electron-
electron interaction �K�1 /2� have their origin in the spatial
separation of the oscillatory impurities. Thermal fluctuations
are expected to induce decoherence and then, at finite tem-
perature, both effects decrease in quantity. For z→0, Ibs is
suppressed and the conductance of the system remains as
e2 /h. Then, the effect of the impurities is irrelevant in a
Luttinger liquid at very high temperature. The exception is
when K=1 �Fermi liquid� and

2�kbTa

�v �1; in this case the

pumping current is Ibs��
2�kbTa

�v /sinh�
2�kbTa

�v ��Ibs�T=0� and
the correction to the conductance is negative �in particular it
is temperature independent for a single barrier, a=0�. This
means that for �v

2�kba �T�
�	

2�kb
the Luttinger and the Fermi

systems are well differentiated in their transport properties.
To summarize, we presented an exact and analytical com-

putation of the backscattered current, the pumping current,
and the correction to the differential conductance for a
Tomonaga-Luttinger liquid in the presence of two weak os-
cillatory impurities at finite temperatures. We analyzed the
distortion of the pumping current with respect to the zero-
temperature case, in different scale regimes defined by the
dimensionless parameters �	

2�kbT and a	
v . We also showed how

the enhancement of the conductance for K�1 /2, previously
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predicted for a single impurity, changes due to the combined
effect of temperature and spatial separation of the barriers.
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FIG. 1. �Color online� Pumping current at finite temperature
divided by the pumping current at zero temperature as function of K
and for different values of y. Dashed line corresponds to z=0.1,
dotted line to z=1, and solid line to z=10.
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