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We develop a general perturbative framework based on a superconducting atomic limit for the description of
Andreev bound states �ABS� in interacting quantum dots connected to superconducting leads. A local effective
Hamiltonian for dressed ABS, including both the atomic �or molecular� levels and the induced proximity effect
on the dot is argued to be a natural starting point. A self-consistent expansion in single-particle tunneling events
is shown to provide accurate results even in regimes where the superconducting gap is smaller than the atomic
energies, as demonstrated by a comparison to recent numerical renormalization group calculations. This simple
formulation may have bearings for interpreting Andreev spectroscopic experiments in superconducting devices,
such as scanning tunnel microscope measurements on carbon nanotubes or radiative emission in optical
quantum dots.
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I. INTRODUCTION

When a quantum dot is connected to superconducting
electrodes, the proximity effect drastically modifies the dot’s
electronic structure due to the local formation of Cooper
pairs. The density of states on the dot thus exhibits a gap so
that the formation of discrete subgap states arises.1 These
Andreev bound states �ABS� play certainly an important role
as they may contribute a large part of the spectral weight2

and carry most of the Josephson current.3 A physical under-
standing of the ABS requires to characterize how these states
are connected to the atomic �or molecular� levels of the un-
coupled quantum dot and to describe quantitatively their
evolution as a function of several parameters such as gate
voltage, Coulomb interaction, tunnel couplings, and super-
conducting gap. Whereas the ABS have been observed in
metal-superconductor hybrid structures,4 no direct spectros-
copy has so far been achieved in quantum dot systems. An-
dreev bound states come in pairs, one state above and one
below the Fermi level, forming a two-level system. Conse-
quently, recent interest in the spectroscopy of the bound
states has also been stimulated by proposals to use the latter
as a qubit.5 At present, several routes have been suggested
such as scanning tunnel microscope �STM� measurements on
carbon nanotubes,6 microwave cavity coupling,7 visible-light
emission using a Josephon diode,8 or noise experiments.9

Experimentally, superconducting quantum dots can be re-
alized with carbon nanotubes junctions or semiconducting
InAs islands. It has been shown that quantum dots connected
to superconducting electrodes can be tuned from a Coulomb
blockade regime, to a Kondo regime,10,11 and to a weakly-
interacting Fabry-Perot regime by changing local gate
voltages.12 The Josephson current at zero bias and multiple
Andreev reflections at finite bias voltage have been measured
in such devices.12–15 The transition from a zero junction to a
� junction, namely, a reversal in the sign of the Josephson

current16 has also been observed when a magnetic moment
forms on the dot.17–20 As a possible application of supercon-
ducting junctions, nano superconducting quantum interfer-
ence devices have also been fabricated.19

An exact theoretical description of a quantum dot coupled
to superconducting leads is only possible when the Coulomb
interaction is fully neglected. Hence the interacting single-
dot system, as described by the Anderson model with super-
conducting electrodes, has been so far analyzed by treating
the Coulomb interaction with various analytical schemes
such as the mean-field theory,21–23 the perturbation expansion
in the Coulomb interaction,24 or in the tunnel coupling.16

Nonperturbative calculations, using the noncrossing ap-
proximation �NCA�,25,26 or the functional renormalization
group,27 as well as numerical simulations based on the nu-
merical renormalization group �NRG�,2,27–31 or quantum
Monte Carlo32,33 have also been developed.

None of the analytical approaches mentioned above is
able to describe entirely the physics of a quantum dot
coupled to superconducting leads. Whereas lowest-order per-
turbation expansions in the tunnel coupling will hardly cap-
ture the proximity effect induced by the electrodes34 and
need to be pushed to higher orders,35 mean-field and weak-
interaction approaches will miss the Kondo effect. NRG cal-
culations on the other hand can capture the physics of such a
system over a wide range of parameters but are numerically
demanding and not easily portable to more complex molecu-
lar systems. More importantly, in the view of describing the
ABS alone, none of these techniques does provide a simple
physical picture. Henceforth we will develop in this paper a
perturbative approach based on an effective local Hamil-
tonian for dressed ABS, that extends the limit of large super-
conducting gap proposed previously,36,37 which was used by
many authors.2,6,8,24,38–41 This approach will illuminate the
nature of the ABS in interacting quantum dots, which can be
generally viewed as renormalized superconducting atomic
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states. This will provide as well a simple analytical frame-
work that is accurate in the most relevant cases and that may
thus be useful for interpreting future spectroscopic experi-
ments. In particular, calculations provided in the proposals of
Refs. 6 and 8 only qualitatively apply in realistic situations
where the gap is comparable or smaller that the atomic en-
ergies even when the gap is large compared to the hybridiza-
tion to the electrodes. This interesting regime is precisely the
one that we want to address in the present work. In addition,
we note that our formalism, which incorporates the atomic
�or molecular� levels from the outset, can easily be extended
to describe more complex systems, as for instance supercon-
ducting double quantum dots or molecules with more com-
plicated orbital structure �see, e.g., Refs. 42–45�.

We organize our paper as follows. In Sec. II, the system is
mapped onto an effective local Hamiltonian, similarly to the
widely used atomic limit but including the proximity effects
due to the superconducting leads. In Sec. III, the perturbation
theory around this limit is set up and self-consistent equa-
tions for the ABS energy renormalizations are derived in
order to extend the validity of the bare perturbative ap-
proach. Sec. IV illustrates how this expansion can describe
ABS in superconducting quantum dots over a wide range of
parameters by a comparison to available NRG data.2,30

II. THEORETICAL FORMULATION

A. Model

We focus in this paper on a single-level quantum dot
coupled to superconducting leads, which is relevant experi-
mentally for molecular junctions with large single-electron
level spacing. A simple Hamiltonian able to describe such a
system is given by the superconducting Anderson model

H = �
i=L,R

Hi + Hd + �
i=L,R

HTi
, �1�

where

Hi = �
k�,�

�k�ck�,�,i
† ck�,�,i − �

k�
��ick�,↑,i

† c−k�,↓,i
† + H.c.� ,

Hd = �
�

�dd�
†d� + Un↑n↓,

HTi
= �

k�,�

�td�
†ck�,�,i + H.c.� .

In the above equations, d� is the annihilation operator of an
electron with spin � on the dot, ck�,�,i that of an electron with
spin � and wave vector k� in the lead i=L ,R and n�=d�

†d�.
The leads are assumed to be described by standard s-wave
BCS Hamiltonians Hi with superconducting gaps �i=�ei�i.
The phase difference of the latter is noted �=�L−�R. Fur-
thermore, the leads are assumed to have flat and symmetric
conduction bands, i.e., the kinetic energy �k�,i measured from
the Fermi-level ranges in �−D ,D� and the density of states is
�0=1 / �2D�. We assume k�-independent and symmetric-
tunneling amplitudes t between the dot and both supercon-

ducting leads. The dot has a level energy �d and Coulomb
interaction U. Experimentally, the crucial characteristic en-
ergy scales, namely, Coulomb interaction U, total hybridiza-
tion 	=2�t2�0 and gap �, are typically all of the same order
of magnitude,19,46 providing a challenge for analytical meth-
ods.

The physics of the quantum dot can be described via its
Green’s function,

Ĝd,d�
� = − �T
�d�
��d
†�0�� , �2�

where the Nambu spinor

�d�
� = �d↑�
�
d↓

†�
� 	
has been introduced. Because we will only be interested in

stationary equilibrium physics, Ĝd,d�
� shall be computed in
the Matsubara frequency formalism.

B. Effective local Hamiltonian

As the above Hamiltonian has no exact solution, some
approximations must be made. Among the physical ingredi-
ents we want to include in a nonperturbative way is the local
pairing on the dot that is crucial for the evolution of the
Andreev bound states. Furthermore, the Coulomb interaction
shall be taken into account in an exact manner in order to
describe the atomic states faithfully and to highlight how
these are adiabatically connected to the ABS. However, the
usual development in weak tunnel coupling t around the
atomic limit16 is not sufficient to describe the proximity ef-
fect at lowest order. Therefore, we shall consider in what
follows an expansion around a superconducting atomic limit.

Such simple solvable limiting case of the model in Eq. �1�
is often referred to as the limit of large gap �→� and has
been discussed previously.2,24,36,38 Expansions for finite �
have not however been discussed to our knowledge and are
the topic of this paper. We emphasize from the outset �see
Eq. �4� below�, that the superconducting atomic limit as used
normally in the literature corresponds to the limit D→�
�i.e., infinite electronic bandwidth�, taken before �→�. The
order of the two limits is crucial: if the limit �→� was to be
taken first, the dot would be completely decoupled from the
leads and the proximity effect would be lost so that the limit
of infinite gap would reduce to the usual atomic limit. As
will be shown now, the superconducting atomic limit should
rather be interpreted as a low-frequency expansion, i.e., a
limit where the gap is much larger than the characteristic
frequencies of the dot.

We start off by deriving the Green’s function defined in
Eq. �2� using the equations of motion. Thereby, the Coulomb
interaction U will at first be omitted for the sake of clarity.
Note that in the end, U will simply give an extra contribution
which adds to the effective Hamiltonian. Fourier transforma-
tion straightforwardly yields

Ĝd,d
−1 �in� = in1 − �d�̂z − t2�

k�,i

�̂xĜk�i,k�i
0 �in��̂x. �3�

In Eq. �3�, n is a fermionic Matsubara frequency, Ĝk�i,k�i
0 �in�

is the bare Green’s function in Nambu space of electrons

MENG, FLORENS, AND SIMON PHYSICAL REVIEW B 79, 224521 �2009�

224521-2



with a wave vector k� in the lead i, and the Pauli matrices �̂�

have been introduced. Transforming the sum over wave vec-
tors k� into an integral over energies yields the k�-summed
“quasiclassical” Green’s function,

�
k�

Ĝk�i,k�i
0 �in� = 2�0 arctan
 D

�n
2 + �2�

�
1

�n
2 + �2
 − in �ei�i

�e−i�i − in
� . �4�

In the limit n��, the Green’s function in Eq. �4� be-
comes purely static and reduces to

�
k�

Ĝk�i,k�i
0 �in� = 2�0 arctan
D

�
�
 0 ei�i

e−i�i 0
� . �5�

Note that the low-frequency limit we consider here yields a
Green’s function that indeed depends on the finite bandwidth
D and this shows that the limit �→� shall not be taken for
the proximity effect to survive. In what follows, we will
therefore keep both D and � finite. Plugging Eq. �5� into the

Green’s function Ĝd,d�in� leads to the same result as would
have been obtained with the effective local Hamiltonian

Heff
0 = �

�

�dd�
†d� − �	�ei��L+�R/2�d↑

†d↓
† + H.c.� , �6�

where the local-pairing amplitude induced by the leads on
the dot reads as

	� = 	
2

�
arctan
D

�
�cos
�

2
� . �7�

which explicitly depends on the ratio D /�. By an appropri-
ate gauge transformation for the operators d�, it is always
possible to choose 	�ei��L+�R�/2= 	�, as shall be done from
now on. The complete local effective Hamiltonian is ob-
tained when the Coulomb interaction is taken into account
again. Defining �d=�d+ U

2 , the energy level of the dot is
shifted such that the Hamiltonian clearly exhibits particle-
hole symmetry for �d=0,

Heff = �
�

�dd�
†d� − 	��d↑

†d↓
† + H.c.� +

U

2 
�
�

d�
†d� − 1�2

.

�8�

The physical interpretation of this effective local Hamil-
tonian is simple. For finite gap, the quantum dot is coupled to
both the Cooper pairs and the quasiparticles in the leads. The
Cooper pairs, which lie at the Fermi level, are responsible for
the proximity effect. The quasiparticles give rise to conduc-
tion electrons excitations with energies higher than the gap
�. In the limit n��, the quasiparticles are far in energy
and the coupling between them and the dot vanishes, which
greatly simplifies the physics and makes an exact solution
possible. Yet, as the dot is still coupled to the Cooper pairs at
the Fermi level, the proximity effect survives with a local
pairing term proportional to the hybridization 	 between dot
and leads.

C. Spectrum of the effective local Hamiltonian

As the Coulomb interaction simply yields an extra energy
shift of U /2 for both empty and doubly occupied dot, the
eigenvectors and eigenvalues of the local effective Hamil-
tonian in Eq. �8� are readily obtained by a Bogoliubov
transformation,2 in perfect analogy with solution of the BCS
Hamiltonian. Heff has thus four eigenstates, the singly occu-
pied spin 1/2 states ↑ � and ↓ � with energy E↑

0=E↓
0=�d, and

two BCS-like states given by

+ � = u↑↓� + v�0� ,

− � = − v�↑↓� + u0� , �9�

where 0� denotes the empty dot and ↑↓� the doubly
occupied dot. The amplitudes u and v can always be
chosen to be real with u=1 /2�1+�d /��d

2+	�
2 and v

=1 /2�1−�d /��d
2+	�

2 . The energies corresponding to these
BCS-type states are E�

0 =U /2���d
2+	�

2 +�d.
As E+

0 is always larger than E−
0, the effective local Hamil-

tonian has two possible ground states: the low-energy BCS-
type state −� or the degenerate spin 1/2 doublet �↑ � , ↓ ��. In
the −� state, the energy is minimized for �=0. Thus, the
spin-singlet phase corresponds to a zero junction �a result
well known from the weak-coupling limit16�. The transition
between the singlet phase and the spin 1/2 doublet takes
place at �d

2+	�
2 =U2 /4 and Fig. 1 shows the corresponding

phase diagram for variable �d, 	�, and U. The state adopted
by the quantum dot in the large-gap limit therefore results
from a competition between the local pairing �induced by the
proximity effect and characterized by the hybridization 	�
and the Coulomb interaction.

D. Andreev bound states

As outlined in Sec.I, the coupling to superconducting
leads induces a gap in the spectral function of the dot inside
which discrete Andreev bound states can form. The spectral
function of the dot shows therefore sharp peaks, which could
be measured by STM �Ref. 6� or microwave-optical7,8 ex-
periments as proposed recently. These peaks indicate addi-
tion energies at which an electron may enter �or leave� the
dot and correspond therefore to transitions between states
with n and n�1 electrons. Hence, the ABS peaks in the

FIG. 1. Phase diagram of a simple dot with Coulomb interaction
U, energy level �d and hybridization 	 to superconducting elec-
trodes in the effective local limit. The transition line corresponds to
E�

0 =E−
0.
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spectral function may be interpreted as transitions between
the superconducting atomic levels of the dot ��� , +� , −��,
possibly renormalized by single-particle tunneling events ne-
glected in Heff �to be included in the next section�. Further-
more, transitions from a spin 1/2 doublet to a spin singlet
necessarily involve an electron exchange between the dot
and the superconducting leads. As the states −� and +� cor-
respond to the superposition of an empty and doubly occu-
pied dot, this electron exchange and the final singlet states
can be understood within the Andreev reflection picture.

Putting everything together, our effective local Hamil-
tonian in Eq. �8� describes the energies of the Andreev bound
states as transition energies from the spin 1/2 doublet to the
spin-singlet states.2,38 There are thus four Andreev bound
states in the large-gap limit for the model Eq. �1�, with en-
ergy �a0 and �b0 which read as

a0 = E−
0 − E�

0 =
U

2
− ��d

2 + 	�
2 , �10�

b0 = E+
0 − E�

0 =
U

2
+ ��d

2 + 	�
2 . �11�

The 0 /� transition corresponds to the crossing of the −� and
�� states, which occurs for a0=0.

III. PERTURBATION EXPANSION AROUND
THE EFFECTIVE LOCAL HAMILTONIAN

A. Perturbation theory

The effective Hamiltonian is not sufficient to obtain sat-
isfying results for all regimes of parameters. First, Heff only
describes the 0 /�-junction transition due to the competition
between a local-moment state �stabilized by the Coulomb
blockade� and a spin singlet �induced by the proximity ef-
fect�. However, if the Coulomb interaction is strong �i.e.,
U�	 , �d, and below the Kondo temperature�, the local mo-
ment can be screened by the Kondo effect, which will com-
pete with the superconducting gap for the 0-� transition so
that a typical scaling in the ratio of the Kondo temperature to
the gap � will appear. Also, the Josephson current in the �
phase identically vanishes from Heff, as the spin doublet does
not disperse with the superconducting phase difference, a
limitation of the large-gap limit. On a more quantitative ba-
sis, the experimental gap � is usually on the order of a few
kelvins, which is also the typical scale for both 	 and U in
carbon nanotube quantum dot devices.

In order to extend the description of the quantum dot’s
physics, energy corrections shall be calculated with a pertur-
bation theory around the effective Hamiltonian in Eq. �8�.
Once these corrections have been obtained, physical observ-
ables like the Josephson current may be computed via the
free energy F=− 1

� ln�Z�, with � the inverse temperature.
Therefore, it is most convenient to work in an action-based
description, which directly yields the partition function Z.
Following Ref. 21, we first integrate over the fermions in the
leads. Omitting the resulting irrelevant constant, the partition
function reads

Z =� D��̄d,�d�e−Sdot �12�

with

Sdot = �
k�,i,n

�̄d,nĤTi
Ĝk�i,k�i

0 �in�ĤTi

† �d,n

+ �
n

�̄d,n
− in + �d 0

0 − in − �d
��d,n

+ �
0

�

d
Ud̄↑�
�d̄↓�
�d↓�
�d↑�
� , �13�

where we have introduced the Grassmann Nambu spinors at
Matsubara frequency n= �2n+1�� /�,

�d,n =
1

��
�
n

�d↑�
�

d̄↓�
�
	e−in


and

�̄d,n =
1

��
�
n

�d̄↑�
�, d↓�
��ein
,

denoting the Grassmann fields associated with electrons in

the dot by d̄� and d�.
The perturbation consists of the terms in Eq. �12� that are

not contained in the action Seff corresponding to the effective
local Hamiltonian. A simple identification yields

Seff = �
0

�

d
��
�

d̄��
�
 �

�

+ �d�d��
� − 	�d̄↑�
�d̄↓�
�

− 	�d↓�
�d↑�
� + Ud̄↑�
�d̄↓�
�d↓�
�d↑�
�	 , �14�

Spert = �
0

�

d
�
0

�

d
��
k�,i

�̄d�
�ĤTi
Ĝk�i,k�i

0 �
 − 
��ĤTi

† �d�
��

+ �
0

�

d
�	�d̄↑�
�d̄↓�
� + 	�d↓�
�d↑�
�� . �15�

Note that Seff contains the local-pairing term derived in Sec.
II B. The proximity effect is thus treated nonperturbatively
�just like the Coulomb interaction�, which is the crucial in-
gredient of our analytic approach. The perturbation Spert sim-
ply corresponds to the tunnel coupling between the dot and
the electrodes other than the lowest-order proximity effect.

The actual corrections are calculated by expanding the
partition function to the first order in Spert according to

Z =� D��̄,��e−Seff−Spert �� D��̄,��e−Seff�1 − Spert + ¯�

�16�

which we then identify with
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Z = �
�

e−�E� + e−�E+ + e−�E−, �17�

where the renormalized superconducting atomic levels E�

=E�
0 +�E� and E�=E�

0 +�E� are obtained from

e−�E� � e−�E�
0
�1 − ��E�� , �18�

e−�E� � e−�E�
0

�1 − ��E�� . �19�

Because the Coulomb interaction is taken into account,
Wick’s theorem cannot be used to calculate Z. Instead, ex-
pectation values are calculated using Lehmann representa-
tion. Explicit calculations may be found in the Appendix. In
the zero-temperature limit �→�, the energy corrections are

�E� = − t2�
k�
� 1

Ek� + �E+
0 − E�

0�
+

1

Ek� + �E−
0 − E�

0�

+
2�

Ek�
uv�cos
�

2 ��� 1

Ek� + �E+
0 − E�

0�

−
1

Ek� + �E−
0 − E�

0�	� , �20�

�E+ = − t2�
k�,�
� 1

Ek� − �E+
0 − E�

0�

−
2�

Ek�
uv�cos
�

2 �� 1

Ek� − �E+
0 − E�

0�	 − 2	�uv ,

�21�

�E− = − t2�
k�,�
� 1

Ek� − �E−
0 − E�

0�

+
2�

Ek�
uv�cos
�

2 �� 1

Ek� − �E−
0 − E�

0�	 + 2	�uv ,

�22�

with the quasiparticle energy Ek� =��k�
2+�2.

B. Self-consistent renormalization of the energy

Equations �20�–�22� yield the first corrections to the en-
ergy levels so that the bound-states energies a0 and b0 are
simply shifted by �a=�E−−�E� and �b=�E+−�E�. Obvi-
ously, these expressions are logarithmically divergent when
the bound-states energies a0 and b0 approach the gap edge35

and are therefore only valid as long as, e.g., a0�	 log��D
+�� / ��−a0��. In the limit of large gap ��a0, these correc-
tions to a0 are thus of the order 	a0 /� so that the small
dimensionless parameter is indeed 	 /�. However, this pecu-
liar logarithmic dependence of the ABS energy renormaliza-
tion shows that doing a straightforward 1 /� expansion
around the effective local Hamiltonian will be rapidly uncon-
trolled and will have a hard time reproducing the logarithmic
singularities at � close to a0. For this reason and also be-
cause the large-gap limit becomes trivial for a finite elec-

tronic bandwidth, as discussed in Sec. II B, it was indeed
more appropriate to single out in the total action all terms left
over with respect to the local superconducting effective
Hamiltonian, see Eq. �15�, and do perturbation theory around
these.

Because our lowest-order expansion obviously still breaks
down when the gap becomes comparable to the bound-state
energy, one would naturally seek to resum the leading loga-
rithmic divergences in Eqs. �20�–�22�. This can be achieved
using a self-consistency condition inspired by Brillouin-
Wigner perturbation theory,47 which allows to extend greatly
the regime of validity of the perturbative scheme. The result-
ing self-consistent equations that we obtain are

�a = −
	

�
�

0

D

d�� 2

E − a���
−

1

E + b0
−

1

E + a0

+
�

E
uv�cos
�

2
��� 2

E − a���
−

1

E + b0
+

1

E + a0
	�

+ 2	�uv �23�

and

�b = −
	

�
�

0

D

d�� 2

E − b���
−

1

E + b0
−

1

E + a0

+
�

E
uv�cos
�

2
��� − 2

E − b���
−

1

E + b0
+

1

E + a0
	�

− 2	�uv �24�

with E=��2+�2, and a0 ,b0 have been defined in Eqs. �10�
and �11�, with a���=a0+�a, b���=b0+�b. Note that terms
like 1 / �E+a0� have no self-consistency because there are no
associated divergences. Equations �23� and �24� clearly now
hold as long as the renormalized energies a��� and b��� are
not too close to the gap edge, ��, respectively.

IV. RESULTS

A. Phase diagram

We start by discussing the 0-� transition line, by compari-
son to the NRG data by Bauer et al.2 Figure 2 shows the
extension to smaller gaps � values of the phase diagram

FIG. 2. �Color online� Phase diagram of a simple dot with Cou-
lomb interaction U, tunnel coupling 	 to superconducting elec-
trodes with gap � for �=0 and �	=0.2D. The symbols indicate
NRG data from Ref. 2 and the various lines our results.
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obtained with unrenormalized local superconducting states
for infinite gap �Fig. 1�. Even though our perturbative ap-
proach is fairly simple, the results reproduce nicely the NRG
data of Refs. 2 and 27. The analytically obtained phase dia-
gram is indeed identical to the NRG data for ��	. For
smaller � /	, the Kondo effect sets in but the transition lines
remain quantitatively correct for �d near �U /2 with increas-
ing deviations from the NRG calculations close to the
particle-hole symmetric point �d=0 at large Coulomb inter-
action U. In this regime, the zero phase possesses a Kondo-
singlet ground state. As the leads are superconductors, the
formation of a Kondo resonance involves the breaking of
Cooper pairs. Therefore, the transition is now due to the
competition between TK and the superconducting gap �, and
should occur at kBTK��.

Figure 3 shows a plot of the transition line for �d=0 as
obtained with Eq. �23� �solid curve�. The vertical dotted line
depicts the asymptote in the effective local limit. The sym-
bols again correspond to NRG data.2 The Kondo temperature
is given by TK=0.182U�8	 /�Ue−�U/8	 �see, for example,
Ref. 2�. The inset shows on a log-log scale that our approach
captures an exponential decay of the transition line with the
Coulomb interaction. Nonetheless, the suppression of the
BCS-like phase appears quantitatively stronger than ex-
pected: a factor 4 instead of 8 is found in the exponential
factor of TK. The reason for this is that the vertex renormal-
izations have not been taken into account, as discussed in the
context of U-NCA.48 Far away from the particle-hole sym-
metric limit, our results for the Kondo temperature reproduce
the lowest-order scaling theory for the infinite U Anderson
model,49 and are in relatively good agreement with NRG
data for all � /	 values.

B. Energy renormalizations at particle-hole symmetry (�d=0)

While Fig. 2 only indicates the transition line between the
spin 1/2 doublet and the lowest BCS spin singlet, it is also
instructive to look at the actual renormalization of the energy
levels while varying the gap � from large values to smaller
ones beyond the critical point. Figure 4 indicates the renor-
malized energies of the two Andreev bound states �i.e., the
difference between the spin 1/2 doublet and the two spin-

singlets energies� for different hybridizations 	. We note that
our results are in quantitative agreement with the NRG cal-
culations of Yoshioka and Ohashi.30 Several regions need to
be distinguished. If the gap � is much larger than the band-
width D, all curves collapse at the value U /2 �left-hand side
of Fig. 4� since there is no hybridization with both quasipar-
ticles and Cooper pairs anymore, and one recovers the bare
atomic levels. When the gap starts to decrease, the proximity
effect simply splits the two Andreev bound states according
to Eqs. �10� and �11�. When the gap becomes of the same
order as the typical energy scales of the dot a0 and b0, the
superconducting atomic levels start to mix with the elec-
trodes so that the energies renormalize in a nontrivial way.
One can see that the transition involving the highest BCS
states ends up touching the gap edge for ��U /2 so that half
of the ABS are absorbed into the continuum above �, as can
be seen in Fig. 5. The lowest BCS state follows however a
downward renormalization until the Fermi level is crossed
and the ground state becomes the zero state. The difference
in behavior between the lowest and highest bound states �the
former being never allowed to leave the superconducting

FIG. 3. �Color online� Transition line between a doublet state
and the BCS-type state at particle-hole symmetry �d=0 �solid
curve� for �=0 and �	=0.2D. The vertical dotted line corresponds
to the transition asymptote in the effective local limit at �→�. The
dots indicate NRG data from Ref. 2 and the solid line our result.
The inset displays the same curves on a logarithmic scale.

FIG. 4. �Color online� Renormalization of the Andreev bound-
state energies as a function of TK /� �the Kondo temperature is
given in the text�. The dashed curves correspond to the high-energy
bound state b���, the solid curves correspond to a���. All curves
have been calculated for U=0.005D and �d=0 with several hybrid-
ization values �	 /D=0.001,0.002,0.005 �from left to right�. Sym-
bols are the NRG results obtained in Ref. 30.

FIG. 5. �Color online� Same data as in Fig. 4 but normalized by
the gap.
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gap� can be tracked into Eqs. �23� and �24�, where level
repulsion effects from the gap edge occur for the low energy
level −� but are canceled for the high energy level +�, which
is hence allowed to penetrate into the continuum. These con-
siderations unveil how the ABS may be adiabatically con-
nected to the atomic �or molecular� levels in a complicated
fashion.

Again, our simple analytic approach reproduces the NRG
results30 over a vast regime of parameters. Yet, some devia-
tions are observed in the Kondo regime: we find �for the
highest hybridization �	=0.005D� that the high-energy
BCS-like state is not absorbed anymore into the continuum
of states—an artifact of the limits of our perturbative ap-
proach. Notice also that the energy corrections are too im-
portant if the gap becomes very small, an effect actually due
to our underestimation of the Kondo temperature at particle
symmetry, as discussed previously. Finally Fig. 5 shows that,
in the limit of vanishing gap, our approach is only valid as
long as a����−� �as has been mentioned in Sec. III B�
because the lowest bound state artificially escapes from the
gap. The expected saturation of a��� near −� can be restored
by adding a further self-consistency for terms such as 1 / �E
+a0� in Eq. �23� �not shown here�.

C. Energy renormalizations outside particle-hole symmetry
(�dÅ0)

From an experimental point of view, the position of the
energy level of the quantum dot is the most controllable pa-
rameter of the system �by a simple gate voltage�. Therefore,
it is important to analyze the evolution of the Andreev bound
states for different values of �d.

Figure 6 illustrates how the energies of the bound states
scale with � for �d�0 and can be favorably compared to the
NRG data by Yoshioka and Ohashi.30 The more particle-hole
symmetry is broken, the more the low-energy bound state
moves away from the gap edge, ensuring even better conver-

gence of our expansion for a given value of 	. This can be
understood given that this bound state corresponds to the
transition between −� and the spin 1/2 doublet: outside
particle-hole symmetry, the dot either seeks to be as empty as
possible �for �d�0� or as occupied as possible �for �d�0�.
Thus, a BCS-like wave function will be favored. As a con-
sequence, the Kondo effect �that necessitates a singly occu-
pied dot� is less favored. This corresponds to a regime where
our approximation scheme works at best.

Further understanding can be gained by looking at the
energies of the Andreev bound states as a function of �d on
Fig. 7. We recover the fact that the high-energy bound states
increases in energy by breaking particle-hole symmetry
whereas the low-energy bound state has a decreasing energy.
In addition, Fig. 7 shows that the dispersion of both ABS
weakens for increasing hybridization. Indeed, the more the
dot is hybridized with the leads, the less the Andreev bound-
state energy is sensitive to the bare values of the dot param-
eters.

D. Superconducting correlations on the dot

In order to further analyze the evolution of the states in
the dot as a function of the parameters in the model in Eq.
�1�, we investigate now the superconducting correlations
�d↑

†d↓
†� on the dot. For the effective local Hamiltonian, these

correlations are zero in the spin-doublet phase. In the BCS-
like phase, the correlations are maximal if the two states 0�
and ↑↓� are equivalent, i.e., at particle-hole symmetry. If the
dot level is far from �d=0, the wave function will be pre-
dominantly 0� �if �d is positive� or ↑↓� �if �d is negative�.
This obviously kills the superconducting correlations.

As the gap decreases from infinity, the �formerly� singly
occupied state will start having a BCS-like admixture and
therefore a nonzero superconducting correlation. In contrast,
the mixing will result in a decreased correlation in the BCS-
like phase. Nevertheless, if the gap tends to zero, one would
expect the correlations to vanish as well. This is indeed what
Fig. 8 shows. For large gaps, the dot is in the spin 1/2 phase;
the correlations are small but increase as the states mix. The
transition to the BCS-like phase results in a discontinuous
jump in the correlations, before they finally vanish for very
small gaps. It can thus be concluded that the correlations
should be normalized by the gap if one is interested in mea-

FIG. 6. �Color online� Renormalization of the Andreev bound-
state energies outside particle-hole symmetry. The dotted curves
correspond to the high-energy bound state b���, the solid curves
correspond to a���. All curves have been calculated for U=0.5D
and �	=0.05D with several level shifts �d /U
=0.3,0.375,0.4,0.425,0.45. Quantitatively similar results were ob-
tained by the NRG in Ref. 30.

FIG. 7. �Color online� Evolution of the Andreev bound-state
energies as a function of the dot’s energy level for U=0.005D and
�=U. The hybridization takes several values �	 /D
=0.001,0.002,0.005.
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suring only the mixing effect. Finally, the two different
curves show how hybridization stabilizes the BCS-like state
with respect to the spin doublet via the 0-� transition.

As the Coulomb interaction tries to prevent the formation
of a Cooper-pair wave function, the transition between the
BCS-like phase and the spin doublet can also be achieved if
the Coulomb interaction is tuned, as shown in Fig. 9. The
effect of the mixing is clearly visible by an increase in the
correlation �d↑

†d↓
†� �now normalized by the gap� while U is

lowered. We also find that the correlations relative to the gap
decrease for higher gaps, which is a simple saturation effect
�the highest possible correlations are �d↑

†d↓
†�=0.5�. Further-

more, our results are quantitatively precise if the gap if larger
than the hybridization 	 for all values of U while relatively
small deviations appear for ���	, as shown by the com-
parison to the NRG data from Ref. 2 and to second-order
perturbation theory in U �valid in the singlet phase only,
providing accurate results for U�2�	 roughly�.24,50

Finally, we analyze how the correlations evolve outside
particle-hole symmetry. As mentioned above, one expects the
correlations to decrease because the dot evolve from a super-
conducting atomic limit toward a usual atomic limit �i.e.,
from the states � � toward the states 0� and ↑↓��. On the
other hand, there will be a transition from the spin doublet to
the singlet phase and therefore a mixing effect. Figure 10
shows the competition between the mixing effect �that in-
creases the correlations outside particle-hole symmetry� and
the evolution toward the normal atomic limit �that lowers the
correlations� if �d is increased. The effect of the Coulomb
interaction is once more found to favor the single occupancy.

E. Josephson current

We now turn to the Josephson current through the quan-
tum dot. The latter is given by J=2e dF

d� �where F is the free
energy�. At zero temperature, the free energy is the same
than the level energies so that the Josephson current can
readily be obtained once the renormalized energy levels have
been calculated.

Nevertheless, our analytical approach only describes the
effective local limit atomic states and we can therefore only
determine the current through the Andreev bound states. Yet,
it is known that the Josephson current also contains a contri-
bution of the continuum of states.3 The latter can be of the
same order and opposite sign as the bound-state contribution.
Furthermore, Bauer et al.2 showed that the spectral weight of
the bound states may vary importantly as a function of the
different parameters �like the Coulomb interaction U�, espe-
cially in the spin-doublet phase. As we exclusively investi-
gate the effective local limit states, we do not keep track of
this effect as well. Therefore, the Josephson currents ob-
tained in our approach will only provide a rather rough and
qualitative idea of the actual total Josephson current.

Figure 11 shows the Josephson current calculated as the
phase derivative of the ground-state energy Ex, J=

dEx

d� , for
different values of �d. One notices two regimes: If the phase
is close to �=0, the system will be in the BCS-like state. As
there is no magnetic moment in this phase, the ground state
corresponds to a zero junction �i.e., phase difference �=0�. If
� increases, the energy of the BCS-type state increases �as
can be understood in the effective local limit, where E−

=U /2−��d
2+	�

2�. When the BCS-like state crosses with the
spin doublet, the ground state changes and the dot becomes
singly occupied. This magnetic moment leads to a discon-

FIG. 8. �Color online� Superconducting correlations as a func-
tion of the gap � �for U=D /200 and �d=0�.

FIG. 9. �Color online� Superconducting correlations as a func-
tion of the Coulomb interaction U, for � / ��	�=0.3,1.0 and at
particle-hole symmetry �d=0. Solid lines are the results of our self-
consistent equations, diamonds correspond to NRG data from Ref.
2, and crosses are perturbation theory in U at second order.

FIG. 10. �Color online� Superconducting correlations outside
particle-hole symmetry �for �	=0.2D, U=6	, and �=0.1D�.

FIG. 11. �Color online� Josephson current through the bound
states for U=3	 and �=0.1D.
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tinuous jump in the Josephson current and the formation of a
� junction. Again, we notice that the spin doublet is stabi-
lized in the particle-hole symmetric case.

V. CONCLUSION

In this section we summarize our main results. First, it has
been shown how the Hamiltonian of a quantum dot coupled
to superconducting leads can be mapped onto an effective
local model if the superconducting gap � is much bigger
than the characteristic energy scales of the dot. This limit can
be quite generally regarded as a low-frequency expansion of
the Green’s function of the dot rather than the limit �→�
used in the literature. This enabled us to extend the effective
local Hamiltonian to leads with a finite electronic bandwidth.

We have then set up a perturbation theory around this
local effective Hamiltonian and established self-consistent
equations for the energy renormalizations of the Andreev
bound states. We have derived those equations based on the
fact that the latter correspond to transitions between different
states of the local effective Hamiltonian.

In the last section, we used our formalism to calculate
physical quantities such as the Andreev bound-state energies
or superconducting correlations, and understood how these
evolve as a function of gate voltage, hybridization, Coulomb
interaction, and superconducting gap amplitude. It has been
shown that our simple approach agrees well with NRG data
in a vast range of parameters with the main limitation that
the Kondo temperature is not quantitatively described near
particle-hole symmetry. However, most experimentally inter-
esting regimes should be described correctly by the simple
equations we have derived.

The simplicity and portability constitute the main advan-
tages of our approach if one is interested in the Andreev
bound states only, compared to extended numerical simula-
tions. As the perturbative description is analytical and based
on atomiclike levels, it should, in principle, be able to de-
scribe more complex systems like multiple quantum dots or
molecules with several orbitals coupled to superconducting
environments and be readily applicable to describe future
spectroscopic measurements. Extensions of our formalism to
the computation of the tunneling current at realistic gap val-
ues in three-terminal geometries6 relevant for STM experi-
ments should certainly deserve further scrutiny.
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APPENDIX: DERIVATION OF THE ENERGY
CORRECTIONS

The partition function is derived starting from the action’s
perturbation expansion in Sec. III. The actual calculations are
performed in the operator formalism. It is very useful to note
that the product of two fermionic �or bosonic� Green’s func-
tions Ga�
� and Gb�
� obeys �0

�d
�0
�d
�Ga�
−
��Gb�
−
��

=��0
�d
Ga�
�Gb�
� �as can be shown using Fourier transfor-

mation�. The partition function’s perturbation expansion is

Z = Z0 − Z0t2��
k�,i

�
0

�

d
�Gk�ik�i;11
0 �
��T
d↑

†�
�d↑�0��0

− Gk�ik�i;12
0 �
��T
d↑

†�
�d↓
†�0��0 − Gk�ik�i;21

0 �
��T
d↓�
�d↑�0��0

+ Gk�ik�i;22
0 �
��T
d↓�
�d↓

†�0��0� − 2�	���T
d↑
†�0�d↑

†�0��0

+ �T
d↓�
�d↑�0��0� . �A1�

In the above equation, Gk�ik�i;ij
0 is the Fourier-transformed

Nambu matrix element Ĝk�i,k�i
0 �in� i,j and the subscript zero

indicates that the expectation values are statistical averages
calculated in the effective local limit. The leads’ Green’s
functions are

�
k�

Gk�ik�i;11
0 �
� = �

k�
−

sgn�
�
2

�e−
Ek� + e−��−
�Ek�� ,

Gk�ik�i;12
0 �
�e−i�i =

�

2Ek�
�e−
Ek� − 2 cosh�
E�nF�Ek���

→
T→0K �

2Ek�
�e−
Ek� − e−��−
�Ek��

with Ek� =��k�
2+�2. Furthermore, Gk�ik�i;21

0 �
�=Gk�ik�i;12
0 �
�� and

�k�Gk�ik�i;22
0 �
�=�k�Gk�ik�i;11

0 �
�.
As one cannot apply Wick’s theorem because of the Cou-

lomb interaction, the dot’s Green’s functions are calculated
using Lehmann representation, which yields �for 
�0�

�T
d↑
†�
�d↑�0��0 =

1

Z0
�u2�e−E−

0
e−E↑
0��−
� + e−E↓

0
e−E+
0��−
��

+ v2�e−E+
0
e−E↑

0��−
� + e−E↓
0
e−E−

0��−
��� ,

�A2�

�T
d↑
†�
�d↓

†�0��0 =
1

Z0
uv�e−E↓

0
e−E−
0��−
� − e−E−

0
e−E↑
0��−
�

− e−E↓
0
e−E+

0��−
� + e−E+
0
e−E↑

0��−
�� , �A3�

�T
d↓�
�d↑�0��0 =
1

Z0
uv�e−E↓

0
e−E−
0��−
� − e−E−

0
e−E↑
0��−
�

− e−E↓
0
e−E+

0��−
� + e−E+
0
e−E↑

0��−
�� , �A4�

�T
d↓�
�d↓
†�0��0 =

1

Z0
�u2�e−E+

0
e−E↑
0��−
� + e−E↓

0
e−E−
0��−
��

+ v2�e−E−
0
e−E↑

0��−
� + e−E↓
0
e−E+

0��−
��� .

�A5�

Using u2+v2=1, the partition function becomes
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Z = Z0 + �t2 �
k�,�

� 
 1

E − �E+
0 − E�

0�
�e−�E+

0
− e−��E+E�

0 �� +
1

E − �E−
0 − E�

0�
�e−�E−

0
− e−��E+E�

0 �� +
1

E + �E+
0 − E�

0�
�e−�E�

0
− e−��E+E+

0��

+
1

E + �E−
0 − E�

0�
�e−�E�

0
− e−��E+E−

0�� +
2�

E
uv�cos
�

2
��� 1

E + �E+
0 − E�

0�
�e−�E�

0
− e−��E+E+

0�� −
1

E + �E−
0 − E�

0�
�e−�E�

0
− e−��E+E−

0��

−
1

E − �E+
0 − E�

0�
�e−�E+

0
− e−��E+E�

0 �� +
1

E − �E−
0 − E�

0�
�e−�E−

0
− e−��E+E�

0 ���� + 2�	�uv�e−�E+
0

− e−�E−
0
� . �A6�

As Ek� =��k�
2+�2�0, terms with an e−�Ek� are exponentially suppressed for T→0 K and can be omitted.
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