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Disorder effects strongly influence the transport properties of graphene-based nanodevices even to the point
of Anderson localization. Focusing on the local density of states and its distribution function, we analyze the
localization properties of actual size graphene nanoribbons. In particular, we determine the time evolution and
localization length of the single-particle wave function in dependence on the ribbon extension and edge
geometry as well as on the disorder type and strength.

DOI: 10.1103/PhysRevB.79.235116 PACS number�s�: 73.20.Fz, 05.60.Gg, 71.30.�h, 72.15.Rn

I. INTRODUCTION

Disorder effects in graphene are of particular importance
on the account of its two-dimensional �2D� lattice structure.
The single-parameter scaling theory predicts that in 2D sys-
tems, arbitrary weak disorder leads to Anderson localization
of the single-particle wave function.1 For graphene, it has
been argued that due to the linear dispersion in the vicinity of
the band center the one-parameter scaling theory does not
hold. The problem of Anderson localization in graphene is
therefore heavily debated.2–4

Accessing Anderson localization both theoretically and
experimentally, the local density of states �LDOS� is a cen-
tral quantity. By means of the local distribution approach, the
distribution of the LDOS may be used to distinguish local-
ized from extended states.5–7 Nowadays, the LDOS can be
directly measured by scanning tunneling spectroscopy
experiments.8–11

An ordered infinite graphene sheet is a zero-gap semicon-
ductor with a linear density of states near the charge neutral-
ity point.12 Cutting a graphene nanoribbon �GNR� of finite
width out of such a sheet, additional aspects have to be con-
sidered. First, the finite number of transverse atoms causes
quantum confinement, where the presence of the edges leads
to a symmetry breaking. Second, lattice defects or targeted
implementations of, e.g., boron �B7� clusters,13 result in ran-
dom samples. Thereby, the range of the disorder is of great
importance.14 For long-range disorder, as caused by ripples
in the graphene sheet, the two independent corners of the
Brillouin zone are untangled and long-wavelength excita-
tions can be modeled by an effective Dirac equation. If the
scattering potential is short ranged, however, intervalley scat-
tering between the two inequivalent Dirac cones becomes
possible. Third, the finite extension �aspect ratio� of the GNR
introduces a new length scale being absent in infinite
graphene sheets. Actually, we expect metallic behavior of
disordered quasi-one-dimensional �quasi-1D� GNRs if the
localization length becomes comparable or even larger than
the longitudinal ribbon size.15–17

To address these questions, in this work we investigate the
electronic structure and the localization properties of disor-
dered GNRs by means of unbiased numerical techniques.
Thereby, we focus on the interplay of disorder, boundaries
effects, and GNR geometry. Particular aspects of various

kinds of disorder in GNRs have been investigated previously
in the literature.15–22

II. MODEL AND METHODS

To this end, we consider the tight-binding Hamiltonian

H = �
i=1

N

�ici
†ci − t̄�

�ij�
�ci

†cj + H.c.� �1�

on a honeycomb lattice with N sites, including hopping be-
tween nearest neighbors �ij� only. Drawing the on-site poten-
tials �i from the box distribution

p��i� =
1

�
���/2 − ��i�� , �2�

we introduce �short-ranged� Anderson disorder.23 We distin-
guish between bulk ��b� and edge ��e� disorder, when all
on-site potentials are subjected to p��i� or only those at the
edge sites. We consider quasi-1D GNRs of finite widths with
open �periodic� boundary conditions in transverse �longitudi-
nal� direction. Depending on the orientation of the GNRs
with respect to the honeycomb lattice, zigzag or armchair
geometries will be realized �see panels on top of Fig. 1�.

The local properties of site i of a sample with broken
translational invariance are reflected in the LDOS,

�i�E� = �
m=1

N

��i�m��2��E − Em� . �3�

Recording the probability density function f��i� for many
different sites 	i
 of a given sample and different sample
realizations 	�i
 restores the translational invariance on the
level of distributions. The shape of f��i� is determined by
p��i� but independent of 	i
 and 	�i
.7 For extended states,
f��i� is strongly peaked around the mean DOS,

�me = ��i� , �4�

independent of the system size; whereas for localized states
f��i� exhibits a log-normal distribution that becomes singular
for increasing system sizes.24 Normalizing the LDOS to �me
allows for a detection of the localization properties by per-
forming a finite-size scaling for the LDOS distribution. More
conveniently, the typical DOS
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�ty = e�ln �i� �5�

monitors the changes in the LDOS distribution. While for
N→� an extended state is characterized by finite values of
�me and �ty, for localized states �me is finite but �ty→0.24

Alternatively, the recurrence probability PR�t→�� also
reveals the localization properties of the system.25 While in
the thermodynamic limit PR�1 /N→0 for extended states,
localized states are characterized by a finite value of PR.
Starting from a localized wave packet, we are able to calcu-
late the time-dependent local particle density,

ni�t� = ���ri,t��2 = ��
m=1

N

e−iEmt�m���0���i�m��2

, �6�

by expanding the time evolution operator into a finite series
of Chebyshev polynomials.26,27 The above local distribution
approach also applies to ni�t�. But since an initial state in
general contains contributions of the whole spectrum, exam-
ining ni�t� does not allow for an energy-resolved investiga-
tion of localization as by the LDOS. Instead it provides a
tool for a global examination of the spectrum with relevance
for possible measurements. Note that a finite overlap of just
one extended state with the initial state leads to a complete
spreading of this state after some time.

III. NUMERICAL RESULTS

A. Local density of states

Compared to the band structure of an infinite 2D graphene
sheet, the DOS of finite GNRs is characterized by a multi-
tude of Van Hove singularities �see top panels of Fig. 1�. For
zigzag GNRs, the strong signature at E=0 indicates the high
degeneracy of the edge states.28 In contrast, armchair GNRs
with Na=3n or Na=3n+1 are gapped around E=0. This
finite-size gap tends to zero as Na→�. The resulting metal-
licity for Na=3n+2 is an artifact of the nearest-neighbor
�NN� tight-binding approximation, however, and vanishes if
next NN and third NN are taken into account.29 For other
values of Na, a longer-ranged hopping slightly modifies the
gap size but does not change the fundamental behavior. Note
that even for vanishing Anderson disorder the LDOS varies
for different bulk sites according to their relative position to
the ribbon edges. Symmetry considerations show that there
are Nz �Na /2� inequivalent lattice sites in ordered zigzag and
armchair GNRs. Therefore, mean and typical DOS do not
coincide even for �b=0 �see, e.g., the band center of the
zigzag GNR�.

If disorder comes in, localized states emerge in the band
gap of the armchair GNRs, and above a critical disorder
strength the gap is filled completely. The localization prop-
erties of the states can readily be seen from the system size
dependence of �ty. A tendency toward reduced values of �ty
for increasing system sizes indicates localization for both
GNR geometries and all energies. While this localization ef-
fect arises for bulk disorder already at �b / t̄=2, an edge dis-
order strength of �e / t̄=2 is still too weak to localize the
wave function on GNRs of L=213 nm size as indicated by
the approximate equality of �ty and �me. A substantial reduc-

tion of �ty is only observed for larger systems �L
=1064 nm� which indicates localization on a larger length
scale. Obviously, zigzag GNRs are less sensible to edge dis-
order than armchair GNRs since this geometry has only half
the number of �disordered� edge sites. The different edge
geometries are only of importance if the disorder is weak.
For strong disorder �b / t̄=4, the results for armchair and zig-
zag GNRs coincide almost exactly.

As stressed above, there are three branches of gap sizes
depending on mod�Na ,3�. In Fig. 2, we focus on Na=3n+1
and examine the influence of both bulk and edge disorder on
the gap size 	a in dependence on the ribbon width. For our
finite system we calculate 	a as

armchair

z=N 6 a=10N
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0

0.2

0.4

ρ m
e

,ρ
ty

γb/t- = 0

0

0.2

0.4

0

0.1

0.2

ρ m
e

,ρ
ty

γb/t
- = 2

0

0.1

0.2

0

0.2

0.4

ρ m
e

,ρ
ty

γe/t
- = 2

0

0.2

0.4

0

0.1

0.2
ρ m

e
,ρ

ty
γb/t

- = 4

0

0.1

0.2

-4 -2 0 2 4
E / t-

0

0.1

0.2

0.3

ρ m
e

,ρ
ty

γe/t
- = 4

-4 -2 0 2 4
E / t-

0

0.1

0.2

0.3

FIG. 1. �Color online� Mean �solid red� and typical �dashed
blue� DOS for zigzag �left column, Nz=6� and armchair �right col-
umn, Na=10� GNRs of width W=1.1 nm. Top panels: ordered case.
Lower panels: in each �2
2� block, we compare for a fixed value
of disorder the influence of bulk disorder ��b, upper rows� to edge
disorder ��e, bottom rows�. To illustrate the localization properties,
in each panel �ty is given for L=213�1064� nm by light blue dot-
dashed �dark blue dashed� lines. These system sizes correspond to
10 000 �50 000� lattice sites for the armchair and 10 392 �51 960�
for the zigzag case. Disorder averaging was performed over 105

realizations. In the longitudinal direction, periodic boundary condi-
tions �pbc� are applied.
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−	a/2

	a/2

�me�E�dE =
1

N
. �7�

A finite-size analysis shows that upon increasing the ribbon
width, the gap narrows for any bulk disorder �b. In contrast,
for edge disorder we observe a nonmonotonic behavior that
can be explained by the competition of two effects: increas-
ing the width of the GNR on one hand weakens the influence
of the disorder as the ratio of edge to bulk sites decreases. An
increasing number of lattice sites, on the other hand, reduces
the finite-size effects and closes the gap. Thus, for �e�2t̄,
the gap first broadens when the GNR width is increased and
then converges to the gap size of the ordered system, which
finally vanishes in the limit Na→�. Similar studies for a
different type of edge disorder, in which sites are randomly
removed from the ribbon edges, can be found in the
literature.18,20,21

To get further insight into the nature of the eigenstates of
GNRs and substantiate our conclusions about their localiza-
tion properties, we show the LDOS in the band center in
Fig. 3. The magnifying inset for the ordered case shows the
alternating structure of the edge states which are distinctive
for the band center of zigzag GNRs.28 In the presence of
weak edge disorder, the checkerboard structure of the ampli-
tudes persists in the bulk, while near the edges regions with
significantly enhanced amplitudes emerge. The A-B sublat-
tice structure is no longer present for larger �e as can be seen
in the lower inset of Fig. 3. Here, the sites with vanishing
amplitudes form a filamentary network in the bulk caused by
the influence of the disordered edges. For bulk disorder, lo-
calization arises first near the edges of the system in the case
of weak disorder, while localized states in the bulk of the
GNR occur only for strong disorder. Varying the aspect ratio
of the GNRs �right column of Fig. 3�, we may tune the
relative importance of the edges in the system. Although this
effect is most pronounced for edge disorder, we observe also
for bulk disorder such a “renormalization” of the disorder
strength. A given �b,e causes stronger localization for narrow
GNRs.

B. Time evolution of the wave function

Figure 4 shows the time evolution of an initially localized
state, as calculated by the Chebyshev method.27 The dynam-
ics of the initial wave packet is characterized by a fast
spreading process �t�103t0�, after which its extension does
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FIG. 2. �Color online� Gap size 	a for armchair GNRs as a
function of ribbon width Na=3n+1 for edge disorder �main panel�
and bulk disorder �inset�. Results are based on the averaged DOS
for GNRs with a length of 1000 atoms using 4096 realizations of
disorder.
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FIG. 4. �Color online� Time evolution of the normalized particle
density N���ri��2 on disordered GRNs with zigzag and armchair
geometries for different values of bulk disorder �b. Device dimen-
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213� nm2 corresponding to 6
1732 atoms �zigzag�
and 10
1000 atoms �armchair�. Times are measured in units of the
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not change anymore, even for very long times. Clearly, on
individual sites the amplitudes fluctuate in time; but the over-
all nature of the state for t=104t0 is quasistationary. The lo-
calization properties depend on both disorder strength and
edge geometry. Obviously, armchair GNRs are more suscep-
tible to the presence of disorder than those of zigzag type.
For the shown GNRs of moderate length and weak disorder
��b,e / t̄=0.5�, the localization length is larger than the system
size and thus the GNR is “metallic.”

The extraction and quantitative discussion of the localiza-
tion length in narrow GNRs is challenging. There is no prob-
lem to determine 
 from an exponential fit

���ri��2 = ���r0��2exp�−
�ri − r0�



� �8�

for a given initial state and disorder realization at any fixed
time. But the such-determined 
 strongly fluctuates, both in
time and as a function of the chosen initial state and disorder
realization. The temporal fluctuations of about 5–10 % can
be eliminated by time averaging. Varying the initial state
and/or comparing different disorder realizations leads to ad-
ditional uncertainties of about 10–20 %. Therefore, we show
in Fig. 5 sample averages over several combinations of ini-
tial states and disorder realizations.

Figure 5 indicates that the influence of the boundary
�armchair/zigzag� is only of minor importance for the local-
ization length. But we observe a pronounced difference be-
tween bulk and edge disorder, with 
�L also for large val-
ues of �e for most ribbon widths. For any fixed disorder
strength, a decreasing width of the GNR systematically re-
duces 
 since the influence of the lateral dimension is weak-
ened and the system approaches the 1D limit. Values of 

which are significantly larger than half the system size �blue
solid line� have to be taken with care since a reliable deter-
mination of the localization length requires 
�L. Clearly,

the precise value of 
 in those cases is of minor importance
due to the metallic behavior of such finite GNRs. A quanti-
tative comparison of the obtained localization lengths with
estimates based on other methods15–17 suffers from the dif-
ferent investigated disorder models. Nevertheless, the orders
of magnitude match and the general tendencies are repro-
duced. The impact of disorder increases with decreasing rib-
bon width and the boundary type does not influence the lo-
calization length significantly for strong disorder. The
pronounced dependence of the localization length on the rib-
bon type �armchair or zigzag� for the weakly disordered case
reported in Refs. 15 and 16 is absent in our data. We attribute
this to the different disorder models used.

IV. SUMMARY

To conclude, Anderson localization takes place in disor-
dered quasi-1D graphene nanoribbons but taking into ac-
count the actual device dimensions GNRs can be conducting
at weak disorder strengths. This has been proven by calcu-
lating the localization length and time evolution of single-
particle states. Within the local distribution approach, Ander-
son localization is identified by a log-normal distribution of
the LDOS that shifts toward zero for increasing system size.
The LDOS is directly measurable by scanning tunneling
spectroscopy and therefore allows for a direct comparison of
theory and experiment.
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