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We investigate numerically at various fillings the ground state of the one-dimensional Hubbard model with
correlated hopping x �Hirsch model�. It is found that, for a large range of filling values n around half filling,
and for repulsive Coulomb interaction u�uc�x ,n�, phase separation at a nanoscale �NPS phase� between two
conducting phases at different densities occurs when x�2 /3. The NPS phase is accompanied by the opening
of a spin gap and the system behaves as a Luther-Emery liquid with dominant superconducting correlations.
Close to half filling, an anomalous peak emerges in the charge structure factor related to the density of doubly
occupied sites, which determines the size of the droplets in the NPS phase. For 1 /2�x�2 /3 a crossover to a
homogeneous phase, still superconducting, takes place.
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I. INTRODUCTION

The subject of phase separation �PS� in strongly corre-
lated fermionic materials has been widely investigated in
connection to various physical systems ranging from high-Tc
materials1 to cold fermionic atoms trapped in optical
lattices.2 In particular, it has been noticed how PS often oc-
curs close to the transition to a superconducting �SC� behav-
ior. There is still no full explanation of such an observation.
Since in high-Tc materials the SC phase appears upon doping
an antiferromagnetic insulator, in the past the attention of
both experimentalists and theoreticians has been mainly fo-
cused on PS in the underdoped regime, between an undoped
insulator and a doped metal. More recently, experimental
compelling evidence has grown of the presence of two types
of charge carriers3 in cuprate superconductors and the occur-
rence of nanoscopic phase separation of the two components
has been investigated �see for instance Ref. 4 and references
therein�.

On the side of microscopic theoretical modeling, corre-
lated electronic materials are well described by the Hubbard
model and its extensions. In this context, PS mainly appears
as segregation of an insulating phase �either the half-filled
antiferromagnet or the immobile pairs� within a low-density
conducting phase.5–7 Very recently8 it was shown that in
some cases PS can occur as well as coexistence of two con-
ducting phases. In particular, a high-density conducting
phase implies the presence of mobile pairs in the system. In
this paper we explore the possibility that phase coexistence
of two phases of different densities in the charge degrees of
freedom generates the appearance of SC order, when accom-
panied by the opening of a spin gap. In fact, a nonvanishing
spin gap may induce phase separated droplets of nanoscale
size in the systems, and subsequent quasi-long-range corre-
lations between the mobile pairs of the different droplets,
allowing the superconducting correlations to become domi-
nant.

The model we deal with is the one-dimensional Hubbard
model with correlated hopping, the latter describing the in-
teraction between charges located on bonds and on lattice
sites. The model’s Hamiltonian reads

HBC = − �
�ij�,�

�1 − x�ni�̄ + nj�̄��ci�
† cj� + u�

i

ni↑ni↓, �1�

where ci�
† creates a fermion with spin �= �↑ ,↓	, �̄ denoting

the opposite of �, ni�=ci�
† ci� is the �-electron charge, and

�ij� stands for nearest-neighboring sites. The parameters u
and x are the Coulomb repulsion and the bond-charge inter-
action amplitude, respectively, and the lower case symbols
denote that the coefficients have been normalized in units of
the hopping amplitude. Moreover, N is the number of elec-
trons on the D-dimensional L-sites lattice, so that n=N /L is
the average filling value per site. The model has been widely
studied in the literature �see for instance Ref. 9 and refer-
ences therein, as well as Refs. 10–21�. In particular, since
HBC is not invariant under particle-hole transform, it has
been proposed in two dimensions by Hirsch motivated by a
theory of hole superconductivity.10

In D=1, it has by now become clear that the basic fea-
tures of the model are well captured in the weak-coupling
limit �x�1� by the standard bosonization approach,13 and
resemble those of the ordinary Hubbard model with rescaled
interaction; while for x�

1
2 a quite different scenario emerges

at half filling.11,12 In particular, for not too large on-site Cou-
lomb repulsion u�uc�x� a new phase appears, characterized
by slowly decaying SC correlations, and incommensurate
fluctuations in the charge correlations: the phase was denoted
as ICSS �incommensurate singlet superconductor�. The
physical origin of such a change in the system has not yet
been fully explained, though a subsequent paper8 suggested
it could be related to the presence of PS between conducting
phases with different Fermi momenta.

Here we shall show—through a detailed density-matrix
renormalization group �DMRG� numerical study—that in
fact the SC phase found at n=1 for x�1 /2 survives for a
wide range of filling values. Moreover, for x�2 /3, it turns
out to be characterized by nanoscale phase separation �NPS�.

In particular, in Sec. II we first discuss some aspects of
the model in D=1 and its known properties. We then proceed
to the study of the filling dependence of the ground-state
energy and chemical potential �Sec. III�, and of pair-pair and
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charge-charge correlations and spin gap �Sec. IV�. Finally,
we investigate in Sec. V the charge structure factor, thus
obtaining an estimate of the Luttinger exponent K� that con-
trols the decay of charge and pair correlators. The discussion
of the results and some perspectives are given in Sec. VI.

II. HIRSCH MODEL IN D=1

The bond-charge Hamiltonian �1� has both spin �su�2��
and charge �u�1�� symmetries. It is not invariant under
particle-hole transform, though the latter can be implemented
to show that the range 0�x�1 is in fact representative of
the behavior of the model at any x value. Indeed, under the
transformation cj�→ �sgn�2x−1�� jcj�

† , HBC transforms �up to
constants� as

HBC�x,u� → 
2x − 1
HBC�sgn�2x − 1�x̄, ū� , �2�

where ā= a

1−2x
 and a=x ,u. Hence, the interval 0�x�1 /2

can be mapped into 0�x�−	, the Hubbard model �x=0�
being representative of this regime, while the complementary
range 1 /2�x�1 can be mapped into 1�x�+	 and one
expects that the integrable case x=1 �Ref. 17� is representa-
tive of such a different regime. In this respect, the point
x=1 /2 assumes a special role in that it can be simultaneously
mapped into the two limiting cases +	 and −	.

In D=1, as far as x�1, the Hirsch model can be ap-
proached by means of the bosonization technique.13 It was
found that Eq. �1� corresponds to an effective Hubbard
model with rescaled Coulomb interaction ueff and Luttinger
parameter K� given by

ueff =
u + 8x cos kF

1 − nx
, K� =

1

�1 +
ueff

vF

, �3�

where kF=n 

2 and vF is the Fermi velocity. The result implies

that the metal-insulator transition at half filling still occurs at
u=0. At the same time, it suggests that for n�1, ueff may
actually become negative for sufficiently small u�0, so that
a spin gap opens, and the system is expected to enter a
Luther-Emery liquid �LEL� phase. Since in this case also
K��1, the LEL phase should have dominant SC correla-
tions. Numerical investigations—both at T=0 �Refs. 14 and
15� and at T�0 �Ref. 16�—confirmed the validity of this
scenario for n�1, in some cases also at larger x values.

On the other hand, at x=1 the model acquires extra sym-
metries and both the thermodynamics18 and the T=0 phase
diagram17 can be obtained. The latter turns out to differ from
that of the Hubbard model in many aspects. First of all, at
half filling the metal-insulator transition moves up to u=4.
Furthermore, below such value of u a new phase character-
ized by the presence of pairs and off-diagonal long-range
order appears. This phase survives for a large range of filling
values around n=1. Since the model in this case has no spin
gap �s, the phase falls into the Luttinger-liquid �LL� class.

At half filling and u�0, successive numerical investiga-
tions have shown that the metal-insulator transition in fact
moves to positive uc�x� values as soon as x�1 /2,11 reaching
smoothly the x=1 value �uc�1�=4�. Moreover, �s turns out to

be open for any x�1 and u�us�x�. So that, at variance with
the bosonization predictions at n=1, for u�uc�x��us�x� the
model behaves as a LEL, and a new phase appears, charac-
terized by slowly decaying singlet-superconducting correla-
tions and incommensurate modulations in the real-space
charge correlations.12 The phase is denoted as ICSS. More-
over, for uc�x��u�us�x�, a fully gapped phase with bond
ordered wave order is observed. The qualitative phase dia-
gram of the model at half filling as derived in Refs. 11 and
12 is given in Fig. 1.

A. Connection with the Simon-Aligia model

One may wonder why the value x=1 /2 plays a relevant
role in the above results. In order to elucidate the issue, we
observe that the properties of HBC—and in general of those
Hamiltonians in which the interaction is local—are better
understood when these are represented in terms of on-site
projection operators. The latter are defined as Xi

�� 
�i��
i,
where 
�i are the states allowed at a given site i, and
= �0, ↑ , ↓ ,2	 , �
2��
↑↓��. In such a language the nonvan-
ishing entries of the Hamiltonian matrix representation are
read directly as the nonvanishing coefficients of the projec-
tion operators. When rewritten in terms of these operators,
HBC turns out to be a subcase of the more general Hamil-
tonian H introduced by Simon and Aligia,19

H = − �
�ij�,�

�Xi
�0Xj

0� + txXi
2�Xj

�2 + sx�Xi
2�Xj

0�̄ + Xi
�0Xj

�̄2��

+ u�
i

Xi
22, �4�

in which tx= �1−2x� and sx= �1−x�. Besides u, the behavior
of HBC is determined by the strength of tx and sx, since the
original parameter x appears in its matrix representation only
through these coefficients. Importantly, x=1 /2 implies tx=0,
whereas below and above such value tx changes sign. Unlike
the overall sign of the hopping term, which can be easily

FIG. 1. T=0 phase diagram of the one-dimensional Hirsch
model at half filling �Ref. 12�. In each phase the gapped sectors
�charge, �c and/or spin �s� are reported; SDW stands for spin-
density wave, while BOW stands for bond ordered wave.
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adjusted by a particle-hole transform, the change in the sign
of tx cannot be fixed. A negative tx induces frustration in the
motion of pairs, which is also driven by the positive sx term.
In particular, for 
tx
� 
sx
—in our case x�2 /3—the mobility
of the pairs should become favored in the system, at least for
not too large u. Numerical results available so far refer in-
stead mainly to the particle-hole symmetric choice tx=sx.

20

B. sx=0 case and phase separation

The integrable instances of H discussed in the literature
are the standard Hubbard case �tx=1=sx�, the infinite-U Hub-
bard model �tx=0=sx�, the x=1 subcase of HBC �Ref. 17�
�tx=−1,sx=0� and the model recently solved in Ref. 8
�arbitrary tx�0, sx=0�, which could be representative of the
regime x�2 /3. In this case it is found that—whenever
u�uc�x ,n�—the ground state is characterized by PS in the
range of filling values nl�n�nh. The two coexisting phases
have different particle densities nl�1 and nh�1 amounting
to two spinless-fermions �SF� systems. For this reason we
shall denote the model as 2SF: in the low-density phase the
SF fluid consists of nl electrons moving in a background of
empty sites, whereas in the high-density phase it amounts to
2−nh holes moving in a background of doubly occupied
sites. Both phases are in principle conducting, with incom-
mensurate Fermi momenta kF

�a�=
na �where a= l ,h�. The two
densities nl and nh can be expressed8 as functions of the
parameters u, tx, and �, as follows:

nl = 1 −
1



arccos�

2
�, nh = 1 +

1



arccosu − �

2
tx

� , �5�

where � is the chemical potential, which must satisfy the
transcendental equation

� =
1

nh − nl
�−

2




tx
sin 
nh + u�nh − 1� +

2



sin 
nl� . �6�

For tx=−1 the x=1 subcase of HBC is recovered: in this case
nh=2−nl.

The presence of PS at x=1 has a simple explanation. Let
us assume for simplicity u=0. In the thermodynamic limit,
the ground-state energy per site E0�1� coincides with that of
Ns SF �Ns being the number of singly occupied sites� and is
independent of the number Nd�Ne� of doubly occupied
�empty� sites:17 E0�1�=−2 /
 sin�
Ns /L�. As a function of
the filling, the absolute minima in the two homogeneous
phases �the one consisting of singly occupied and empty sites
only, and the one consisting of singly and doubly occupied
sites only� are reached at quarter filling �n=1 /2=ns� and
three-quarter filling �n=3 /2,ns=1 /2�. At any n within the
range nl=1 /2�n�3 /2=nh, one can use the Maxwell con-
struction: ns assumes the value 1/2, and �2n−1� /4 doubly
occupied sites are added to the ground state at zero-energy
cost, i.e., we are in presence of PS. On the contrary, at
x=0 the ground-state energy is that of a system of n electrons
with spin moving on a chain, E0�0�=−4 /
 sin�
n /2�: in this
case the absolute minimum is reached at half filling �n=1�
and no PS is observed. For continuity argument, one expects
PS to take place also for x sufficiently close to 1, and at
positive, not too large, u.

The findings of Refs. 11 and 12 at half filling and
x�1 /2 could be consistent with a scenario of PS. As an
example, we note that within the 2SF model, the critical line
for PS reads uc�x ,1�=4x, which is quite close to the numeri-
cal transition line of Fig. 1 in the vicinity of x=1. In order to
verify our hypothesis, a thorough analysis of the regime
n�1 is required. The available numerical simulations in this
case14,15 address mainly the issues of spin gap opening and
pair-pair correlations above half filling, which features one
would expect from the bosonization approach at x�1. The
focus of the next sections is instead on the ground-state en-
ergy, chemical potential, charge-charge and pair-pair correla-
tions, in the whole range n�1.

III. GROUND-STATE ENERGY AND PHASE SEPARATION

Thanks to the fact that the total number of electrons N is
always a good quantum number, for every value of u and x
we have computed numerically the ground-state energy den-
sity E0 in the range 0�n�2 by a series of different runs
varying N from 0 to 2L in steps of 2, so that it is possible to
fix in each run also the total magnetization to 0. We have
used open boundary conditions and up to 768 DMRG states
with three finite-system sweeps in order to improve the ac-
curacy. The finite-size dependence on L has been investi-
gated by means of preliminary runs at L=10 and L=50; we
have checked that the essential quantitative features of the
curves E0�n� and �E0 /�n �approximated with finite differ-
ences �n=2 /L� depend weakly on L. The interesting feature
that we observe for suitable values of u and x is that there is
a range of filling values nl�n�nh where the energy density
is linear as a function of n. This means that in the grand-
canonical ensemble by selecting a suitable value of chemical
potential one could change the number of particles with no
energy cost. In Fig. 2 we report the results for the “canoni-
cal” chemical potential �E0 /�n with L=60 sites and u=1 at
different values of x, while in Fig. 3 we fix x=0.8 and vary u
in the range 0–4 again with L=60. In both cases we observe
that there exists a flat region of values of n corresponding to
an infinite charge compressibility �,

�−1 = n2�2E0

�n2 . �7�

The size of this region increases with increasing x and di-
minishing u, while for instance at x=0.5 and u=1 it is ab-
sent. For reasons which will become clear in the next sec-
tions, we denote such a region as SC-LEL. The numerical
phase diagrams in the planes �n ,x� at u=1 and �n ,u� at
x=0.8 are plotted in the insets of Figs. 2 and 3 and are
obtained by tracing the �discrete� values of n at which
�E0 /�n starts to be flat. We should observe that the energy
density in the SC-LEL region does not show a convex shape
so we may safely extract the transition lines from the end
points of the plateaux.7 On the one hand, a finer inspection
reveals that, due to numerical errors and/or finite-size effects,
the edges of the plateaux show some rounding in certain
cases. On the other hand, we can compare our numerical
results with the transition lines obtained analytically in the
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exactly solvable model of Ref. 8, where sx=0, by taking here
tx=1−2x, and

�E0

�n
= �− 2 cos�
n� for n � nl

u + 2�2x − 1�cos�
n� for n � nh,
� �8�

where nl and nh together with the constant value of the
chemical potential � in the region nl�n�nh are found by
solving Eqs. �5� and �6�. The comparison between DMRG
and analytical estimates of nl and nh in Fig. 3 reveals a very
good agreement at x=0.8, meaning that such a value is al-
ready representative of the physics of the exactly solvable
point sx=0. In fact, at x=0.8 one has tx=−0.6 and sx=0.2.
The agreement diminishes for x=0.7 �Fig. 2� and for x=0.6
from our finite-size data �L=60� we are unable to discern a
plateau of nonzero width. This latter fact is in accordance
with the observation that at x=0.7 sx and tx are almost of the
same order �namely, sx=0.3 and tx=−0.4�, though still
−tx�sx, whereas at x=0.6 sx is even greater than 
tx
.

The SC-LEL regions x�xc�u� at fixed u, or u�uc�n� at
fixed x, are the candidates for the ICSS phase away from the
half-filling situation, where the transition points are indeed
consistent with our previous analysis of the ICSS region. In
order to confirm this indication an analysis of the spin gap
and of the pair-pair, charge-charge correlations is required.

IV. CORRELATIONS AND SPIN GAP VS FILLING

The study of the previous section produced evidence of
the fact that the coexistence of phases at different densities

characterizes the system’s behavior in a wide range of filling
values nl�n�nh, for u�uc�x ,n�. In particular, at n=1 it
seems to be present at least for x�2 /3 within the whole
ICSS phase. Still at half filling it was noticed12 that, due to
the presence of an open spin gap, both pair-pair
Pr� �ci↑

† ci↓
† ci+r↓ci+r↑�− �ci↑

† ci+r↑��ci↓
† ci+r↓� and charge-charge

Cr� �nini+r�− �ni��ni+r� �where ni=ni↑+ni↓� correlations be-
come dominant for u�uc�x ,1�.

In this section we then explore the filling dependence of
Pr, Cr, and �s. In Fig. 4 we report PL/3 and CL/3 �between site
L /3 and site 2L /3 in an open chain� for a given L=120 at
u=1, x=0.8. Two aspects emerge quite clearly in the data
shown. First, both charge-charge and pair-pair correlations
keep a significant track of the undergoing transition to the PS
regime, becoming appreciably different from zero only in the
range nl�n�nh. Second, both nl and nh are indistinguish-
able, within our numerical precision, from the values which
limit the coexistence of phases described in the previous sec-
tion. For this reason we have used the same symbols. It is
also worth noticing that Pr and Cr have the same kind of
dependence on n, in particular exhibiting a minimum at
n=1 and reaching their absolute maximum for n�1.3.

According to the theory of Luttinger liquids Pr and Cr are
expected to become dominant in presence of an open spin
gap, since their power-law decay with r is determined by a
different exponent in the LL case ��s=0=�c� and in the LEL
case ��s�0�. Hence, we may expect that �s�0 in the same
range of filling values in which PL/3 and CL/3 are. Accurate
DMRG simulations show that this is in fact the case. The two
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FIG. 2. �Color online� Discrete derivative
�E0�n+�n�−E0�n−�n�� /2�n of the DMRG ground-state energy E0

at u=1: x increases from top to bottom with reference to n=1. The
continuous lines represent the exact results at sx=0 �Ref. 8�. The
numerical phase diagram is given in the inset: red diamonds are
determined from the end points of the plateaux and black dots refer
to the analysis of K� specified in the text. In the SC-LEL phase the
shaded region is characterized by NPS.
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The shaded region is characterized by NPS. The jump at n=1 and
u=4 corresponds to the nonvanishing charge gap of the insulating
phase.
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insets of Fig. 4 report the finite-size scaling of �s for two
significant cases: �a� nl�n�1 and �b� n�nh. In both cases
the results are in agreement with the findings for Pr and Cr,
though they differ from standard bosonization predictions: as
explained in Sec. II, within the latter approximation at
u�0 the spin gap is found to be closed for any n�1 and
open for any n�1.

The extension of the above analysis to values of x within
the range 1 /2�x�2 /3 shows how the results are qualita-
tively similar. They can be resumed in the observation that
for u�uc�x ,n� and for nl�n�nh the system becomes a
LEL, characterized by an open spin gap and dominant pair-
pair and charge-charge correlations. The observation can be
exploited to infer the numerical values of nl and nh also in a
region where the chemical potential does not show evidence
of phase coexistence. As an example, from the behavior of
PL/3 �see inset of Fig. 10� we obtained nl at x=0.6 u=1 as
reported in Fig. 2. Further information on the nature of the
pairs in the LEL phase can be gained from the analysis of the
pair structure factor P�q�=�rPr exp�iqr� �not shown�, which
turns out to be peaked for vanishing q. This fact ensures that
the electrons forming the pairs have opposite momenta
�k ,−k�. In order to establish whether the LEL phase displays
dominant superconducting �K��1� or charge �K��1� corre-
lations, the derivation and analysis of the Luttinger param-
eter K� are now due.

V. CHARGE STRUCTURE FACTOR AND K�

In this section we deepen our analysis of the phase dia-
gram of the model under investigation by numerically evalu-
ating the Luttinger parameter K�. For the half-filled case, the
latter was estimated in Ref. 12 by fitting the long-distance
behavior of the equal time charge-charge and pair-pair cor-
relation functions according to their asymptotic behavior, as
predicted by conformal field theory equations13 for a spin-
gapped phase

Cr �
K�

�
r�2 + A
cos�2kFr�

rK�
, �9�

Pr � r1/K�. �10�

There, it was shown that in the ICSS phase the dominant
correlations are the superconducting ones, i.e., K��1 �for
x=0.8 and u=1.0, K��1.3�.

An estimate of K� can also be extracted from the study of
the static structure factor N�q�=�re

iqrCr, since the Fourier
transform of the nonoscillating term of Eq. �9� gives the
expression

K� =



q
N�q → 0� . �11�

Here we exploit this method to characterize the �super�con-
ducting behavior of our system in the LEL regime. In our
DMRG calculations we simulated an open chain of length
L=120, taking j=L /2 to reduce the finite-size effects due to
the presence of the borders.

In Fig. 5 we plot N�q� at x=0.8, n=1, and various
u�0. One can see that within the ICSS phase, i.e.,
u�uc�0.8,1�=3.05, the slope of the charge structure factor
is weakly dependent on u, always implying a K��1: in this
case K��1.6�0.2. The latter is an overestimation of the
actual value of K��1.3.12 This is in fact a general feature of
the method employed since N�q� is numerically obtained for
a finite lattice and logarithmic correction should be included.
Nevertheless the present estimation is consistent with the
previous result.

Figure 5 also shows that the maximum position q� /
 de-
pends on u. For a LEL we expect such a maximum to occur
for q�=2kF, where at half filling kF=
 /2. Here instead the
actual value of q� appears to be determined by the density of
doubly occupied sites nd, as the dotted lines reported in Fig.
5 in correspondence with the value q=2
nd show. This fea-
ture suggests that in the ICSS phase the system behaves as an
effective liquid of nd hard-core bosons, at least for large
enough x values.
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FIG. 4. �Color online� Charge-charge �black circles� and
pair-pair �red squares� correlations between site L /3 and site 2L /3
�open chains� versus filling n. Here x=0.8 and u=1. In the two
insets we have reported the finite-size spin gaps computed as
�s=E0�Sz=1�−E0�Sz=0� �Sz being the total z component of the
spin� for �a� n=5 /6�nl ��s�0� and �b� n=9 /6�nh ��s→0�.

FIG. 5. �Color online� Static charge structure factor at half fill-
ing for x=0.8 and various u. The slope of the dashed line is 1.6. For
each curve, dotted lines are drawn in correspondence with
q=2
nd.
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The presence of a marked peak at q=q� is reduced away
from the half-filling case, as can be seen in Fig. 6, where one
observes the different behavior of N�q� as a function of the
filling. Remarkably, in the low- and high-density regimes the
results coincide with those obtained analytically for the 2SF
model at the same tx value and sx=0 �K�=1 /2 and
q� /
=4kF�. Whereas, within the phase characterized by
K��1, the height of the maximum decreases and the width
increases moving from half filling, to disappear completely
in proximity of nl and nh. The maximum at q��2
nd disap-
pears also at half filling by sufficiently lowering x. As shown
in Fig. 7, for 0.5�x�0.7 it correctly moves to q�=
, with
K��1.

The effect of the bond-charge interaction x on N�q� is
visible also outside the LEL regime. Figure 8 shows how, by
increasing x, there is a crossover both in the conducting re-
gime at low density n=5 /12 and in the insulating regime at
half filling with strong interaction u=4 �inset�. In the LL case
it is seen that the dominant modulation in N�q� moves from
the Hubbard-type case with spin, qH=2kF to the value in the
spinless fermion case qSF=4kF, K� varying correspondingly.
In the insulating case �inset�, one observes the crossover be-

tween antiferromagnetic �x=0,u�0� and the paramagnetic
�x=1,u�4� insulator: the charge structure factor is increas-
ingly suppressed by enhancing the bond-charge parameter x.
To summarize, in both cases increasing x drives the system
toward a SF picture.

An exhaustive study of the static charge structure factor
has been performed, so that by using Eq. �11� we are able to
follow the behavior of K� across the transition to the SC-LEL
regime both at half filling �inset of Fig. 7� and with varying
the filling �Fig. 9�. At n=1 the case u=0 is peculiar in that
the SC phase is entered from a conducting phase �with
K�=1�, while at any 0�u�uc�x ,n� the system is otherwise
insulating �K�=0�.

The filling dependence of K� is shown in Fig. 9 at
x=0.8. Remarkably, K� has the same qualitative behavior of
pair-pair and charge-charge correlations �see Fig. 4�, in
agreement with that expected from the conformal field
theory equations �9� for a LEL. In particular, it is seen that
all the three quantities reach their maximum for n�1.3.
Moreover K��1 in the same region in which PL/3 and CL/3
are nonvanishing, the latter being very well approximated by
the range nl�n�nh, with nl and nh as calculated for the 2SF
model �same tx=0.6, sx=0�.

FIG. 6. �Color online� Static charge structure factor at x=0.8
and u=1.0 for several fillings n �L=120�. The continuous lines rep-
resent the analytical results obtained within the 2SF model in the
low- and high-density regimes at the same n and tx �=0.6� values.

FIG. 7. �Color online� Static charge structure factor N�q� at half
filling and u=0.0 for several x values. Inset: K� derived from N�q�
as a function of x for three different values of u. The lines are just
guides for the eyes.

FIG. 8. �Color online� Static charge structure factor at filling
n=5 /12 and u=1.0 plotted for several values of x. Inset: static
charge structure factor at half filling in the insulating regime
�u=4.0� for several values of x.

FIG. 9. �Color online� K� at x=0.8 and u=1.0 as a function of
the filling n �L=120�. The line is just a guide for the eyes and the
crosses mark nl and nh as determined in Sec. II.
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The situation is slightly different at x=0.6. As shown in
Fig. 10, both K� and PL/3 again have the same qualitative
behavior, so that also in this case we can safely estimate nl
and nh as the values of n at which, for instance, K� becomes
smaller than 1. In this way we obtained the points reported in
the phase diagram �x ,n� also at x=0.6 �see Fig. 2�, in which
case the analysis of the ground-state energy was not conclu-
sive about the presence of PS. Notice that the value nh=2 at
x=0.6 is substantially greater with respect to the one ob-
tained at x=0.7 by the analysis of the chemical potential.
This again could be a signal of the crossover to a regime in
which the physics of the weak coupling limit �x�1� begins
to emerge, merging with that of the strong coupling case
x�1. In fact, nl�1 is characteristic of the latter regime. In
this case both K� and PL/3 reach their maximum value for
n�1.1.

Finally, at x=0.5 and u=1, previous numerical
analyses11,12,14,16 suggest that the system is already in the
weak coupling limit. The point in the inset of Fig. 2 for this
value is simply obtained by imposing K�=1 in Eq. �3�.

VI. DISCUSSION AND CONCLUSIONS

The analyses of the previous paragraphs concur to com-
plete the scenario of the physics described by the Hirsch
model at u�0, arbitrary filling n, and 0�x�1. Depending
on the value of the bond-charge interaction x, one can dis-
tinguish three regions. The results are in fact representative
of those relative to the more general Simon-Aligia Hamil-
tonian �4� and can be resumed as follows:

�i� For 0�x�1 /2�tx�0� the system behaves as a
Luttinger liquid �LL� for n�1, as a Mott insulator for n=1,
and possibly there is a transition to a superconducting �SC�
Luther-Emery liquid �LEL� phase for n�1, in agreement
with bosonization predictions.

�ii� For 2 /3�x�1 �tx�−sx�0� one can distinguish a
high-�n�nh� and a low-density �n�nl�1� region of spin-
less fermion �SF� LL. These coexist up to uc�x ,n� in the
range nl�n�nh�2 in a phase of nanoscale phase separa-
tion �NPS, see below� with SC properties. Within the NPS
phase the LEL manifests an incommensurate modulation re-
lated to the number nd of doubly occupied sites.

�iii� For 1 /2�x�2 /3 �−sx� tx�0� we are in an interme-
diate regime. A homogeneous LEL phase with dominant SC
correlations appears for u�uc�x ,n� in a wider range
nl�n�2 �nl�1�.

Equation �3� for K� at x�1 suggests the mechanism driv-
ing the transition to the SC-LEL state for n�1: K� in this
case is a decreasing function of x, so that the electrons pro-
gressively tend to behave as spinless fermions �SF�, which
feature holds exactly when K�=1 /2. At sufficiently low den-
sities the change induced by increasing x is seen as a cross-
over in the static charge structure factor N�q�: the cusp
moves from q=2kF to q=4kF. Also, at n=1 and for large
enough Coulomb repulsion u�4, the change appears as a
crossover from an antiferromagnetic to a paramagnetic insu-
lator. The acquired SF nature implies that the energy as a
function of the filling reaches its minimum value at
n�nl�1, so that for greater filling values a regime of PS is
favored. This possibility was already proven to work exactly
at sx=0 �Ref. 8� �x=1�, in which case also for n�nh the
system behaves as a SF fluid, and the regime of PS amounts
to the coexistence of the high- and the low-density fluids.

The analytical results obtained in that case are in good
quantitative agreement with some aspects of the results re-
ported here, at least for x�2 /3. Nevertheless, in order to
acquire SC properties, one central feature was missing in the
exact case: the presence of the spin degrees of freedom. The
inclusion of the latter allows for the opening of the spin gap:
exactly at sx=0 the ground state is fully degenerate with
respect to the spin orientation, so that the spin-gap amplitude
is vanishing. As soon as sx�0, the spins rearrange at short
distance and the PS state further lowers its energy by open-
ing a spin gap. This phenomenon induces a shorter scale in
the size of the coexisting phases. While in absence of the
spin degrees of freedom the low- and high-density SF fluids
would be spatially segregated; when spin is considered, the
short-distance relative orientation of the electrons spin be-
comes relevant. The coexisting phases split into droplets of
nanoscale size � entering the NPS phase: an incommensurate
modulation appears in the liquid related to the number of
droplets. This is determined by the number of doubly occu-
pied �empty� sites Nd �Ne�: explicitly, L /Ne���L /Nd. The
effect is particularly evident at half filling, where Nd=Ne and
the charge structure factor exhibits a neat maximum at
q=2
Nd /L for x�2 /3. The maximum moves to q=
 for
1 /2�x�2 /3. This fact can be interpreted as a crossover of
the system to a homogeneous phase, where the spin gap is
open, SC correlations are dominant, and there is no longer a
length scale determined by the size of the droplets. As a
further confirmation, in the same intermediate region the
maximum in N�q� is observed at q=
�2−n� for n�1, con-
sistently with the SC-LEL phase already present in this case
at x�1 /2. The existence of droplets for x�2 /3 is also sup-
ported by the observation that the correct behavior of N�q�,
which is in principle achieved by summing Cr over all the
range of r values, can already be obtained, in its essential
features, limiting the sum to the first � neighbors �not
shown�.

One recognizes a posteriori that increasing the bond-
charge interaction x from 0 to 1 in HBC amounts to passing,
in the Simon-Aligia model of Eq. �4�, from the universality

FIG. 10. �Color online� K� vs n at x=0.6 and u=1. Inset: pair-
pair correlations between site L /3 and site 2L /3 �open chains� in
same case.
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class of the Hubbard model �tx=sx=1� to that of the 2SF
model discussed in Ref. 8 �arbitrary tx�0, sx=0�. It would
be interesting to exploit this observation within the bosoniza-
tion approach, complementing the results for the two fluids
of electrons with opposite spin at x�1 �Ref. 13� with a
bosonization study of the 2SF model, in the limit of weak
coupling sx between the two SF fluids.

We also notice that within the NPS phase, for
u�uc�x ,n� the actual value of u fixes nd and hence the size
of the droplets. The analysis at sx=0 shows that the mecha-
nism survives and even enriches also for u�0, and we ex-
pect further interesting physics to emerge also in relation to
the context of cold fermionic atoms trapped in optical lat-

tices. In this respect, it has been recently proven21 that the
Simon-Aligia Hamiltonian �4� is the correct candidate to de-
scribe these systems in proximity of a broad Feshbach reso-
nance.
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