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We report a theoretical study of the carrier relaxation in a quantum-well structure subjected to a strong
magnetic field. Both the alloy �GaInAs� disorder effects and the Fröhlich interaction are taken into account
when the electron energy differences are tuned to the longitudinal optical �LO� phonon energy. In the weak
electron-phonon coupling regime, a Fermi’s golden rule computation of LO phonon-scattering rates shows a
very fast nonradiative relaxation channel for the alloy-broadened Landau levels �LL’s�. In the strong electron-
phonon coupling regime, we use a magneto-polaron formalism and compute the electron survival probabilities
in the upper LL’s including increasing numbers of LO phonon modes for a large number of alloy disorder
configurations. Our results predict a nonexponential decay of the upper-level population once electrons are
injected in this state.
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I. INTRODUCTION

A quantum cascade laser �QCL� is a semiconductor laser
with specially designed cascade quantum structure to realize
unipolar carrier transport and intersubband optical transition,
and thus to achieve long wavelength lasing by overcoming
the bandgap limit of the material.1 Since the first observation
of the population inversion in a QCL,2 the midinfrared, far-
infrared, and even THz QCL’s have been realized though few
of them operate at room temperature.3 It has been observed
that the performances of the QCL’s deteriorate with tempera-
ture quickly when the emission wavelength gets longer, a
signature of an increasingly detrimental thermal activation of
nonradiative losses. Therefore it is important to understand
and control the nonradiative paths from the upper state of the
lasing transition. A magnetic field B applied parallel to the
growth axis has been used as an external parameter to moni-
tor the characteristic of a QCL. In particular, it modulates the
output power of the laser with an oscillation period propor-
tional to 1 /B. This output is sensitive to both elastic and
inelastic scatterings, which introduce nonradiative relaxation
channels to carriers in the Landau level �LL�.4–9 Thus it is of
interest to study theoretically the relaxation mechanisms of
the QCL in the presence of a quantizing magnetic field. Cal-
culations of the LO phonon-emission rates in these disor-
dered systems have rarely been reported.10–12 Yet, in the
Ga0.47In0.53As active-region material the alloy effect nearly
reaches its maximum value with broadening of the LL up to
several meVs. Therefore, it is worth devoting more efforts to
understand whether the notion of phonon emission remains
meaningful in LL quantized material.

Actual QCL structures are complicated stacks of different
semiconductor layers fulfilling different purposes �carrier in-
jection, lasing action, and carrier evacuation�. As a result, the
energy-level structure of one period of a QCL can be ex-
tremely involved and comprise many bound states for the z
motion. Nevertheless, in a given magnetic-field range there
are only a few of these levels that contribute to the nonradi-
ative decay. Hence, in order to analyze the physics of these

nonradiative transitions, we shall restrict our considerations
to a single quantum-well �QW� structure and focus our at-
tention at the Landau levels attached to two subbands only.
In order to �qualitatively� apply our calculations to an actual
QCL structure, the upper state of our two subband QW
should be identified to the upper state of the lasing transition
while the lower state of our two subband QW should be
identified to that of one of the very many bound states for the
z motion �injection and extraction� found in one period of a
QCL.

Assuming a LL structure at high magnetic field, the prob-
lem could be tackled in two radically different ways. In the
weak electron-phonon coupling case, the electron states are
initially computed by including alloy-scattering potentials
and the phonon emission rates are then calculated using the
Fermi’s golden rule. This traditional perturbative computa-
tion would give an estimate of the exponential decay rate of
the upper-level electron population. On the contrary, LL elec-
trons and LO phonons form magneto-polaron states when
their coupling is strong enough. Similar effects appear recur-
rently in the optical properties of quantum dots �QD’s�,
e.g.13,14 In this mixed mode description the electron-LO-
phonon interaction is initially taken into account exactly.
Hence, the very notion of phonon scattering/emission be-
comes irrelevant. We shall examine the magneto-polaron
case where the alloy scattering broadens the magneto-
polaron states and compute the time-dependent survival
probabilities in the upper LL’s for an electron initially in one
of the alloy-broadened upper LL’s. This electron-phonon
strong-coupling theory leads to a distinguishably different
prediction for the carrier relaxation process as composed to
the ordinary phonon-emission picture and predicts a nonex-
ponential population decay from the upper levels.

II. LO PHONON EMISSION OF THE ALLOY
BROADENED LL’S

For midinfrared QCL’s, it is a reasonable assumption that
the alloy scattering destroys neither the subband structure at
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zero field nor the LL structure at high magnetic fields. So we
consider only a few subbands and their LL’s. Leuliet et al.11

demonstrated that the alloy-scattering effect in the barrier is
negligible as compared to that in the well. We correspond-
ingly model the active region of a QCL as a single QW clad
between infinite potential barriers along the z direction. A
uniform magnetic field applied parallel to the quantum con-
finement direction is considered in Landau gauge �with the
vector potential A� =Bxŷ�. Moreover, we neglect the spin-
Zeeman effect. Thus, in the effective-mass model the unper-
turbed degenerate LL eigenstates of the lth subband read

�r��El,n,ky� =
1

�Ly

eikyy�l�z��n�x + �2ky� ,

�l,n = El + �n +
1

2
���c, �1�

where �l as the wave function of the lth subband, �n the nth
Hermite function, �=�� /eB the magnetic length, and �c
=eB /m� the cyclotron frequency. We take m�=0.05m0 for
electron effective mass and Lz=12.33 nm for quantum-well
width, which gives the zero-field subband separation E2
−E1=147.5 meV. The LL degeneracy �per spin� is D
=LxLy / �2��2�.

For a numerical calculation of the alloy-scattering effect
in the Ga1−xInxAs well, we partition the system �a large box
of �0=Lx	Ly 	Lz=99.79	99.79	12.33 nm� into tiny
unit cells ��0=2.93	2.93	5.87 Å�.15 In each cell the scat-
tering potential is a random variable which equals to x
V
with probability 1−x and to −�1−x�
V with probability x,
where x=0.53 for Ga0.47In0.53As and 
V=0.6 eV.16 On the
scale of LL’s or z-dependent wave-function extensions, the
alloy fluctuations act like delta scatterers and we assume
there is no correlation between the x values of different cells.
Thus the alloy potential is given by17

Valloy = 
V�0�	
R� Ga

x��r� − R� Ga� − 	
R� In

�1 − x���r� − R� In�� .

�2�

With a given configuration of the alloy disorder, we calculate
the alloy-broadened LL’s by diagonalizing the alloy potential
on the basis of the degenerate LL’s �for details, see Ref. 15�.
With our sample box this means 
D�=59 states per LL at
24.58 T. The diagonalization has been done with N=100
samples with randomly distributed alloy atoms.

The numerical results �Figs. 1 and 2� demonstrate the va-
lidity of the LL structure and clearly show the localization of
the electrons at the broadened LL’s tails as well as the ex-
tended behavior at the maximum of the density of states
�DOS�. Figure 1 shows the in-plane electron-density distri-
butions P���� for four states of one particular alloy configu-
ration, as defined by

Pl,n,���� =� �l
2�z�dz��n,�����2, �3�

where �r� �El ,n ,�=�l�z��n,���� is the th disordered state re-
lated to �El ,n� �a short notation for all unperturbed or disor-

dered states related to the lth subband and nth LL’s�. For
each of the �El ,n ,� states of a particular run, we have com-
puted the x and y uncertainties

�x = ��x2� − �x�2, �4�

�y = ��y2� − �y�2. �5�

Figure 2 shows �x and �y for all the independently alloy-
disordered states related to �E2 ,0� or �E1 ,2� at 24.58 T
�
D�=59; N=100 disorder configurations�. For an unbroad-
ened LL �El ,n ,ky� with the electron entirely delocalized
along the y axis over a segment L there is �y = L

2�3
and �x

�n�

=��n+ 1
2 . For L=102 nm and B=24.58 T, this means that

�y =28.8 nm, �x
�0�=3.66 nm, and �x

�2�=8.18 nm. Figure 2
shows that the tail states are considerably more localized
than the central states. Indeed, for the latter �y is close to the
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FIG. 1. �Color online� Typical in-plane electron-density distri-
butions �in nm−2� for four states in the set of independently broad-
ened LL’s at 24.58 T: �a� DOS tail of �E2 ,0�; �b� DOS max of
�E2 ,0�; �c� DOS tail of �E1 ,2�; and �d� DOS max of �E1 ,2�.
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FIG. 2. �Color online� Position uncertainties of the indepen-
dently alloy-broadened LL’s at 24.58 T: �a� �x of �E2 ,0�; �b� �y of
�E2 ,0�; �c� �x of �E1 ,2� ; and �d� �y of �E1 ,2�.
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expected value for a plane wave. We also note that �x
�0� and

�x
�2� are considerably larger than 3.66 and 8.18 nm, respec-

tively, and in fact close to �y. This proves that the extended
states of the alloy-broadened LL’s are very different from the
unperturbed �El ,n ,ky� states but display similar extensions
along the x and y directions �the small discrepancies are due
to the different boundary conditions along the x and y direc-
tions�.

We consider the electron-phonon interaction here only
due to the GaAs-like LO phonons because in the
Ga0.47In0.53As alloy the Fröhlich interaction is dominanted
and the potential of GaAs-like modes dominates over that of
the InAs-like modes.18 We take the zone-center LO-mode
frequency as ��LO=33.7 meV and the Fröhlich interaction
as

He-ph = 	
q�
�i

g

q
e−iq� ·r�bq�

+ + H.c.� , �6�

where bq�
+ is the creation operator of an LO phonon with a

wave vector of q� and the Fröhlich factor is g

=� e2��LO

2�0Vcr
���

−1−�s
−1� with ��=11.6 and �s=13.3 as the high-

frequency and static relative dielectric constants of GaAs
material, respectively, and Vcr the crystal volume.

In the absence of the alloy disorder, the unperturbed-
factorized states �E2 ,n2=0 ,ky� � �0LO� and �E1 ,n1= p
�0,ky�� � �1LO� cross at the field Bp=m��E2−E1
−��LO� / �pe�� for any values of ky and ky�. Let us consider
the p=2 resonance for which the turnoff of QCL’s lasing has
been numerically calculated under the assumption of a domi-
nant inhomogeneous broadening.11 We can calculate the scat-
tering rate due to the electron-phonon interaction from one of
the alloy-broadened �E2 ,0� LL states toward any of the
�E1 ,2� broadened states assuming the Fermi’s golden rule
holds. The scattering frequencies are averaged over different
alloy configurations. As shown in Fig. 3, at resonance �B2
=24.58 T� the scattering rate of this irreversible departure
from the initial state reaches a maximum value when the
initial state coincides with the center of the broadened LL’s;
this energy also corresponds to the largest DOS of the final
states. Note that in spite of the fact that we deal with transi-
tions between different LL’s associated with different sub-
bands, the scattering rate is quite large; we find in Fig. 3 a

maximum scattering rate of 8.66 ps−1. This relatively large
value results from the increased DOS of final states due to
the Landau quantization even in the presence of disorder. It
also points out a difficulty in applying blindly the Fermi’s
golden rule since the energy uncertainty � /�5.70 meV
due to LO phonon emission is comparable to the LL width
due to alloy broadening �with the full width at 1 /e DOS max
as 
5.69 meV, see Ref. 15 and also Sec. III�.

III. ALLOY-BROADENED MAGNETO-POLARON
STATES AND THE SURVIVAL PROBABILITY

IN THE UPPER LL’S

A. Unperturbed magneto-polaron states

In this section we recall the states that result from the
exact diagonalization of the Fröhlich Hamiltonian within a
�truncated� basis of the factorized states solution of He
+Hph. Then we analyze in Sec. III B the disordered polaron
density of states.

The truncated basis we use to diagonalize the Fröhlich
interaction comprises the zero-phonon �n=0� LL states of the
E2 subband �E2 ,0 ,ky� � �0� and the one-LO-phonon replica
of the pth LL states of the E1 subband �E1 , p ,ky −qy� � �1q��.
For a fixed ky there are Nphonon+1 such uncoupled states
where Nphonon is the number of LO phonon modes relevant in
the analysis. As shown in Ref. 19, the Fröhlich coupling
splits these Nphonon+1 states into two groups. The first group
comprises two states, the magneto-polaron states. They read
as

��p,ky� = ��p�E2,0,ky� � �0�

+ 	
q�

��p�q���E1,p,ky − qy� � �1q�� ,

��p =
1

�1 +
�p

2

��p
2

, ��p�q�� = − i
g��p

q���p
Ip

��q�� ,

��p = �2,0 + ���p, ��p =
�p

2
���p

2

4
+ �p

2, �7�

where � refers to the upper �+� and lower �−� polaron states
in Fig. 4�a�, the detuning energy is ��p=�1,p+��LO−�2,0 and
the half-polaron-splitting energy is given by
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FIG. 3. LO phonon-emission rate from alloy-broadened LL’s
�E2 ,0� to alloy-broadened LL’s �E1 ,2� at B2=24.58 T, as a function
of the energy of the initial state, T=0 K.
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��p = �	
q�

g2�Ip�q���2/q2, �8�

with the electron-phonon interaction-coupling matrix ele-
ment as

Ip�q�� = �E2,0,ky�eiq� ·r��E1,p,ky − qy�

=

��iqx − qy��p

�2pp!
exp�−

�2q//
2

4
− i�2qx�ky −

qy

2
��

	� dz�2
��z�eiqzz�1�z� . �9�

We note that these magneto-polaron states are entanglements
of electron and phonon states.

The remaining Nphonon−1 states are the “uncoupled”
states. They are characterized by a vanishing projection on
the �E2 ,0 ,ky� � �0�. Hence the expectation values of the num-
ber of LO phonon irrespective of their wave vector is 1 for
these uncoupled states, in contrast to the polaron states 
see
Eq. �7��. These uncoupled states cannot be populated by
electrons entering the active region directly from the zero-
phonon states of the injection region. For simplification, in
this section we concentrate on the magneto-polaron states
only �the role of uncoupled states is discussed in Sec. IV�.
The electron-phonon scattering obeys the momentum conser-
vation law. Since each of the unperturbed LL’s has a definite
ky, the Fröhlich interaction conserves the ky number and,
consequently, each magneto-polaron state has a definite ky
value in the ideal system. For the case of the exact resonance
between �E2 ,0� � �0LO� and �E1 , p� � �1LO� the upper and
lower polaron branches ��p ,ky� have equal weights of pho-
non components while for a finite-energy detuning these
weights are unequal. This is similar to the case of strong
coupling between atoms and photons in cavity QED except
that each polaron branch has a degeneracy of the LL’s.20 The
polaron splitting energy has a �B dependence and is about
4.0 meV at B2=24.58 T.19

B. Disordered polaron DOS: SCBA and numerical results

The alloy disorder breaks the ky-related translational in-
variance and thus either broadens the magneto-polaron states
�weak disorder� or even destroys the polaron picture �strong
disorder�. As for quantitative estimate, by using the self-
consistent Born approximation �SCBA�,21 we solve a pair of
coupled equations of the self-energy of polarons given by

�+p��� =
V+p,+p

2

� − �+p − �+p���
+

V+p,−p
2

� − �−p − �−p���
, �10�

�−p��� =
V+p,−p

2

� − �+p − �+p���
+

V−p,−p
2

� − �−p − �−p���
, �11�

where the alloy-squared-scattering matrix element is aver-
aged over the alloy fluctuations,15 viz.,

Va,b
2 = �	

ky�

��a,ky�Valloy�b,ky���
2�

alloy

. �12�

For infinitely large �two-dimensional� samples we have

V�p,�p
2 =

D�0

�0

� 3
2 +

Wp

�2��p
2 +

Up

�4��p
4 �

�1 + �p
2/��p

2 �2 Vx
2, �13�

V+p,−p
2 =

D�0

�0

� 3
2 +

Wp

�2�+p�−p
+

Up

�4�+p
2 �−p

2 �
�1 + �p

2/�+p
2 ��1 + �p

2/�−p
2 �

Vx
2, �14�

where Vx
2=x�1−x��
V�2 and each of the alloy-squared-

scattering matrix elements involves two alloy-scattering
events and consequently contains three terms: zero-phonon
term when both events occur among zero-phonon states;
one-phonon term when one event occurs among zero-phonon
states and the other among one-phonon states; and two-
phonon term when both events occur among one-phonon
states. The one-phonon term has a common factor as

Wp =
g2

2p−1p! 	
q�=�q� //,qz�

�Ip�q���2

q2 ��q//�2pexp�−
1

2
�2q//

2� ,

�15�

and the two-phonon term’s factor reads

Up =
3g4

2 	
q�q��
�� �Ip�q��Ip�q����

qq�
	
k=0

p
p ! �− �2
q//

2�k

�p − k� ! �k!�22k�2

	exp�−
1

2
�2
q//

2�� . �16�

Once the magneto-polaron self-energy is obtained by it-
eration, the polaron DOS near Bp is given by

���� = −
D

�
Im� 1

� − �+p − �+p���
+

1

� − �−p − �−p���� .

�17�

As shown in Fig. 5�a�, the alloy-broadening effect is en-
hanced with increasing magnetic field. For larger p the alloy
broadening may be smaller than the polaron splitting. How-
ever, when p is large enough Bp is very close to Bp+1 so that
the two-LL’s formalism 
Eqs. �10� and �11�� is no longer
valid. To set a criterion, we find that a finite polaron gap will

open when
2V+p,+p

2

�V+p,+p
2 +V+p,−p

2
���p. We can see from Fig. 5�a� that

this criterion is not fulfilled for p=1 and only marginally for
p=2 but holds for larger p values with recognizable double
maxima in the DOS. In Figs. 5�b�–5�d� we show more results
for the SCBA polaron DOS of p=2.

We have also performed a numerical diagonalization of
the alloy Hamiltonian for a given realization of disorder
within a basis of polaron �� ,ky� states. Once the polaron
levels are calculated the density of states is calculated and an
average over N=100 samples is performed. As seen in Figs.
5�c� and 5�d�, the numerical calculations agree quite well
with the SCBA results though the broadening effects appear
larger in the numerical outputs. We can see in both SCBA
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and numerical calculations that out of resonance 
Fig. 5�c��
the DOS displays two peaks of uneven heights.

The DOS peaks of the two broadened LL’s appear very
asymmetrical at large detunings. The polaron level that re-
sembles the �E2 ,0� � �0LO� LL �far from resonance� acquires
a width and a shape that goes smoothly to those of the pure
electron �E2 ,0� LL.15 On the other hand, at large detuning the
SCBA broadening becomes insufficient to fully account for
the alloy broadening. This is because a large number of un-
coupled states become nearly degenerate with the polaron
levels that resemble the one-LO-phonon replica states
�E1 , p� � �1LO� and these uncoupled states are not accounted
for neither in the SCBA equations nor in the numerical re-
sults in Fig. 5 �see Sec. IV�.

C. Time-dependent survival probability in the upper LL’s

The irreversible emission of LO phonon is the most effi-
cient energy-relaxation mechanism in QCL at zero magnetic
field provided it is energy allowed. In the presence of a
strong field, in an ideal sample, this irreversible emission is
impossible because of the formation of intersubband
magneto-polarons. Alloy scattering blurs the magneto-
polaron states and it is interesting to ascertain the nature of
the phonon emission in QCL subjected to a strong-quantizing
magnetic field. To this end, in the case of the p=2 resonance,
we compute for a given realization of the alloy disorder the
survival probability in the ensemble of independently broad-
ened LL states �� related to �E2 ,0� once the carrier has been
injected in one particular state �0� of this ensemble

Ps�t� = 	


��� � �0LO�exp�− iHt

�
��0� � �0LO��2

, �18�

where H=He+Valloy+Hph+He-ph. In this section, Valloy is di-
agonalized numerically �Sec. III B� within the polaron basis

Eq. �7��. In the following, we take �0� as the central level of

the broadened ensemble. Once this is achieved we average
over the N=100 realizations of the alloy disorder. Several
magnetic fields have been considered.

When there is a large energy detuning between the zero-
LO-phonon replica of �E2 ,0� LL’s and the one-LO-phonon
replica of �E1 , p=2� LL’s, the survival probability very
quickly oscillates between 1 �t=0� and Pmin to stabilize to
P�= �1+ Pmin� /2 in a characteristic time � of a few picosec-
onds; if �0� is the central state of the broadened LL’s and for
B=20 T, we find �2.8 ps and P�0.83. Right at reso-
nance B2=24.58 T, see Fig. 6, the averaged survival prob-
ability displays a large number of fast oscillations �pseudo
period: 1.03 ps� with a decaying amplitude ��42 ps� that
brings Ps to the limiting value P�=1 /2. We note that the
pseudo period is close to � /�2=1.04 ps. The limiting value
1/2 recalls the fact that the Fröhlich interaction being so ef-
ficient that the carrier very quickly exits from the initial state.
However, once in the one-LO-phonon replica of the p=2 LL,
there is no sink mechanism the electron can use to escape
from this LL. Thus, another Fröhlich interaction brings it
back into the �E2 ,0� LL. There is no reason a priori for this
state to be the same as the initial state. Subsequently, the
electron leaves the initial LL and oscillates back and forth
between the zero-LO-phonon replica of �E2 ,0� LL’s and the
one-LO-phonon replica of �E1 , p=2� LL’s. This oscillatory
cycle between the two broadened LL’s is however irrevers-
ible to the extent that the initial state has very little chance to
be recovered after 2j jumps. This is in striking contrast with
the coherent polaron oscillations that would result if there
were no alloy scattering acting to blur the polaron states,
thereby leading to an oscillatory cycle between only two
polaron states.

The consequence on our understanding of the experimen-
tally observed QCL oscillatory output versus B is significant.
Unless one can find a plausible and fast escape mechanism
from the one-LO-phonon replica, there is no reason to in-
voke an irreversible escape from the upper state of the lasing
transition in a QCL. The long-lived oscillations displayed in
Fig. 6 will actually be limited by the finite lifetime of the
phonons due to anharmonicity effects. This lifetime is about
10 ps at low temperature and a few picoseconds at room
temperature in bulk GaAs. Similar values were found in
InAs self-organized QD’s.22 Beyond this lifetime, on aver-
age, the oscillations should stop and the electron should have
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FIG. 5. �Color online� Alloy-disorder broadening of magneto-
polarons: �a� SCBA calculation of the polaron DOS for p=1–4 at
the resonant fields Bp; �b� SCBA calculation of the polaron DOS �in
unit of m� / ���2�� around B2=24.58 T; and �c� and �d� are numeri-
cal results at 23.50 and 24.58 T, respectively, to compare with the
SCBA calculations.
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relaxed to one of the disorder-broadened LL states �E1 , p�
with no phonon. Note that such a relaxation path would be in
complete contrast with bulk and QW materials at zero mag-
netic field but much in agreement with the energy relaxation
scenario established in QD’s.14

IV. EFFECTS OF THE UNCOUPLED ONE-PHONON
STATES IN THE STRONG-COUPLING REGIME

The approximation of neglecting the uncoupled one-
phonon states turns out unsatisfactory because of the very
efficient alloy scattering between magneto-polarons and un-
coupled one-phonon states. As a result, the Rabi oscillations
due to polaron effects will be severely damped since the
alloy scattering between polaron states and the large number
of uncoupled one-phonon states will give fast additional
leakage channels for the LL electrons. For each value of ky,
the uncoupled states related to the ��p ,ky� polaron are ap-
proximately

�uncoupled� = �E1,p,ky� − qy� � �1q��,ky� � ky ,

�uncoupled = �1,p + ��LO. �19�

There are Nuncoupled= �
D�−1�Nphonon such uncoupled states
for each pair of ��p ,ky� 
where Nphonon�480 discretized LO
phonon modes should be included to reproduce accurately
the polaron gap and an accurate numerical diagonalization
would give the number in total as Nuncoupled= 
D��Nphonon
−1��. Note also that these states are energetically placed be-
tween the two polaron levels ��p ,ky� at their mid-distance at
resonance B=Bp and tend toward the fast increasing �with
field� polaron branch at high detuning �B−Bp�.

The effect of alloy disorder is twofold: �i� broadening the
uncoupled level and �ii� admixing the uncoupled with the
polaron states. However, a full diagonalization, including all
polaron and uncoupled one-phonon states with a large num-
ber of phonon modes, is too heavy numerically 
this would
mean diagonalizing for each run of the N=100 a matrix of
the size as Dim�H�= 
�D��Nphonon+1��2� �2.8	104�2�. In the
following, we present estimates illustrating the importance of
effects �i� and �ii�.

An estimate of the effect is obtained by remarking that at
the lowest order in Valloy it produces a shift of the polaron
states which reads

s�p =
�	uncoupled

���p�Valloy�uncoupled��2�alloy

��p − �uncoupled
. �20�

It is difficult to give a simplified analytical expression of s�p
like Eqs. �13� and �14� due to the large value of Nphonon
required. With the results of the numerical diagonalization as
shown in Fig. 5�d�, this shift is roughly 0.4 meV at resonance
B=B2, and the effect �ii� becomes very important at increas-
ing detuning ���2� to the polaron branch whose �polaron tends
toward �uncoupled. For increasing ���2� it becomes necessary
to take into account higher orders’ effects of Valloy, once the

uncoupled one-phonon states enter the DOS of the closer-
broadened polaron branch. Thus it turns out to be extremely
inefficient to handle the problem by making corrections to
the SCBA Eqs. �10� and �11�.

Another way to evidence the importance of the coupling
between the polaron and the unadmixed states consists in
looking at the irreversible escape from one of the polaron
states to the unadmixed states broadened by alloy scattering.
An estimate using Fermi’s golden rule gives at resonance
B=Bp,

�

2���p
= 	

q� ,ky�


���p,q��E1,p,ky − qy�Valloy�E1,p,ky���
2��� = ��p�� ,

�21�

where the DOS for one of the unadmixed states is written

���� =
LxLy

2�2�2V1p,1p
2 �V1p,1p

2 − �� − �uncoupled

2
�2

. �22�

Putting numbers we find ��20.8 ps, i.e., comparable to the
polaron period. Thus, it is invalid to neglect the uncoupled
one-phonon states and effect �ii� is strong enough to generate
states without well-defined polaronic character. Note that this
result is peculiar to the alloy scattering we have used for
static scatterers. In GaAs-based QCL’s the alloy scattering is
negligible and the interface defects are definitely weaker
scatterers.10,11 Hence, for those materials the polaron levels
should be significantly more long lived.

Therefore, we have included the uncoupled states in the
numerical computation of the electron time-dependent sur-
vival probability in the upper LL’s �E2 ,0� 
Eq. �18��. This
means a diagonalization of Valloy within the basis including
both the polaron states and the exact uncoupled states �com-
puted by diagonalizing He-ph numerically with the LO pho-
non modes involved�. We take a certain number of phonon
modes and ensure that the half-polaron-splitting energy
��2�1.8 meV since a small portion of the phonons
give dominant contributions to the electron-phonon coupling
�Fig. 7�. As an approximation, we choose a smaller quanti-
zation size in the quantum-well-free dimension �viz.,
�Lx	�Ly 	Lz� for the phonon modes than for the LL’s elec-
trons �which is Lx	Ly 	Lz�. In the z dimension, a specified
wave vector is chosen for the phonon modes �typically
2� /Lz�. Numerical computations of the upper LL’s survival
probabilities with initially putting an electron in the center of
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the LL’s �E2 ,0� have been done with �=1 /5 
Nphonon=20,
Dim�H��1.2	103�2�, �=1 /4 
Nphonon=36, Dim�H��2.2
	103�2�, �=1 /3 �Nphonon=56, Dim�H��3.4	103�2�, and
�=1 /2 
Nphonon=88, Dim�H��5.3	103�2� 
Fig. 8�a�� for
B2=24.58 T �for �=1 more than 384 modes are required�.
We see that at resonance 
Fig. 8�a�� the survival probability
in the �E2 ,0� LL’s decays very rapidly with time, in about 0.6
ps it has dropped to nearly zero. The decay is almost insen-
sitive to the number of uncoupled phonon modes and in fact
coincides with the one shown in Fig. 6. However, instead of
recovering to 1/2 at long time, Ps remains very small and
displays faint remnants of the polaron oscillations. This is the
irreversible oscillation between the polaron branches and the
Nuncoupled uncoupled phonon modes that explains the lack of
recovering after the first oscillation.

In Fig. 8�b� we show the survival probability of remaining
in the polaron states with the same initial state as that of Fig.
8�a�. It should be noticed that at the first-half picosecond the
polaron effect is still strong enough to hold its pseudo oscil-
lation against the damping due to the alloy-scattering effect.
The same calculation of the probabilities in �E2 ,0� for lower
magnetic fields near B2 are shown in Figs. 8�c� and 8�d�. The
figures reveal that, out of the resonant field and in the pres-
ence of both alloy and LO phonon scatterings, the probabil-
ity of relaxing to the lower LL’s remains small at long time.

The experimental implication of our findings on the reso-
nant nonradiative relaxation in the QCL’s subjected to a
quantizing magnetic field can be illustrated in the following
way. For one realization of disorder and a given magnetic
field B, we compute the long-time limit of the survival prob-
ability Ps��� in the �E2 ,0� Landau level in two cases. In case
�a�, the initial state is in the center of the alloy-broadened
�E2 ,0� � �0LO� LL’s. In case �b�, the quantity Ps��� is com-
puted for every state of �E2 ,0� � �0LO� and its average
�Ps���� over all these initial states is computed. Then another
realization of the disorder is created and both Ps��� and

�Ps���� are calculated again. Figure 9 shows the curves
Ps��� and �Ps���� versus B. If alloy scattering and electron-
LO-phonon interactions are the dominant nonradiative
losses, the curves shown in Figs. 9�a� and 9�b� can be com-
pared to the output power of the QCL. It appears that the
calculated widths are comparable to those seen
experimentally.10,11

V. CONCLUSION

We have presented a theoretical analysis of the electron-
LO-phonon interaction in QCL’s structures in the presence of
a strong magnetic field and of static short-ranged scatterers.
Our objective was to ascertain the accuracy of the weak-
coupling regime between electrons and LO phonons. Our
results show that the very notion of a Fermi’s golden rule is
highly questionable in these structures because of the LL
singular density of states. Neither the static scatterers are
weak enough nor the electrons and LO phonons form stable
magneto-polarons. As a result the survival probability in the
upper state of the lasing transition never decays exponen-
tially to zero but displays a number of damped oscillations
before stabilizing to 1/2, thereby evidencing that the
magneto-polaron levels never completely empty. Or, the
static scatterers are efficient enough to wash out the polaron
oscillations because it couples these polaron levels more ef-
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FIG. 8. �Color online� Taking increasing numbers of the un-
coupled one-phonon states into account, computations of the elec-
tron survival probabilities with initial state in center of the alloy-
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ficiently to the huge reservoir of uncoupled one-LO-phonon
states than to the polaron states. The survival probability in
the upper state of the lasing transition decay to zero but not
at all in an exponential fashion as would result from the
Fermi’s golden rule. Instead, it first decays like in the
damped polaron case and once has reached its first minimum
practically never recovers. The complicated time evolution
of the survival probability evidences the need of a more mi-
croscopic description to understand the physics of the non-
radiative mechanisms in QCL’s. It also warns against the
estimated efficiency of the static scatterers or phonon scat-

tering when it is based on oversimplified descriptions of the
disorder on the QCL quantum states.
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