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Correlated materials are extremely sensitive to external stimuli, such as temperature or pressure. Describing
the electronic properties of such systems often requires applying many-body techniques to effective low energy
problems in the spirit of the Hubbard model or extensions thereof. While the effect of pressure on structures
and bands has been investigated extensively within density-functional-based methods, the pressure dependence
of electron-electron interactions has so far received little attention. As a step toward ab initio pressure studies
for realistic systems within a setup of maximally localized Wannier functions and the constrained random-
phase approximation, we examine in this paper the paradigmatic pressure dependence of Coulomb interactions.
While compression commonly causes the “extension” of Wannier functions, and thus transfer elements, to
grow, we find the—seemingly counterintuitive—tendency that the bare Coulomb interaction increases under
compression as well. We reconcile these behaviors by appealing to a semianalytical tight-binding model. We
moreover argue that, for this model, the requirement of maximal Wannier localization is equivalent to maxi-
mizing the Coulomb interaction matrix elements. We then apply the above first-principles techniques to fcc
hydrogen under pressure. While we find our comprehension of the bare Coulomb interaction confirmed, the
induced changes in screening strengths lead to an effective one-band model with a Hubbard interaction that is
nonmonotonous under pressure.
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I. INTRODUCTION

The panoply of structural, orbital and spin degrees of free-
dom, and the joint presence of important electronic Coulomb
interactions cause correlated materials1 to be the realm nei-
ther of band theory nor of model many-body physics each on
their own. Therefore, in recent years, much ingenuity was
invested into finding ways to merge the “realism” of the
former with the accurate description of correlation effects of
the latter.

With the exception of the GW approximation2–4 to
Hedin’s equations,2 the electronic structure approach GW
+DMFT �Ref. 5� that combines GW with the dynamical
mean-field theory �DMFT�,6 and a recent proposal for a self-
energy downfolding,7 this combining commonly amounts
to extracting a low-energy one-particle Hamiltonian from
density-functional-theory-based methods, such as the local-
density approximation �LDA�,8,9 supplementing it with inter-
action terms �e.g., of the Hubbard-Hund- �U and J� type� and
to solving the resulting “realistic model” with a chosen
many-body technique.

Hence, in this approach there are two intertwined prepara-
tive tasks that generate the many-body problem. The deduc-
ing of the low-energy one-particle part can be achieved, e.g.,
by a tight-binding fit of relevant bands, the downfolding10,11

procedure within, e.g., muffin-tin-based methods,11–13 or
by the generation of �maximally localized�14,15 Wannier
functions.16

The interaction parameters of realistic many-body mod-
els, in turn, are often chosen rather empirically than from a
solid first-principles basis, a fact that has caused many ob-
jections in the past. In particular, when tracking properties as
a function of an external parameter—pressure, in our case—

the evolution of the interaction has mostly been discarded.
This and the quest for going beyond mere qualitative re-

sults toward, eventually, the quantitative design of materials,
highlights the need for accurate ways to determine all ingre-
dients of realistic models in an ab initio fashion. Nowadays,
the most popular methods for the computation of interaction
matrix elements are the constrained LDA technique17 and the
constrained random-phase approximation �cRPA�.18

A recent and promising approach is the use of Wannier
functions within the cRPA setup,19 which allows for a deduc-
ing of the one-particle and two-particle parts of the Hamil-
tonian on the same footing. Moreover, working in a localized
Wannier type of basis is often a requirement of many-body
approaches such as the DMFT.6 As to the interaction matrix
elements, the cRPA technique allows for a precise elimina-
tion of the screening channels of the chosen orbital subspace
that constitutes the effective model.18

While these techniques have already been applied for
the setting up of many-body models of some complex
materials,19–21 a basic understanding of the effects of pres-
sure on the Coulomb interactions within a Wannier setup is
lacking. This is the aim of the current work.

In a first part, we investigate a semianalytical tight-
binding model of a one-band solid in one dimension, track
transfer-matrix elements, the bare �i.e., unscreened� Coulomb
interaction, and the spread of the maximally localized Wan-
nier orbitals as a function of lattice spacing. Being able to
access the decomposition of the maximally localized Wan-
nier functions onto the tight-binding basis will allow to un-
derstand the surprising finding that under pressure the Cou-
lomb interaction matrix element augments, while at the same
time, transfer elements describing the delocalization of elec-
trons grow as well. As a more realistic example, we, second,
apply the fully ab initio approach of the cRPA within maxi-
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mally localized Wannier functions19 to fcc hydrogen, which
is found to exhibit the explained generic behavior of the bare
Coulomb interaction matrix elements. However, the partially
screened Coulomb interaction—the Hubbard U of an effec-
tive low-energy model for the half-filled 1s orbital—actually
shows a nonmonotonous trend—a consequence of two op-
posing effects in screening processes.

II. METHOD

The method of using the Wannier orbital construction in
conjunction with the cRPA technique has been presented in
detail in Ref. 19. While not fully reviewing the approach, we
will discuss some issues relevant for the understanding of
our results and introduce some notation.

For the one-particle band structure, a density-functional
calculation is performed. For the realistic case of fcc hydro-
gen, we will employ the LDA �Ref. 9� in the full-potential
linear muffin-tin orbital �FP-LMTO�22 realization. For ob-
taining the random-phase approximation �RPA� polarizations
we employ the code of Ref. 23 with the maximally localized
Wannier extension of Ref. 19 and construct an effective sys-
tem for the isolated 1s orbital. That is, we introduce the
sub-Hilbert space Heff=span���k1s

KS ��, spanned by the 1s
Kohn-Sham wave function. Since the aim is to work within a
localized basis, the extraction of the low-energy part is done
by a construction of Wannier functions16 for Heff, as de-
scribed in Refs. 14, 15, and 19. The corresponding effective
interactions are then computed within the constrained RPA
�Ref. 18� formalism. This amounts to screening the matrix
elements of the bare Coulomb interaction v�r ,r��=1 / �r
−r��, which in the Wannier basis are given by

VR,R�
������ =	 d3rd3r��R�

W��r��R�
W �r�

1

�r − r��
�R���

W� �r���R���
W �r�� ,

�1�

with a partial RPA polarization

Pr = P − Ps, �2�

where P and Ps are the polarizations of the full and the
sub-Hilbert spaces, respectively. The latter Ps, when using
the Kohn-Sham orbitals, can be expressed as

Ps�r,r�,�� = 

spin



�k�

KS�Heff

occ



�k��

KS
�Heff

unocc � 1

� − �k�� + �k� + ı0+

−
1

� + �k�� − �k� − ı0+�
	 �k�

KS��r��k��
KS �r��k��

KS��r���k�
KS�r�� , �3�

i.e., by transitions restricted to the effective subsystem, in
our case Heff=span���k1s

KS ��. Within this notation, the
strengths of screening channels are influenced by two effects:
the matrix elements �the overlap integrals of wave functions
that occur when calculating matrix elements of P, in analogy
to Eq. �1�� and the energy differences of the Kohn-Sham
excitations, �kn, that appear in the denominators. The virtue

used for the constraining is the fact that the screening con-
tributions are additive.18 Indeed, when using the above de-
composition P= Ps+ Pr, the fully screened interaction W �of
the GW formalism�2–4 can be given in terms of the partially
screened interaction for the effective model of the one-band
orbital, Wr=v / �1− Prv�, by W=Wr / �1− PsWr�.18 The Hub-
bard U of the 1s subsystem is given by the on-site Wannier
function matrix element of Wr.

The major observation in this context is that the construc-
tion of Wannier functions and thus also the determination of
interaction matrix elements are not unique.16 Indeed a uni-
tary transformation applied to the periodic part of the wave
functions, while preserving the Bloch functions, changes the
Wannier orbitals. This gauge freedom can be used to choose
the Wannier basis that is most suitable for the final purpose.
The aim of the low-energy system is to correct for local
�Hubbard-type� interaction effects. To this end, there exist at
least two proposals on how to choose an optimal Wannier
basis set: in the maximally localized Wannier approach14,15

the extension �“spread”� of the Wannier functions is mini-
mized: denoting the Wannier states by kets, �R�

W �r�
= r ��R�, this spread can be chosen as14


 = r2�Heff = 

��� ��0��Heff�

��0�r2��0� − ��0�r��0��2� .

�4�

The minimization of this 
 is of course only one of the
possible options to fix the Wannier functions, yet a very natu-
ral one, since it can, e.g., be shown14,24 that in one dimen-
sion, the resulting Wannier functions are eigenfunctions of
the subset projected position operator, an intuitive criterion
for real-space localization.25

In the second scheme, the screened local Coulomb inter-
action matrix element—the Hubbard U, as given by the on-
site component of Wr from above—is maximized19,26 to de-
termine the Wannier functions. For the case of SrVO3, it has
been shown19 that both approaches yield very similar results.
Indeed, appealing to, e.g., the equation of the bare Coulomb
interaction matrix element in the Wannier basis, Eq. �1�, it
seems plausible that a greater localization of Wannier func-
tions �smaller 
� results in an increased interaction matrix
element V. For the simple model in one dimension that we
discuss in the following, we in fact motivate the equivalence
of the maximally localized Wannier functions and the basis
in which the �bare� Coulomb interaction matrix element is
maximal.

However, we stress that the intuitive correspondence be-
tween a stronger localization of Wannier functions, in the
sense of the spread 
, and a larger interaction matrix ele-
ment in this basis does not hold in general. Here, one has to
distinguish between the changes in the Wannier localization
that are induced by a modification of the Wannier gauge
from those caused by modifications of the lattice, caused,
e.g., by pressure. The fact that for the discussed model, both
methods to fix the Wannier gauge are equivalent, states that
for a given pressure the maximally localized Wannier func-
tions yield the maximal Coulomb interaction matrix element.
Yet, as we shall see, a pressure induced increase in the con-
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verged minimal Wannier spread is actually quite naturally
concomitant with a greater bare interaction.

III. RESULTS AND DISCUSSION

External pressure, or structural changes in general, pro-
vides an impetus to alter not only the one-particle band struc-
ture of a material but also the Wannier functions. Therefore,
when investigating the pressure dependence of effective, i.e.,
screened, interaction matrix elements, one has to distinguish
between influences of the former, which enter via a modifi-
cation of screening channels, and of the latter that not only
affects the polarization but on a more fundamental level
modifies already the bare Coulomb interaction matrix ele-
ments. The fact that Wannier functions of a solid are not
eigenfunctions of the system may result in a nonstraightfor-
ward evolution when parameters such as external pressure
change.

A. One-band tight-binding model in one dimension

As a first model system, we investigate a tight-binding
parametrization of a one-band solid in one dimension. In
that case the maximally localized Wannier function is natu-
rally given by the Fourier transform of the Bloch functions
when inversion symmetry is verified.14,24 Moreover, since no
higher energy orbitals are present, no partial screening can
occur �in Eq. �2�: Pr=0� and the Hubbard U equals the on-
site matrix element of the bare Coulomb interaction, U
=VR,R.

1. Bloch function in tight binding

As building blocks of the tight-binding basis functions we
opt for a hydrogenlike 1s orbital in one dimension

��x� =
1

�a0

e−�x�/a0 �5�

with the Bohr radius a0. This orbital is a solution to the
time-independent Schrödinger equation with a single binding
delta potential: It represents an eigenstate of the “atomic”
Hamilton operator

H0
atom =

1

2me
P2 −

�2

2mea0
��X� �6�

with the eigenvalue − �2

2mea0
2 . While the tight-binding approach

with this orbital can in principle be used to approximate the
Bloch eigenfunction for a Hamiltonian with any potential, its
use is obviously most justified for a Kronig-Penney type of
model27,28 with a Dirac-comb potential.

The Bloch function is written as

�k�x� = Ak

R

eıkR��x − R� . �7�

Here, the factors Ak assure the orthonormality of the Bloch
function �k and is determined to be

Ak = �1 + 2 

m=1,. . .,

sm cos�kma��−1/2
, �8�

where, with the lattice constant a and the integer m, ma
denotes the distance to the mth neighboring site. Further, sm

denotes the overlap integral between the atomic function at
the origin and its mth neighbor and is given by

sm =	 dx���x���x − ma� = �1 +
�m�a
a0

�e−�m�a/a0. �9�

2. Wannier function

In one dimension, the maximally localized Wannier func-
tion, �R�x�, is given by the usual Fourier transform of the
Bloch function if inversion symmetry is verified.14,24 There-
with

�R�x� =
1

C
	

−�/a

�/a dk

2�
e−ıkR�k�r�

=
1

C


R�
	

−�/a

�/a dk

2�
e−ık�R−R��Ak��x − R��

=
1

C


R�

AR−R���x − R�� , �10�

�0�x� = 

n

An��x − na� , �11�

where we defined

AR−R� = 	
−�/a

�/a dk

2�
e−ık�R−R��Ak �12�

or with R�=na, and the reference R=0,

An =
Ãn

C
=

1

C
	

−�/a

�/a dk

2�

eıkna

�1 + 2

m=1



sm cos�kma�

. �13�

Demanding �dx��R�x��2=1, the normalization constant C be-
comes

C2 = 

n



m

ÃnÃn+msm. �14�

The quantity An is real for all n for symmetry reasons. Figure
1 shows its behavior for different lattice constants: in the
limit of large atomic separation �a�a0�, the overlaps sm are
negligible and the Wannier function �0�x�, Eq. �11�, will
equal the atomic orbital ��x�, Eq. �5�. Thus the distribution
An picks up a single mode of the array, An=�n,0 for the rep-
resentative site “0.” When pressure is applied and the lattice
constant shrinks, finite overlaps of the �nonorthogonal� hy-
drogen orbitals entail contributions from neighboring sites to
mix in and the distribution An broadens �see Fig. 1�. Since
A2n+1�0 �Ref. 29� and �A2�n�+1��A2��n�+1�, the normalization
of the Wannier function, Eq. �14�, causes the coefficient of
the atomic orbital at the origin to become larger than 1: A0
�1. This results in a greater probability density ��R�x��2
around the site origins, x−R=0, when pressure is applied.

The corresponding Wannier functions of the above cases
are shown in Fig. 2. As anticipated from the above discus-
sion, more weight is accumulated at the origin: a harbinger

EFFECTIVE COULOMB INTERACTIONS IN SOLIDS… PHYSICAL REVIEW B 79, 235133 �2009�

235133-3



for a larger on-site Coulomb interaction. On the other hand,
contrary to the atomic limit, the tails of the Wannier func-
tions extend over several lattice constants before the expo-
nential decay sets in. This behavior at larger distance points
to an increase in the Wannier spread and the growing of
transfer integrals.

3. Wannier spread

Since by symmetry, r�= x�= R=0�X�R=0�=0, the
spread of the Wannier function �
 as given in Eq. �4�� re-
duces to

X2� = R = 0�X2�R = 0�

=	 dx x2��R=0�x��2

= 

n

�An�2�a0
2

2
+ a2n2� + 2


n



m�0
An

�An+me−ma/a0

	 ��m

2
a�3 2

3a0
+

�ma�2

4
+

ma

2
a0 +

a0
2

2
� . �15�

While the first term is always positive, the second will be
negative for odd m and positive for even neighbors �see the
form of An�. Given the decay behavior of An, the second term
will thus be negative in total, yet small. Indeed the major
contribution to the spread comes from the first term, making
it plausible that the spread, as defined by X2�, increases with
a more widely distributed An, as shown in Fig. 3.

Although helpful for the understanding of the current
model study, the spread is not too good a quantity for gaining
quantitative insights from pressure studies of realistic sys-
tems, as we will discuss later.

4. Transfer integral

For the transfer integral t, we need to explicitly specify
the noninteracting Hamiltonian, H0, and, for simplicity, we
shall choose a Kronig-Penny-type model27,28 with an ionic
Dirac-comb potential, i.e.,

H0 = −
1

2me
P2 + 


l

Vl
ion�X� = −

1

2me
P2 − 


l

�2

mea0
��X − la� .

�16�

Then the nearest-neighbor hopping t= �R=0�H0��R=a� can be
expressed as

−
2mea0

2

�2 t = 

m,n

AnAma0sm+1−n

+ 

m,n

AnAm 

l�m+1

e−�l−n�a/a0e−�l−m−1�a/a0. �17�

As can be inferred from the dependence of the coefficients
An, Eq. �13�, and the overlap sm, Eq. �9�, the pressure-
induced delocalization increases the transfer integral, as ex-
pected. Figure 4 displays the hopping as a function of the
lattice constant.

5. Electron-electron interaction

All of the above were concerned with the one-particle
picture, i.e., the noninteracting Hamiltonian H0. The on-site
electron-electron interaction matrix element V0,0 that governs
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the two-particle term in the final many-body model, reads in
the Wannier basis,

V = V0,0 =	 dx	 dx���0�x��2v�x,x����0�x���2

=
�2

mea0�	 dx��0�x��4 �h.c.�

	 dx��0�x��2	 dx�
��0�x + x���2

�x��
�C.�

,�
�18�

when choosing a hard-core �h.c.� or Coulombic �C.� interac-
tion,

v�x,x�� =
�2

mea0�
��x − x�� �hard core�

1

�x − x��
�Coulomb� � . �19�

As shown in Fig. 5 and anticipated before, the sharpening of
the Wannier function at the origin causes greater interaction
matrix elements, when pressure is applied, irrespective of the
chosen electron-electron interaction.

As previously stated, the on-site electron-electron interac-
tion V from above equals the Hubbard U, since higher energy
orbitals, and thus screening effects, are absent by construc-
tion.

6. Maximally localized Wannier functions versus maximal
Hubbard interaction

In Sec. I we mentioned that another technique to choose
the Wannier function gauge is given by the request to
maximize the static local, partially screened Coulomb
interaction19,26—the Hubbard U. While not actually perform-
ing this approach for our model, we give evidence that in this
simple case, both techniques are equivalent. As said before,
the Hubbard U equals the bare Coulomb interaction V since
we consider only a single band, so, contrary to the general
case,19 the argument does not involve any screening related
effects.

The quest is thus to find a Wannier gauge, meaning an
additional factor exp�ı�k� in Eq. �10� that yields the greatest
interaction element as given by Eq. �18�. The choice of
gauge can be absorbed into the distribution An and we define

An��� =
1

C���	−�/a

�/a dk

2�

eıknaeı�k

�1 + 2

m=1



sm cos�kma�

. �20�

Having seen the correspondence between the value of A0
and the interaction strength, one might endeavor to solve the
functional derivative �A0��� /��=0 for �. Yet the depen-
dence of the normalization constant, C, given in Eq. �14�,
makes this a rather tedious task analytically. Instead, we shall
argue for a specific example for the choice of Wannier gauge
and make some general comments. Consider a gauge field
that is linear in momentum, �k=−cka �see also Ref. 28�.
Figure 6 displays the Wannier function �upper panel� and the
resulting on-site interaction �bottom panel� for the hard-core
case �see Eq. �19��, for different gauge parameters c and for
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a fixed lattice spacing a /a0=5.0. With c�0 the inversion
symmetry of the Wannier function with respect to the site
R=0 is lost. This was the requirement for maximally local-
ized Wannier functions in one dimension14,24 and as seen in
Fig. 6, for c�0 the tail of the Wannier function augments
and the Coulomb interaction decreases. While c=1 is a mere
lattice translation, c= 1

2 amounts to a case, where the Wannier
function of site R=0 has equal positive weight at x=0 and
x=a, corresponding to A0=A1. As discussed above, an in-
crease in A0 is caused by the mixing in of negative compo-
nents to �0 from neighboring sites, leading to a smaller nor-
malization factor C in Eq. �14�. Owing to the symmetry, in
the current example, c= 1

2 , negative contributions Am will
come only from the sites 2m+1 for m�0 and 2m for m
�0. Yet the overall gain in renormalization is distributed
over the two equivalent positions m=0 and 1 for which Am
�0. As a result of this shifting of weight to the site m=1, A0
and thus the on-site Coulomb interaction V are much lower
than in the case with inversion symmetry around that site. As
seen in the bottom panel of Fig. 6, it is indeed the maximally
localized Wannier functions �c=0.0,1.0� that yield the great-
est possible Coulomb interaction matrix element for our
simple model.

For gauge fields �k=−ck�a depending on the momentum
to the power ��1, the argument is geometrically less obvi-
ous but still true as verified numerically. Indeed, only the
integrand in the coefficient An=0 of Eq. �20� is always posi-
tive for �k=0 as a function of k. Therefore any modulation in
cos��k�, with �k�0, will decrease the corresponding inte-
gral to a greater extent than for n�0, in which case the
integrand changes sign with k already for �k=0. As a conse-
quence, the decrease in the n=0 contribution to the overall
normalization C will be greater on a relative scale than for
n�0, and thus A0 decreases with any nonconstant �k�0.
This can be taken as a further indication that also for realistic
systems, the maximally localized Wannier functions and the
maximal Hubbard U approach are generally giving the same
results.

B. fcc hydrogen under pressure

Toward a more realistic application of the gained insight,
we apply the fully ab initio approach19 of the cRPA within
maximally localized Wannier functions to the “simplest” re-
alistic system, namely, solid hydrogen.

While at low pressure, solid hydrogen forms a molecular
crystal. It was conjectured, already in the 1930s, that at high
pressure hydrogen should become an isotropic metal.30 Here,
however, we shall not be interested with the precise phase
diagram of solid hydrogen. For the sake of simplicity, we
assume throughout the discussion a face-centered-cubic crys-
tal structure with variable lattice constant. Moreover, we are
well aware that for the current case the problem of
self-interaction31 within the LDA formalism is a particularly
severe issue. However, here, we are not concerned with the
accuracy of the LDA band structure but with compression-
induced trends in a 3d multiorbital setup.

For the one-particle band structure, we employ in this
work the LDA in the FP-LMTO �Ref. 22� realization. In the

LMTO basis, we include orbitals up to the 4f , using local
orbitals22 for multiple orbitals per l channel and use a
Brillouin-zone discretization with up to 103 points. As de-
scribed in Ref. 19, maximally localized Wannier functions
are then constructed for the hydrogen 1s band, which is en-
tirely isolated from all other Kohn-Sham excitations. In other
words, the effective model consists of a single half-filled
orbital. We stress that while the Wannier functions of differ-
ent sites are orthogonal by constructions, the LMTO basis
functions—in analogy to the tight-binding parametrization in
the preceding section—are not. As a consequence, the same
prototypical response to pressure as discussed above can be
expected in the current case.

Figure 7 shows the LDA band structure for the extremal
lattice constants that we consider. As expected, under grow-
ing compression, the dispersions increase and unoccupied
bands are shifted upward.32

In line with this is the behavior of the hopping t—the
nearest-neighbor transfer-matrix element in basis of the
maximally localized Wannier function for the subspace of
the lowest Kohn-Sham excitation. As shown in Fig. 9, it
augments with decreasing lattice constant a, accounting for
the greater delocalization. In Fig. 8 is shown the maximally
localized Wannier function �it is real, cf. Ref. 14� of the
hydrogen atom at the origin, as a function of the �scaled�
distance � toward the nearest neighbor at, e.g., r= ��
=1,0 ,�=1�a /2. When the lattice constant shrinks, clearly
witnessed is both, a growing weight at the neighboring posi-
tion ��=1 /2�, as well as an increase in the Wannier function
at the origin ��=0�. This is in complete analogy to what was
shown in Fig. 2 for the model considered above.33

It is thus expected that the on-site matrix element of the
bare Coulomb interaction VR,R grows under compression as
before. And, indeed this is the case, as can be inferred from
Fig. 9 in the second panel from the bottom. Yet, does that
entail for the Wannier spread 
 the same behavior as wit-
nessed in the one-dimensional model? In three dimensions,
the gain in spread by effects of hybridizations with neighbor-
ing sites might turn out less prominent since the region oc-
cupied by nearest-neighbor atoms is relatively small. Hence,
the angular integral in 
, Eq. �4�, even for the radius of the
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FIG. 7. �Color online� LDA band structure of fcc hydrogen for
the two lattice spacings a=5.0 a.u. �solid� and a=10.0 a.u.
�dashed�. The Fermi level corresponds to the origin of energy.
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distance to the 12 neighboring atoms �fcc� will run very
much over a sphere on which the Wannier function is mostly
zero. And, indeed, as displayed in the second panel from the
top in Fig. 9, the Wannier spread actually decreases under
compression.34

A direct interpretation of the spread in pressure studies
has thus to be taken with caution. First, depending on the
crystal structure �dimension, number, and position of neigh-
boring atoms� the spread does not necessarily reflect the in-
creased delocalization of charge carrier but can be dominated
by the more isotropic concentration of weight at the origin
�see Fig. 8�. Second, as seen in Fig. 9 �and already in the
seminal work, Ref. 14, Table I�, the momentum space con-
vergence of 
 is poor. Also, a change in lattice constant upon
compression alters the accuracy of the spread function when
the number of k points is kept constant. While the spread is
of course the entity that is minimized in order to obtain the
maximally localized Wannier functions for a given pressure,
the spread itself is not a reliable measure for trends in the
Wannier functions upon compression. Instead, one should
either plot the functions or resort to the bare Coulomb inter-
action matrix elements, which—owing to the different pow-
ers of the position operator—converges well for a moderate
k-point sampling.

In the current case, while still constructing an effective
one-band model, the initial system contains higher energy
orbitals. As a result, and contrary to the simple tight-binding
model, there is a nonzero partial polarization, Pr of Eq. �2�,
that screens the bare Coulomb interaction V. The on-site part
of the screened interaction Wr0,0—the Hubbard U—within
cRPA is displayed in the lowest panel of Fig. 9.

Interestingly, this quantity, in contrast to the bare interac-
tion, shows a nonmonotonic behavior that reflects the
struggle of two opposing effects in the polarization Pr. As
can be inferred from Eq. �2�, and the equation for Ps, Eq. �3�,
the changes in the polarization Pr originate from modifica-
tions of transitions from the Wannier “1s” into orbitals at
higher energy. These can be altered by two ingredients �see
again Eq. �3��: the transition matrix elements and the �Kohn-
Sham� transition energies �kn, i.e., the band structure. The
effect of pressure will be different for these two mechanisms.
Indeed, the increasing compression pushes the bands further
apart, as seen in Fig. 7, diminishing the polarization. The
increased overlaps/hybridizations of orbitals, on the other
hand, tend to make the polarization grow. In order to sepa-
rate the influence of the two contributions, we computed the
partially screened Coulomb interaction, U, as a function of
lattice spacing, albeit while keeping the band structure fixed
at the values obtained for the highest pressure, a /a0=5.0.
Thus the corresponding screened interaction will contain
only the effect of changes in the Bloch functions. As indi-
cated by the symbols in the figure of the Hubbard U, the
latter decreases under compression, proving the above con-
jectured opposition in trend to the influence of the band
structure.

This effect is surely very material specific. In systems
with more electrons, where pressure will, e.g., cause the en-
hancement of bonding/antibonding splittings, it can be ex-
pected that the changes in the band structure often prevail
such as to reduce the polarization under compression.

IV. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have studied the influence of external
pressure onto the construction of effective low-energy many-
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body systems. Using maximally localized Wannier functions
for a one-band tight-binding model, we rationalized the
counterintuitive, yet prototypical behavior of the bare Cou-
lomb interaction, namely, that its matrix elements augment
upon compression, as a consequence of the delocalization of
the Wannier functions. This we understood to be caused by
increased admixtures of nonorthogonal nearest-neighbor
tight-binding functions when the lattice spacing shrinks. As a
more realistic system, we investigated fcc hydrogen under
pressure and constructed an effective model for the half-
filled 1s orbital using maximally localized Wannier func-
tions. For the transfer integrals and the bare Coulomb inter-
action, we witnessed the same tendencies as in the model
case. Yet, the Hubbard U—calculated as the on-site screened

interaction within the constraint RPA technique—exhibited a
nonmonotonous trend under compression. This we traced
back to a struggle between two opposing effects in the
strength of screening. All this highlights the intricacy of
mechanisms that influence effective models and emphasizes
the need for reliable ab initio techniques for their construc-
tion.
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