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We study the ground-state quantum spin fluctuations around the Néel ordered state for the one-band �t ,U�
Hubbard model on a site-diluted square lattice. An effective spin Hamiltonian Hs

�4� is generated using the
canonical transformation method, expanding to order t�t /U�3. Hs

�4� contains four-spin ring exchange terms as
well as second- and third-neighbor bilinear spin-spin interactions. Transverse spin fluctuations are calculated to
order 1 /S using a numerical real-space algorithm first introduced by Walker and Walstedt �Phys. Rev. B 22,
3816 �1980��. Additional quantum charge fluctuations appear to this order in t /U, coming from electronic
hopping and virtual excitations to doubly occupied sites. The ground-state staggered magnetization on the
percolating cluster decreases with site dilution x, vanishing very close to the percolation threshold. We compare
our results in the Heisenberg limit, t /U→0, with quantum Monte Carlo �QMC� results on the same model and
confirm the existence of a systematic x-dependent difference between 1 /S and QMC results away from x=0.
For finite t /U, we show that the effects of both the ring exchange and charge fluctuations die away rapidly with
increasing t /U. We use our finite t /U results to make a comparison with results from experiments on
La2Cu1−x�Mg /Zn�xO4.
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I. INTRODUCTION

A. Random disordered magnets

Magnetic materials and model magnetic systems are per-
haps the best test benches for the study of collective phe-
nomena in nature. This is particularly true in the context of
systems with frozen or quenched random disorder.1,2 Here,
questions such as the sharpness of phase transitions in disor-
dered systems,3 the stability of ground-state symmetry-
breaking �random-field� perturbations,4 and spin-glass be-
havior arising from random frustration5 have come under
sharp scrutiny over the past 30 years.

The 1987 discovery of high-temperature superconductiv-
ity in doped antiferromagnetic copper oxide materials gener-
ated a huge amount of interest in quantum antiferromagnets
which continues to this day.6,7 Here, the magnetic properties
depend strongly on the different possible types of quenched
disorder and this has proven to be a rich source of novel
quantum phenomena. An important area of investigation has
been to explore how the ground state of insulating quantum
magnets evolves as the level of random disorder is changed.
The following examples represent a small subset of this class
of studies. A large effort has been targeted toward under-
standing the properties of antiferromagnetic spins chains
subject to various types of disorder.8–10 Further work inves-
tigated how long-range order develops in two- and three-
dimensional arrays of weakly coupled integer �Haldane� spin
chains8 and even-leg ladders.11 The question of how Néel
order develops upon magnetically diluting pure systems with
quantum spin liquid ground states is another field of inten-
sive study.12

Theoretical problems relating to various types of random
bond disorder, as opposed to the more material-relevant case

of site dilution, have also been investigated.13,14 In three-
dimensional systems, one noteworthy example is the so-
called antiglass phenomenon in LiHoxY1−xF4, where for a
low concentration x of magnetic Ho3+ ions, the dipolar spin-
glass phase seemingly disappears.15 Another interesting
problem concerns the role frozen random impurities may
play at conventional and deconfined quantum critical points
in two-dimensional antiferromagnets.16 However, among the
multitude of interesting problems, a particular one, possibly
because of its seemingly simple physical setting and its
broad conceptual appeal, has drawn considerable attention:
that of the evolution of the antiferromagnetic Néel ground
state in the site-diluted S=1 /2 nearest-neighbor �NN� square
lattice Heisenberg antiferromagnet �SLHAF�.

B. Site-diluted SLHAF and La2Cu1−x(Mg ÕZn)xO4

As the insulating and antiferromagnetic parent of high-
temperature superconductivity in La2−xSrxCuO4, La2CuO4
has quasi-two-dimensional magnetic exchange interactions, a
good starting point for its description is to treat the CuO2
planes as decoupled SLHAFs. Hence, early experimental
studies on zinc and magnesium substitution for copper in
La2CuO4 �Refs. 17 and 18� provided some of the earliest
motivation and interest in the problem of site-diluted
SLHAFs.19 In particular, Cheong et al.18 found from bulk
thermodynamic measurements that in the diluted S=1 /2
quantum antiferromagnetic materials, La2Cu1−xZnxO4 and
La2Cu1−xMgxO4, the Néel temperature TN vanishes faster
than in other materials that can be considered as site-diluted
classical square lattice magnetic systems �either because they
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have large spin S, or because they have large Ising anisotro-
pies�.

Most importantly, these early experimental results sug-
gested that TN, hence long-range antiferromagnetic Néel or-
der, may vanish at a critical impurity concentration xc less
than the site-dilution percolation threshold for the square lat-
tice, xp�0.41. This possibility was seemingly supported by
subsequent muon-spin-relaxation ��SR� and nuclear-
quadrupole-resonance �NQR� experiments,20 with these latter
measurements also suggesting the possibility of a second
transition below TN�x� into a spin-glass-like state.

From a classical point of view, the ground state of the
SLHAF has two-sublattice Néel order for all x�xp. Conse-
quently, early experiments18,20 on site-diluted La2CuO4 im-
plied that either a novel quantum ground state develops in
the site-diluted SLHAF for xc�x�xp, or that frustrating
farther-neighbor exchange interactions are important in the
real material and that these drive the system into a two-
dimensional Heisenberg spin-glass ground state, presumably
via the proliferation of Villain canted states for
xc�x�xp.21–26

The idea that Néel order could disappear in the diluted
SLHAF, due to quantum effects, for a concentration of mag-
netic moments less than the geometric site percolation
threshold xp had been suggested by some,27 but not all,19,28

early calculations. In strong contrast to the early body of
experimental evidence18,20 and a theoretical suggestion,27

numerical19 and theoretical28 calculations as well as large
scale quantum Monte Carlo �QMC� simulations29,30 on the
diluted SLHAF find that Néel order survives up to the
percolation threshold xp. Further, contrary to earlier
experiments,18,20 recent neutron-scattering studies on single
crystals of La2Cu1−x�Mg /Zn�xO4 found that long-range Néel
order does survive up to at least x=0.39, if not up to xp.31,32

Interestingly, recent QMC studies show that the same sce-
nario holds for homogeneous bond dilution, with exotic
quantum phases appearing only for inhomogeneous dilution
where local ladder structures form.14

A proposed explanation for the discrepancy between the
earlier experiments17,18,20 and the more recent ones31,32 is
that samples are extremely sensitive to excess oxygen, or
off-stoichiometric �, La2CuO4+�, as Cu2+ is substituted by
either Zn2+ or Mg2+. Off-stoichiometry with ��0 is hole
doping, which is extremely detrimental to long-range Néel
order. Thus, the present picture, supported by both
numerical19,29,30 and experimental31,32 studies, is that Néel
order survives in the site-diluted SLHAF �Refs. 29 and 30�
and in La2Cu1−x�Mg /Zn�xO4 �Refs. 31 and 32� up to xp, with
no intervening exotic quantum ground state for x�xp.

C. Quantum Monte Carlo versus La2Cu1−x(Mg ÕZn)xO4

While both high-precision QMC studies of the site-diluted
SLHAF �Ref. 30� and neutron-scattering experiments31,32 on
La2Cu1−x�Mg /Zn�xO4 now find that the Néel order survives
up to xc�xp �exactly xc=xp for the QMC simulations�, the
quantitative agreement stops here. There is a systematic dis-
crepancy between QMC and the neutron results for the sub-
lattice Néel order parameter �M�x�� as a function of x. The

experimental and numerical data are reproduced in Fig. 1. In
this figure, the QMC results of Ref. 30 are shown by the
upper solid line. The experimental results �squares: neutron,
from Ref. 31; triangles: NQR, from Ref. 20� lie on the
dashed line, which is a guide for the eyes parametrized by
�M�x�� /M�0�= �1−x /xp��eff. The QMC results lie above the
experimental data over the whole range 0�x�xp, as illus-
trated by the shaded region. Taking it as a premise that the
QMC data are essentially the exact results for the diluted S
=1 /2 SLHAF, the systematic difference between them and
the experimental data shown in Fig. 1 suggests that Zn2+-
and Mg2+-substituted Cu2+ in La2CuO4 are not quantitatively
described by a site-diluted nearest-neighbor Heisenberg
Hamiltonian. The nature of the discrepancy is in itself inter-
esting. It is initially small at low x, increases and reaches a
maximum for x�0.35, and decreases upon approaching xp
such that the “true” underlying microscopic Hamiltonian de-
scribing La2Cu1−x�Mg /Zn�xO4 seems to also possess a per-
colation threshold very close to that of the idealized SLHAF.

D. Ring exchange interactions

One class of candidate perturbations that may give the
missing physics of diluted La2CuO4 is that of ring, or cyclic,
exchange interactions involving multiple interactions around
closed plaquettes of the square lattice. Such interactions have
received intensive attention recently33–35 and have been
shown to play an important role in the quantitative descrip-
tion of undiluted La2CuO4.36–39 Taking as a starting point the
one-band half-filled Hubbard model,40–42 the lowest-order
ring exchange interaction takes its origin in virtual electronic
hopping processes, fourth order in t /U, taking electrons co-
herently around a closed square plaquette. Here t is the
nearest-neighbor hopping constant and U is the on-site Cou-
lomb energy. Taking it as plausible37–39 that ring exchange is
indeed present and a leading perturbation beyond the Heisen-
berg model description of La2CuO4, it is natural to ask what
its effect is on the Néel order parameter upon substituting Cu
by a concentration x of nonmagnetic ions �see Fig. 1�. This is
the question we explore in this paper.

Neutron

NQR

Monte Carlo

[M
(x

)]
/M

(0
)

Dilution x (%)

βeff = 0.45(3)

FIG. 1. �Color online� Ground-state staggered magnetization
�M�x�� as a function of concentration x of Zn and Mg in
La2Cu1−x�Mg /Zn�xO4, normalized to the value for zero dilution,
M�0� �Ref. 31�. The solid line shows the results from quantum
Monte Carlo �Ref. 30� for the site-diluted SLHAF. The figure is
reproduced from Ref. 31.
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To tackle this question, one must return to a problem of
correlated electrons. The reason is that the spin-only Hamil-
tonian with ring exchange derives from a set of electronic
hops. As we show below, the elimination of an intermediate
site in an electron hopping pathway affects the resulting ef-
fective spin Hamiltonian in a nontrivial manner. Specifically,
we consider the problem of a site-diluted half-filled one-band
Hubbard model away from the Heisenberg t /U→0 limit.
Since here ring exchange originates solely from correlated
nearest-neighbor electronic hops, they cannot move the per-
colation threshold to a larger value than the nearest-neighbor
threshold xp. From this constraint alone, ring exchange is an
admissible candidate for a perturbation to the diluted S
=1 /2 SLHAF, as it preserves the same geometric percolation
threshold xp as the nearest-neighbor Heisenberg model.

The presence of the ring exchange and second- and third-
nearest-neighbor bilinear exchange terms in the Hamiltonian,
generated by hopping processes to fourth order in t /U, leads
to a sign problem for currently available QMC methods us-
ing the standard Sz basis representation of the Hamiltonian.43

A direct attack on the site-diluted ring exchange Hamiltonian
via QMC, such as done for the site-diluted Heisenberg
model,30 is therefore not possible at this time. As a first step
in investigating the role played by ring exchange in the site-
diluted Hubbard model, we carry out a finite-lattice spin-
wave calculation to order 1 /S on an extended effective spin
Hamiltonian generated from up to four hop electronic path-
ways. To proceed, we use a real-space linear spin-wave
method adapted to finite-size diluted lattices, first developed
by Walker and Walstedt44 in the context of spin glasses and
similar to that used for the site-diluted nearest-neighbor
Heisenberg antiferromagnet on the square45 and honeycomb
lattices.46 We investigate the role of ring exchange on the
dependence of the ground-state staggered magnetization
�M�x�� as a function of x. In Ref. 45, it was found that there
is a systematic difference between the value of this quantity,
calculated via the spin-wave method, and the essentially ex-
act QMC.30 From this, it is clear that a similar systematic
difference should also exist between our data calculated us-
ing a 1 /S expansion and what would be the exact value for
�M�x��, as a function of dilution for the extended Hamil-
tonian. Hence, although the main motivation for this project
comes from the experiment on La2Cu1−x�Mg /Zn�xO4,31 some
care has to be taken in attempting to make a direct compari-
son with experimental results. Rather, our results for the ex-
tended Hamiltonian and electronic hopping can be quantita-
tively benchmarked by a comparison with those for the site-
diluted Heisenberg model, using the same real-space
expansion technique. From a broader perspective, our work
provides a glimpse at the role of charge-correlation effects in
the problem of diamagnetic site dilution in the one-band
Hubbard model.

E. Charge fluctuations

The generation of ring and farther-neighbor exchange in-
teractions is not the only effect of extending the analysis of
the one-band Hubbard model beyond the Heisenberg limit
using a perturbation expansion in t /U. We have previously

shown that extending the expansion to order �t /U�4 generates
quantum charge fluctuations42 that are independent of the
transverse spin fluctuations of localized S=1 /2 moments.
These fluctuations appear in the perturbation expansion on
the square lattice because, to this order, the ground-state
wave function contains an admixing with excited states cor-
responding to doubly occupied sites. As doubly occupied
sites carry no moment, the expectation value for the mag-
netic moment of the Hubbard model is reduced below that
expected from the effective spin-only Hamiltonian describ-
ing transverse spin fluctuations. We show here that these
charge fluctuations are a key element in the ultimate success
of comparisons between the one-band Hubbard model and
experiments on both undiluted and site-diluted La2CuO4.
Just as for ring exchange effects, we find that the effects of
charge fluctuations disappear as the site percolation threshold
is approached, as four hop electronic processes are inter-
rupted by the dilution well before this limit is reached.

The rest of the paper is organized as follows: before
launching into the calculations, we discuss in Secs. II A and
II B some of the caveats that arise when considering a low-
energy effective spin-only Hamiltonian derived from a site-
diluted Hubbard model. In particular, the exchange interac-
tions become explicitly disorder dependent �Sec. II A�.
Furthermore, by going beyond the Heisenberg limit, the op-
erator for the Néel order parameter has to be corrected to
take into account the charge mobility of the electrons in the
Hubbard model.42 The results presented below show that this
correction is crucially important to obtain the correct 1 /S
behavior of the model. The consequent reduction in the am-
plitude of the staggered magnetization in the presence of
local disorder is discussed in Sec. II B. We then discuss in
Sec. II C the stability of the classical Néel ground state for
finite disorder, when ring exchange is present. Section II D
describes the spin-wave method that we use. Section III
gives an overview of the algorithmic procedure used to di-
agonalize the quadratic form of the disordered finite-lattice
spin Hamiltonian. The numerical results are presented in
Section IV, followed in Sec. V by a discussion of the results
and a perspective for future work. Appendixes A and B dis-
cuss the question of statistical uncertainties in the data pre-
sented in Sec. IV.

II. SPIN HAMILTONIAN AND REAL-SPACE LINEAR
SPIN-WAVE CALCULATION

A. Spin Hamiltonian

We begin with the Hubbard Hamiltonian HH:

HH = T + V �2.1�

=− t�
i,j;�

�
	i	 jci,�

† cj,� + U�
i

�
	ini,↑ni,↓. �2.2�

The first term is the kinetic-energy term that destroys an
electron of spin � at site j and creates one on the nearest-
neighbor site i. The second term is the on-site Coulomb en-
ergy U for two electrons with opposite spins to be on the
same site i and where ni,�=ci,�

† ci,� is the occupation operator

SITE DILUTION IN THE HALF-FILLED ONE-BAND… PHYSICAL REVIEW B 79, 224414 �2009�

224414-3



at site i. A site i substituted by a nonmagnetic cation has 	i
=0; otherwise 	i=1. In the following we use the notation ��
to represent a summation over the L2 sites of the square
lattice and � for a sum over the N=�i��1−	i� undiluted sites.
The number of magnetic sites �and hence of mobile elec-
trons, N� at half filling is thus configuration dependent. The
average concentration of vacancies is 1− �	i�disorder=x. Simi-
larly, � j� represents a sum over neighboring sites and � j rep-
resents a sum over neighboring occupied magnetic sites. Be-
low, a summation index with angular brackets �¯ 	 in ��¯	
denotes an ordered sum, taking into account only unique
pathways.

The derivation of a spin Hamiltonian from a one-band
Hubbard model can be performed through many different
methods, leading to apparently different effective spin
Hamiltonians. It is only recently that it has been shown41 that
all these Hamiltonians are equivalent, as they are related to
each other through a unitary transformation. We have re-
cently applied the canonical transformation method, which
uses the ratio t /U as a small parameter in a perturbation
expansion, to study the magnetic excitations and the stag-
gered magnetization in the Hubbard model.42,47 The method,
introduced by Harris and Lange48 and developed further by
MacDonald et al.,40,49,50 relies on the separation of the ki-
netic part T of the Hubbard Hamiltonian into three terms that
respectively increase by 1 �T1�, keep constant �T0�, or de-
crease by 1 �T−1� the number of doubly occupied sites. Spe-
cifically, one writes

T = − t�
i,j;�

�
	i	 jci,�

† cj,� = T1 + T0 + T−1, �2.3�

T1 = − t �
i,j;	i	j�

�
	i	 jni,�̄ci,�

† cj,�hj,�̄, �2.4�

T0 = − t�
i,j;�

�
	i	 j�hi,�̄ci,�

† cj,�hj,�̄ + ni,�̄ci,�
† cj,�nj,�̄� , �2.5�

T−1 = − t�
i,j;�

�
	i	 jhi,�̄ci,�

† cj,�nj,�̄, �2.6�

where �̄ stands for up if � is down and for down if � is up
and where hi,�̄=1−ni,�̄. This separation comes from multi-
plying the kinetic term T on the right by ni,�̄+hi,�̄=1 and
multiplying on the left by nj,�̄+hj,�̄=1.

Applying a unitary transformation eiS to HH leads to a
spin-only Hamiltonian, Hs, through the relation

Hs = eiSHHe−iS = HH +
�iS,HH�

1!
+
†iS,�iS,HH�‡

2!
+ ¯ .

�2.7�

We do not reproduce the derivation here; rather we refer the
reader to Refs. 40, 42, and 47 for details of the form of S and
HH order by order in the development. Up to third order in
the t /U expansion, we finally find for the effective spin
Hamiltonian

Hs
�4� = �

�i,j	
J1�Si · S j� + �

��i,k		
J2�Si · Sk� + �

���i,m			
J3�Si · Sm�

+ �
�i,j,k,l	

Jc
�Si · S j��Sk · Sl� + �Si · Sl��Sk · S j�

− �Si · Sk��S j · Sl�� , �2.8�

where the site labels refer to the configuration shown in Fig.
2. The different coupling constants �J1 ,J2 ,J3 ,Jc� arise as a
result of the integration over all electronic paths allowed in
the site-diluted Hubbard model. As a result, they depend on
the local site occupancy along the exchange path. We find

J1 = 4� t2

U
	i	 j −

t4

U3 �4	i	 j + Nij�
 , �2.9�

J2 = 4� t4

U3 �	i	 j	k + 	i	l	k − Nik�
 , �2.10�

J3 = 4� t4

U3	i	 j	m
 , �2.11�

Jc = 80� t4

U3	i	 j	k	l
 , �2.12�

where N�
 is a plaquette index for bond �
 and is equal to
the number of plaquettes to which both sites � and 
 belong.
When there is no dilution, N�
=2 for all nearest-neighbor
�i , j	 bonds and 1 for second-neighbor bonds ��i , j		 across
the diagonal of a plaquette. When one site is removed, two of
the nearest-neighbor N�
 are set to zero and the two remain-
ing ones are reduced from 2 to 1. N�
 for the next-nearest-
neighbor bond across the diagonal of the plaquette is reduced
from 1 to 0. For example, consider Fig. 2, where only the site
j has been eliminated by dilution. The expressions for the
coupling constants become

J1�i,l� = 4
t2

U
− 20

t4

U3 ,

J2�i,k� = 4
t4

U3 ,

i j m

kl

FIG. 2. Labels for the different sites involved in the effective
spin interactions and arising from a t-U Hubbard model up to order
t�t /U�3. �i , j	, ��i ,k		, and ���i ,m			 are nearest-, second-nearest,
and third-nearest neighbors, respectively. �i , j ,k , l	 denotes the sites
that belong to an elementary square plaquette.
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J3�i,m� = 0, Jc�i, j,k,l� = 0, �2.13�

which should be compared with J1=4t2 /U−24t4 /U3, J2=J3
=4t4 /U3, and Jc=80t4 /U3 for the undiluted lattice. The most
important point here is that since the antiferromagnetic and
frustrating J2 and J3 exist solely via electronic hopping pro-
cesses connecting nearest-neighbor sites, these interactions
are progressively eliminated as intermediate sites are diluted.
That is, if both sites j and l are missing then J2�i ,k�=0.
Hence, one can see that site dilution strongly affects the cou-
pling constants as farther-neighbor exchange depends on the
existence of a nearest-neighbor pathway between the sites.
This would not be the case if the original Hubbard model
included direct second- or third-nearest-neighbor hopping
parameters, t� and t�, respectively.47 We will return to this
issue in Sec. IV. However, in this paper we limit ourselves to
nearest-neighbor hopping only.

B. Néel order parameter

Our objective is to calculate the ground-state Néel order
parameter for the original Hubbard model as a function of
site dilution, using a spin-only description. To do this, the
staggered �spin-density-wave� magnetization operator

M̂H =
1

N
�

i

�− 1�i�ni
↑ − ni

↓� , �2.14�

defined for the Hubbard model, must be canonically trans-
formed before it can be exploited in a spin-only description.

Here, M̂H, M̂s, and M̂̃s refer to operators, while MH, Ms, and

M̃s refer to their expectation values. That is, within the ef-

fective theory M̂H becomes M̂s=eiSM̂He−iS and the expecta-
tion value in the ground state is defined as

Ms = H�0�M̂H�0	H

H�0�0	H

= s�0�M̂s�0	s

s�0�0	s

. �2.15�

Here �0	H and �0	s=eiS�0	H are the ground-state wave vectors
in the original Hubbard and spin-only models. We have re-
cently shown42 that this is more than just an academic point.
Rather, it has important consequences for the ground-state
magnetization as one moves into the intermediate-coupling
regime and, as we will show below, plays a significant quan-
titative role in the present site-diluted Hubbard model. As we

apply the canonical transformation on M̂H,42,47 we find M̂s to
be

M̂s = M̂H +
1

U
�T̃1 − T̃−1� +

1

2U2 �T̃−1T1 − T−1T̃1� ,

�2.16�

where

1

N
T̃1 � �T1,M̂H� , �2.17�

1

N
T̃−1 � �T−1,M̂H� , �2.18�

1

N
T̃0 � �T0,M̂H� . �2.19�

After some algebra, we can write this expression in terms of
S=1 /2 spin operators42 as

M̂s =
1

N
�

i

�
	iSi

z�− 1�i −
2t2

NU2 �
�i,j	

�
	i	 j
Si

z − Sj
z��− 1�i.

�2.20�

Recalling the standard definition for the staggered magne-
tization operator in a spin model,

M̂̃s =
1

N
�

i

�
	iSi

z�− 1�i, �2.21�

we arrive at the principal result of Ref. 42 that

Ms = s�0�M̂s�0	s

s�0�0	s

,

M̃s = s�0�M̂̃s�0	s

s�0�0	s

,

Ms � M̃s. �2.22�

The difference is due to the appearance of new quantum
fluctuations arising from the charge delocalization over
closed virtual loops of electronic hops, which is the origin of
the second term in Eq. �2.20�. These spin-independent fluc-
tuations, which appear to order t2 /U2 in the magnetization
operator, are generated when the canonical transformation is
applied on the Hamiltonian to order t4 /U3 and are therefore
not present in the �t /U→0� Heisenberg limit. We recently
investigated the effects of these terms in the undiluted
case.42,47 Here, the disorder is manifested through the dilu-
tion variables 	i. In this paper, we are interested in how the
spin-renormalization factor modifies the ground-state magne-
tization upon site dilution. However, before doing so, we first
return to a discussion of the ground state of the spin-only
Hamiltonian Hs

�4�. Henceforth, for the sake of compactness,

we shall omit the subscript “s” in Ms and M̃s, understanding
that all results presented below were obtained from calcula-
tions performed on a spin-only description of the low-energy
sector of the half-filled Hubbard model.

C. Classical ground state

1. J1 interactions only

The real-space spin-wave method that we use to deal with
dilution requires, as the starting point, the knowledge of the
classical ground-state spin configuration. With nearest-
neighbor interactions only, the classical ground-state con-
figuration is, in the absence of dilution, the Néel staggered
spin configuration. This long-range-ordered state results
from the local minimization of the exchange interactions.
Since we work with a concentration of defects, or dilution x,
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smaller than the percolation threshold xp, there exists a per-
colating cluster of magnetic sites with an exchange path con-
necting every pair of spins on the cluster. As a result, the
classical ground-state configuration for the percolating clus-
ter is a connected Néel configuration, where every spin keeps
the orientation it would have had without dilution �see Fig.
3�.

2. Full Hamiltonian

In the case of the effective spin-only Hamiltonian, ex-
pressed in Eq. �2.8�, the situation becomes more compli-
cated. If the J2, J3, or Jc interactions get too large, the system
undergoes a phase transition to a different classical state that
is not collinear.

3. Nondiluted case

As can be read from Eqs. �2.9�–�2.12�, when there is no
dilution, the coupling constants read

J1 = 4
t2

U
− 24

t4

U3 ,

J2 = J3 = 4
t4

U3 ,

Jc = 80
t4

U3 . �2.23�

For t /U=1 /8, a value similar to that reported for La2CuO4
and that we henceforth take in the present work,36,47 the ra-
tios between the different coupling constants are

J2

J1
� 0.0172,

J3

J1
� 0.0172,

Jc

J1
� 0.0862. �2.24�

For a model with nearest and next-nearest couplings only, the
J1 /J2 model, the Néel state is stable for J2 /J1�0.5.51–53 For

the J1 /Jc model, the quantity J̃c=JcS
2 is usually introduced,

and as long as J̃c�J /2, the Néel state is stable.54 Our param-

eters are far away from these critical values, and hence the
classical ground state, without dilution, is Néel ordered.

4. Diluted case

One might have expected that the combination of frustra-
tion, brought about by J2 and J3, and site dilution would
trigger an instability in favor of a local Villain canting of the
spins,21 leading ultimately to a two-dimensional Heisenberg
spin glass before xp is reached.26 However, as alluded to in
the discussion below Eq. �2.13�, such locally Villain canted
states do not occur in the model considered here, where all
effective magnetic interactions derive from electronic pro-
cesses involving nearest-neighbor hopping. Specifically, as
we saw in Sec. II A, for the configuration of diluted sites
shown in Fig. 4, the second-neighbor interaction J13 between
sites 1 and 3 is destroyed by the dilution of sites 2 and 4. As
a consequence, as long as the critical ratios for the J2 /J1,
J3 /J1, or Jc /J1 for destroying two-sublattice collinear Néel
order are not reached, there are no spins coupled by domi-
nantly random frustrating interactions, J2, J3, or Jc, as can be
verified from consideration of Eqs. �2.9�–�2.12�.

We therefore conclude that the classical ground state of
Hs

�4� in Eq. �2.9� for t /U=1 /8 on the percolation cluster is a
Néel configuration for all concentrations below the percola-
tion threshold. From this, one can immediately see the im-
portance of the site percolation threshold in this problem:
within the model considered, that is, the site-diluted one-
band Hubbard model of Eq. �2.2�, the only accessible classi-
cal ground state is Néel ordered all the way to the percolation
threshold xp. Hence, any reduction in the range of stability of
the Néel ground state is due uniquely to quantum fluctuations
and is not due to �classical� random frustration effects. This
conclusion is explicitly verified post factum within the real-
space spin-wave calculation presented below: any instability
toward a noncollinear ground state would be detected as a
negative eigenvalue of the Hessian matrix leading to com-
plex eigenfrequencies. No such instabilities were detected in
more than the 10 000 realizations of disorder considered in
this work.

We note, however, that La2CuO4 is only approximately
described by the one-band Hubbard model with nearest-
neighbor hopping only. For instance, we have recently shown
that one can achieve a quantitative improvement to the fitting
of the spin-wave excitation spectrum measured by Coldea et
al.36 by including direct farther-neighbor hopping constants

FIG. 3. �Color online� Diluted Néel configuration. The circle
labels a missing �diluted� site.

1 2

4 3
FIG. 4. �Color online� Particular dilution configuration. In this

example, sites 2 and 4 are removed by dilution.
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t� and t�.47 Such direct hops would likely change the above
results, leading to canted classical ground states and a
Heisenberg spin-glass phase21–26 before the percolation
threshold is reached �xc�xp�.

D. Elementary excitations of a diluted spin-1/2 system

1. Method

The introduction of site dilution destroys translational in-
variance, which excludes the use of Fourier space for calcu-
lating the spin-wave excitations. Hence, we closely follow
the method introduced by Walker and Walstedt44 to study
excitations in Heisenberg spin glasses. Other recent studies
of site-diluted S=1 /2 Heisenberg antiferromagnets have fol-
lowed a similar approach.45,46 We first summarize this
method for the simplest case of nearest-neighbor exchange,
J1 only, with Hamiltonian

H =
1

2�
i�j

J1�i, j�Si · S j . �2.25�

As we know the classical ground state of the system, we can
define for each site i, a unit vector ni

0 pointing in the direc-
tion of the classical spin Si in this state. Note that in Eqs.
�2.14�, �2.20�, and �2.21� a unique global quantization axis in

the laboratory frame, ẑ, was used to define M̃s and Ms.
Henceforth, we label the spin components in terms of the
projection of Si along the axis of a local right-handed frame.
We do so to keep with the original notation of Ref. 44, from
which we borrowed the method we use here. Let 
xi ,yi ,ni

0�
be an orthogonal triad of unit vectors and let pi

+ and pi
− be

vectors defined by

pi
+ =

xi + iyi

�2
,

pi
− =

xi − iyi

�2
. �2.26�

We also introduce spin deviation �boson creation and annihi-
lation operators�, ai and ai

†, defined by

Si · ni
0 = S − ai

†ai, �2.27�

Si · pi
+ = �2S�1 −

ai
†ai

2S

1/2

ai,

Si · pi
− = �2Sai

†�1 −
ai

†ai

2S

1/2

, �2.28�

where the spin components are defined with respect to the
local basis set 
xi ,yi ,ni

0�. With Eq. �2.27� and the definition
of pi

�, we can rewrite Hamiltonian �2.25� to order O�S� as

H =
1

2
S2�

i�j

Jijni
0 · n j

0 +
1

2
S3/2�

i�j

Jij�ni
0 · p j

+aj
† + ni

0 · p j
−aj

+ n j
0 · pi

+ai
† + n j

0 · pi
−ai� +

1

2
S�

i�j

Jij��pi
+ai

† + pi
−ai� · �p j

+aj
†

+ p j
−aj� − ni

0 · n j
0�ai

†ai + aj
†aj�� . �2.29�

By making reference to the classical ground state, we in-
troduce 
i defined by


ini
0 � �

j

Jijn j
0. �2.30�

Physically, 
i corresponds to the local staggered mean field
at site i originating from all the spins S j to which Si is
coupled. This change of variables makes clear that the sec-
ond term of the Hamiltonian in Eq. �2.29� vanishes. We keep
only the leading quantum correction to the classical term
1
2S2��i,j	Jijni

0 ·n j
0, H2, quadratic in the ai

† and ai operators:

H2 = − S��
i


iai
†ai −

1

2�
i�j

Jij�pi
+ai

† + pi
−ai� · �p j

+aj
† + p j

−aj�
 .

�2.31�

The quantum-mechanical equations of motion are

− i
dai

†

dt
= �H2,ai

†� ,

− i
dai

dt
= �H2,ai� , �2.32�

which can be written as

dai

dt
= i��

j

Qijaj
† + �

j

Pijaj� ,

dai
†

dt
= − i��

j

Qij
� aj + �

j

Pij
� aj

†� , �2.33�

where Pij �
i�ij −Jij�pi
+ ·p j

−� and Qij �−Jij�pi
+ ·p j

+�. We use a
vector representation for the operators ai and ai

†; that is, a
and a† are N-dimensional vectors whose components are ai
and ai

†, respectively. As N, the total number of �occupied�
magnetic sites, is configuration dependent, so are all vectors
and matrices in the following discussion. We write

d

dt
� a

a† � = i�− P − Q

Q� P� �� a

a† � , �2.34�

where we refer to P and Q as the “interaction matrices” of
order N�N. We can also write

H2 = S�a†a�H̃� a

a† � , �2.35�

where the Hamiltonian matrix H̃ is defined in the 2N�2N
space to be
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H̃ = �− P − Q

Q� P� � . �2.36�

In order to diagonalize H̃, we perform a Bogoliubov trans-
formation that introduces new boson operators d and d†, as
follows:

a = g�d + fd†,

a† = f�d + gd†. �2.37�

f and g are N�N matrices to be determined and which must
satisfy the boson commutation rules

g�fT − fg† = 0,
�2.38�

g�gT − f f† = 1,

where fT is the transpose matrix of f . We can also write these
relationships in matrix representation:

Ẽ Ĩ Ẽ† = Ĩ , �2.39�

where

Ẽ = �g� f

f� g
�, Ĩ = �− 1 0

0 1
� �2.40�

are of dimensions 2N�2N.
The aim of the Bogoliubov transformation is to diagonal-

ize Eq. �2.34�. Consequently we require

d

dt
� d

d† � = i�− � 0

0 �
�� d

d† � , �2.41�

where � is a diagonal matrix of eigenfrequencies. Using
Eqs. �2.34� and �2.40� one obtains

d

dt
�g� f

f� g
�� d

d† � = i�g� f

f� g
��− � 0

0 �
�� d

d† �
= i�− P − Q

Q� P� ��g� f

f� g
�� d

d† � .

�2.42�

Hence, the equation we ultimately have to solve is

ẼD = H̃Ẽ , �2.43�

where we have defined the matrix of eigenfrequencies:

D = �− � 0

0 �
� . �2.44�

With this method, we can calculate the zero-point quantum
spin fluctuations to order 1 /S, and hence the expectation
value for the spin on occupied site i �Ref. 44�:

�Si
z	 = S − �ai

†ai	 = S − �



�f i
�2. �2.45�

With the expectation value �Si
z	 now defined in terms of �f i
�2,

one can calculate the staggered magnetization, defined in ei-
ther Eq. �2.20� for the finite t /U Hubbard model or Eq.

�2.21� for the t /U→0 Heisenberg model. Formally speaking,
in a thermodynamically large system, spins that reside on
finite-size clusters and which are not connected to the perco-
lating cluster do not participate to the symmetry breaking nor
do they contribute to the average bulk staggered magnetiza-
tion. Hence, to capture this physics in the present problem,
and to proceed numerically, we first identify for a given re-
alization of disorder a percolating cluster of sites connected
via nearest-neighbor hopping. For each spin on the percolat-
ing cluster, �Si

z	 is determined from Eq. �2.45�, summed over,
and normalized by N, the total number of sites for that real-

ization of disorder �percolating and not�, to give �M̂s	 from
Eq. �2.20� �henceforth denoted M�. One then repeats the cal-
culation for many dilution configurations for a given x, per-
forming a disorder average and obtaining both the averaged
staggered magnetization on the percolating cluster,
�M�x��perc, or the bulk staggered magnetization �M�x��, aver-
aged over all magnetic sites in the sample. We stress that,
while the staggered magnetization on the percolating cluster,
�M�x��perc, is the most relevant quantity for the numerical
study, it is the average staggered magnetization over all Cu
magnetic sites in the system, percolating and not, �M�x��,
which is accessible to experiment, and which is displayed in
Fig. 1.

In the presence of interactions beyond J1�i , j�, the only
change in the details of the above method occur in the matrix
elements of P and Q. The form of these matrices, taking into
account the second �J2�, third �J3�, and ring �Jc� exchange
interactions, is discussed next.

2. Calculation of the P and Q matrices
a. J1: First NN. In this case the quadratic Hamiltonian

reads

H2�J1� = S�
�i,j	

J1�i, j��ai
†ai + aj

†aj − aiaj − ai
†aj

†� .

�2.46�

The P and Q interaction matrices then have the following
forms:

P =�

1

�

�


L2

�, Q =�
0

� − J1

− J1 �

0
� ,

�2.47�

where 
i is defined in Eq. �2.30�, and Q is a symmetric
matrix Qij =−J1�i , j�.

b. J2: Second NN. In this case, we have

H2�J2� = − S �
��i,j		

J2�i, j��ai
†ai + aj

†aj − ai
†aj − aj

†ai� ,

�2.48�

which leads to the following additions to the P and Q matri-
ces:
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P�2� = �

1

�2�

� − J2

− J2 �


L2
�2� � ,

Q�2� =�
0 0

] � ]

] � ]

0 0
� . �2.49�


i
�2� is defined in a similar way as for 
i:


i
�2�ni

0 � �
��j		

J2�i, j�n j
0, �2.50�

where ��j		 indicates a sum over the second neighbors of site
i.

c. J3: Third NN. In this case, we have

H2�J3� = − S �
���i,j			

J3�i, j��ai
†ai + aj

†aj − ai
†aj − aj

†ai� .

�2.51�

Hence the expression for the P and Q matrices are modified
by

P�3� = �

1

�3�

� − J3

− J3 �


L2
�3� � ,

Q�3� =�
0 0

] � ]

] � ]

0 0
� , �2.52�

with 
i
�3� defined by


i
�3�ni

0 � �
���j			

J3�i, j�n j
0, �2.53�

where ���j			 indicates the third neighbors of site i.
d. Jc: Ring exchange interaction. To first order in 1 /S, the

four-spin terms appearing in the Hamiltonian are decoupled
into bilinear products of ai

†aj. That is, to order 1 /S, the net
effect of the ring exchange is to simply renormalize the J1

and J2 interactions.36,37,42 The contribution of the ring ex-
change terms to the quadratic Hamiltonian is thus

H2�Jc� = − S3 �
�i,j,k,l	

Jc�i, j,k,l���ai
†ai + aj

†aj + ak
†ak + al

†al�

+ �ai
†ak + ak

†ai + aj
†al + al

†aj� − �ai
†aj + aj

†ai + ai
†al

+ al
†ai + aj

†ak + ak
†aj + ak

†al + al
†ak�� ,

where Jc�i , j ,k , l�=	i	 j	k	lJc. The elements of the Bogoliu-
bov transformation matrices g and f are thus modified by the
configuration-dependent H2�Jc�-induced renormalization of

the first- and second-neighbor exchanges. In zero dilution, J1

and J2 are renormalized to36,37,42

J1
eff = J1 − 2S2Jc = J1 −

Jc

2
,

J2
eff = J2 − S2Jc = J2 −

Jc

4
. �2.54�

III. ALGORITHMIC CONSIDERATIONS

In order to obtain the quantum magnetization corrections
in the disordered lattice, we have to solve the eigenvalue
problem described in Eq. �2.43�. Results in the thermody-
namic limit are estimated by doing a finite-size scaling
analysis for different system sizes. For each value of size and
dilution, we generate many realizations of disorder after
which we perform successively the disorder average and the
finite-size scaling to the thermodynamic limit. Our algorithm
is organized as follows for each value of the system size and
dilution:

�1� generation of the diluted lattice and computational
identification of the percolating cluster.

�2� calculation of the P and Q matrices �Eq. �2.34��.
�3� diagonalization of the matrix using LAPACK routines.
For a system of linear size L and dilution concentration x,

for each site, we generate a random number r between 0 and
1. The site is considered as removed if r� �1−x�. For each
realization of disorder, for which the number of sites,
N�L2 ,x�, is different, we first construct the percolating clus-
ter. To do this, the undiluted sites are labeled from 1 to N.
Starting from site 1, with coordinates �� ,��, we verify if the
neighbors ���1,�� and �� ,��1� are occupied. If yes the
label of the site is changed to 1. Moving to one of these sites,
the procedure is repeated. If the cluster 1 terminates, the next
cluster takes the number of the first occupied site encoun-
tered. Once all sites have been visited, the procedure is re-
peated taking an arbitrary starting point. If neighboring sites
are occupied the indices of the two sites take the lowest of
the two values. The procedure is repeated until no further
evolution occurs. For the biggest cluster we then check for
the existence of percolating pathways along the x and y di-

rections. If a percolating cluster exists, then the matrix H̃
�Eq. �2.36�� is constructed.

The diagonalization of H̃ is performed using a FORTRAN

77 LAPACK double precision set of routines:

�1� DGEHD2 computes Hessenberg reduction of the H̃
matrix.

�2� DORGHR and DHSEQR lead to the Shur factoriza-
tion.

�3� DTREVC gives the eigenvectors of the H̃ matrix.
From the results of the LAPACK routines we first construct

a matrix of eigenvectors E of H̃. We order the columns of E
so that the first column is an eigenvector corresponding to
the lowest eigenfrequency, and the last column is an eigen-

vector corresponding to the highest eigenfrequency of H̃.
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The matrix E is thus defined up to the subspaces of de-
generate eigenvectors and the matrix D in Eq. �2.44� is the
diagonal matrix of its eigenfrequencies:

EDE−1 = H̃ . �3.1�

However, knowledge of D and E does not completely solve
the problem. In order to establish the elements of the Bogo-
liubov transformation, we must construct from E the matrix

Ẽ that satisfies both relation �2.39�, coming from the boson
commutation relations, and eigenvalue equation �2.44�. That
is,

Ẽ Ĩ Ẽ† = Ĩ and ẼDẼ−1 = H̃ . �3.2�

We find Ẽ through the application of a transformation

Ẽ = Edb , �3.3�

where db is a block-diagonal matrix. Using commutation
relation �2.39�, one finds

dbĨdb† = �M�−1, �3.4�

with

M = E†ĨE . �3.5�

M is a Hermitian matrix obtained from the LAPACK routines.
It is block diagonal, with blocks Mi of size pi� pi, corre-

sponding to a subspace of degenerate eigenvalues of H̃, of
dimension pi. The transformation matrix db is therefore also
block diagonal, with corresponding blocks Ai. If the matrix
Ei represents the subspace of eigenvectors, of dimensions

2N� pi, the transformation gives Ẽi=EiAi. To find Ai, we
need to solve

�AiAi
† = Mi

−1, �3.6�

where the sign � depends on which sector of the eigenvalue
matrix D in Eq. �2.44� the subspace belongs. The blocks Mi
are first inverted and then diagonalized,

Mi
−1 = KiDiKi

−1. �3.7�

The matrix Di contains either positive or negative eigenval-
ues, depending on the sign of the eigenvalue of the subspace

of H̃. From this we find the diagonal matrix ��Di, where the
sign � is chosen so that the square root is real. Ai is finally
found from

Ai = Ki
��DiKi

−1. �3.8�

In this block-diagonal procedure the subspace corresponding
to the Goldstone modes is explicitly excluded. All other op-
erations are then mathematically well defined55 and the Bo-
goliubov transformation is completely determined. A further
summary of the calculation procedure can be found in Ap-
pendix A.

IV. RESULTS

We have calculated the quantum fluctuations of the mag-
netic ground states for a diluted spin system for two situa-
tions:

�1� t /U→0, Heisenberg limit—The results are compared
with those obtained by Mucciolo et al.,45 who performed a
spin-wave calculation similar to ours. The motivation here is
to validate the two sets of results against each other and to
quantify finite-size effects and statistical errors. In this
Heisenberg limit, the additional terms in magnetization op-
erator �2.16� leading to inequality �2.21� are zero. This cali-
bration allows us to confirm that there is indeed a discrep-
ancy between the results from 1 /S calculations45 and those
from quantum Monte Carlo simulations30 in the Heisenberg
limit.

�2� t /U=1 /8—This t /U value is close to the one found
for La2CuO4 by Coldea et al.36 �t /U�1 /7.35�.56 By using
this value, we can begin an investigation of the effects of
farther-neighbor and ring exchange interactions in the ex-
perimentally relevant situation of Cu substitution by Mg and
Zn in La2Cu1−x�Mg /Zn�xO4.

A. t ÕU=0: Diluted Heisenberg model

The presence of dilution introduces statistical fluctuations
in the ground-state magnetization due both to configurational
variations for fixed number of magnetic sites and to the
variation in the number of magnetic sites from one configu-
ration to another. To combat this, we perform an average
over a number of disorder configurations, N0, which in-
creases with the dilution. We chose N0 to be the integer
closest to 5000x, where x is the concentration of missing
magnetic sites. Averaging over the disorder we define the
average number of sites for a given concentration as

N̄ �
1

N0
� N�L2,x� = �1 − x�L2, �4.1�

where N�L2 ,x� is the number of sites for a system of size L
and concentration x for a specific disorder realization. Sys-
tem sizes were studied from L2=10�10 to L2=34�34. A
detailed discussion of the various contributions to the statis-
tical errors can be found in Appendix B.

The ground-state magnetization is estimated by extrapo-
lating the finite-size results to the thermodynamic limit. In
order to do this we proceed in two steps:

�1� First we determine the staggered magnetization for the
sites on the percolating cluster for each realization of disor-
der, from which the staggered magnetization averaged over
all magnetic sites for a specific realization of disorder is ob-
tained. We then make a disorder average over many realiza-
tions, calculating both the disorder-averaged staggered mag-
netization on the percolating cluster, �M�x ,L��perc, and the
experimentally relevant disorder-averaged bulk staggered
magnetization �M�x ,L��. The errors on these measures are
estimated as explained in Appendix B.

�2� This process is repeated for different system sizes for
a given x and the results are extrapolated to the thermody-
namic limit by making a least-squares fit of the form57

�M�x,L��perc = �M�x��perc +
a

L
+

b

L2 . �4.2�

The same procedure is used for �M�x ,L��.
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As an example, we show results for x=0.2 in Fig. 5,
where we plot the magnetization �M�x ,L��perc against 1 /L.
As one can see, the statistical noise on the data is small and
is consistent with the size of the error bars estimated in Ap-
pendix B. The magnetization extrapolates linearly to the ther-
modynamic limit in 1 /L to an excellent approximation, al-
lowing a high-precision estimate for �M�perc:

�M�x = 0.2��perc = 0.236 � 0.001. �4.3�

We note that between L=10 and the biggest system size stud-
ied, L=34, �M�perc varies by over 30%. This substantial
variation confirms the need for such a finite-size scaling pro-
cedure here. Results for different values of x are shown in
Fig. 6. For the system sizes studied, the size dependence is
very nearly linear in 1 /L for all x. One can also notice that
the slope a is almost independent of x until the percolation
threshold xp=0.41 is approached, at which point it increases
with finite-size effects becoming progressively more impor-
tant. This evolution is not inconsistent with the critical nature
of the percolation threshold, and the question as to whether
�M�perc, determined via the 1 /S method, goes continuously to
zero or jumps discontinuously to zero at xp is an intriguing
one. On the other hand, it is found from quantum Monte
Carlo simulations that �M�perc has a discontinuous jump at
x=xp.30 However, this question is not the main focus of the
paper and to do it justice would require a more extensive and
dedicated study near xp. Here we simply remark that �M�perc

extrapolates to small values for concentrations less than, but
near xp.

Collecting all the results, we show the staggered magne-
tization for the ground state of the site-diluted Heisenberg
model on the percolating cluster, �M�x��perc, as a function of
dilution in Fig. 7. �M�perc goes smoothly from the known
value for the undiluted case in the 1 /S approximation,58–60

�M�perc�0.303, to zero for x very close to the site-dilution
percolation threshold, xp.

In Fig. 8, we compare our results with those obtained by
Mucciolo et al.45 for the same model. The data are normal-
ized by the value �M�perc�x=0��M�0�. There is extremely
good quantitative agreement between our results and theirs,
providing strong evidence that the two methods give correct
results for the 1 /S method considered.

It is important here to make a comparison between our
results and those from quantum Monte Carlo �QMC�, which
is in principle exact, apart from numerical error. Such a com-
parison is made in Fig. 9, where we show unnormalized data
for the magnetic moment on the percolation cluster from our
calculation, compared with the QMC data of Ref. 30. For
zero dilution, the methods give very similar results. This is
expected as it is known that 1 /S2 contributions to the quan-
tum fluctuations in this case are identically zero,59,61,62 mean-
ing that the difference between spin wave and QMC comes,
to leading order, from 1 /S3 contributions, which one might
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FIG. 5. �Color online� Staggered magnetization for the t /U→
Heisenberg model for x=20% and L� �10,34�.
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FIG. 6. �Color online� Evolution of �M�perc for the t /U→
Heisenberg model with L for different values of dilution—from top
to bottom: x=0%, x=6%, x=16%, x=26%, and x=36%.
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FIG. 7. �Color online� Staggered magnetization for the t /U→
Heisenberg model on the percolating cluster extrapolated to the
thermodynamic limit. The solid line is a guide for the eyes.
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expect to be small. Moving away from zero dilution, the
difference between the two sets of results increases in a
monotonic way, with the moment from the QMC consis-
tently larger than that determined from the 1 /S spin-wave
calculation. Hence the comparison explicitly illustrates that
the 1 /S method overestimates the importance of the quantum
fluctuations in the presence of disorder. In order to under-
stand this quantitative difference, one should investigate the
effects of magnon-magnon interactions and Berry phase
terms, which we do not attempt here.

The above limitations should be taken into consideration
when comparing data from spin-wave calculations with the
experiment. In Fig. 10 we add our results to those previously
shown in Fig. 1 for comparison with the experimental
neutron-scattering data on La2Cu1−x�Mg /Zn�xO4 �Ref. 31�
and quantum Monte Carlo simulations.30 The figure allows
us to confirm the conclusion, already made in Ref. 45, that
the extremely good agreement between experiment and the
spin-wave calculation is rather fortuitous: if the Heisenberg
Hamiltonian was an adequate starting point to describe the
experimental data, the “exact” QMC results would be in bet-

ter agreement with the experimental data than the 1 /S spin-
wave data are. As can be seen from the figure, the reverse is
true; while the QMC data are consistently above the experi-
mental curve, the spin wave-data lie very close to it. Hence,
although the Heisenberg Hamiltonian is clearly a good start-
ing point for acquiring an acceptable qualitative description
of Mg- and Zn-doped La2CuO4 it appears, on the basis of the
results shown in Fig. 10, to be inadequate for a really quan-
titative description. Further, we remark that the experimental
data are presented such that they are normalized by �M�x
=0��perc. While the undiluted moment is �M�x=0��perc
�0.31 from QMC and spin-wave calculations, recent esti-
mates by Lee et al.63 place the experimental moment at about
0.25. Hence, removing the absolute scale of the magnetic
moment improves the impression of good agreement of the
experiment with the QMC results for the site-diluted Heisen-
berg model for small x. When plotted on an absolute scale,
the agreement between experiment and theory would be less
convincing. This is an important point for the present paper
as we continue to work within the linear spin-wave approxi-
mation and cannot expect to account for the contributions
beyond 1 /S linear spin waves which, as indicated by the
QMC results, appear to be important for the dilution prob-
lem. That said, by making improvements to the starting spin-
only description of the Hubbard Hamiltonian, through
higher-order terms in the canonical transformation, we can
expect to improve the comparison with experiment on an
absolute �M�x�� scale. With this in mind we have extended
our calculations to order t4 /U3, which allows us to include
second- and third-neighbor exchanges as well as ring ex-
change around an elementary plaquette, and also to include
quantum fluctuations from charge delocalization in the un-
derlying Hubbard model.

B. t ÕU=1 Õ8: On the role of the ring exchange interaction

When interactions beyond nearest-neighbor exchange are
taken into account, two effects have to be considered. First
the transverse spin fluctuations are modified by the inclusion
of the new interactions since these affect the magnon excita-
tion spectrum.36,47 Second, the charge delocalization induces
a further quantum fluctuation term over and above those
from transverse spin fluctuations. This is the difference be-

tween M̂s and M̂̃s in Eq. �2.20� and which leads to renormal-
ization of the staggered magnetization in a way that depends
on dilution. In this section, we treat these two effects sepa-
rately to quantify their respective importance for t /U=1 /8.

1. In the absence of charge mobility renormalization
a. Finite-size results. The first point we wish to illustrate

here is the importance of the modification of the exchange
pathways in the diluted system. We have argued in Sec. II C
that dilution does not introduce random frustration at the
classical level, even in the presence of farther-neighbor spin
interactions, if these interactions are derived from the Hub-
bard model with nearest-neighbor hops only. In this case,
such a longer-range interaction depends on the presence of a
nearest-neighbor exchange pathway. Hence, we do not ex-
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FIG. 9. �Color online� Staggered magnetization on the percolat-
ing cluster for the site-diluted Heisenberg model: comparison be-
tween QMC �from Ref. 30� and 1 /S spin-wave results. The solid
and dashed lines are guides for the eyes.

Neutron

NQR

Monte Carlo

�
�

�
�

�

�
�

�

�

�

�

[M
(x

)]
/M

(0
)

Dilution x (%)

1/S expansion

βeff = 0.45(3)

FIG. 10. �Color online� Ground-state magnetization as a
function of dilution for Mg- and Zn-doped La2CuO4:
La2Cu1−x�Mg /Zn�xO4 �Ref. 31�, for quantum Monte Carlo �Ref. 30�
for the site-diluted square lattice Heisenberg antiferromagnet �SL-
HAF�. The dashed line is a guide for the eyes parametrized by
�M�x�� /M�0�= �1−x /xp��eff. The figure is reproduced from Ref. 31.
Added to this figure is our data and that of Ref. 45 obtained from
the numerical 1 /S spin-wave analysis of the site-diluted SLHAF.
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pect long-range interactions to have a destabilizing effect on
classical Néel order on the percolating cluster. This can be
seen indirectly by comparing the finite-size scaling of our
effective spin-only model with that of a more phenomeno-
logical model. In the latter, which we refer to as the “p
model,” the farther-neighbor interactions have full strength,
independently of the existence of a nearest-neighbor ex-
change path created by the electronic hopping processes, so
that they exist even if the pathway is severed by a nonmag-
netic defect �i.e., diluted site�. In the p model, the bilinear
exchange interactions J2 and J3 are taken to be J2

=4t4 /U3	i	 j and J3=4t2 /U3	i	k, while Jc is kept to have the
same site occupancy dependence as in Eq. �2.12�. In Fig. 11,
we show results for the size dependence of the staggered
magnetization �M�perc as a function of concentration x of
diluted sites for the effective spin-only Hs

�4� in Eq. �2.9� with

J1 ,J2 ,J3 ,Jc� coupling constants as given in Eqs.
�2.9�–�2.12�. The magnetization is a monotonic function of L
for all values of x. This should be compared with Fig. 12,
where we show similar data for the p model. For large dilu-
tion, the statistics are much worse and the magnetization
considerably is lower than in Fig. 11. This indicates the
buildup of random frustrated plaquettes that eventually de-
stroy the Néel order before xp is reached, even at the classical
level.21–26

b. Thermodynamic limit. For the effective spin-only
Hamiltonian, results are extrapolated to the thermodynamic
limit, using the procedure described in Sec. IV B 1 a and Eq.
�4.2�. In Fig. 13 we show the ground-state magnetization
�M�perc compared with the previously shown results from
Fig. 7 for the �t /U→, J1 only� Heisenberg model.

The first thing to notice is that there is very little differ-
ence with the Heisenberg model. The second is that the small
difference that is present is toward a higher ground-state
magnetization, with the maximum change occurring at x
=0%. This is because the ring exchange terms decrease the
transverse spin fluctuations.42,47 As discussed in Refs. 42 and
47, this increase in the magnetic moment occurs because the
ring exchange terms in Hs

�4� decouple in the 1 /S expansion
into effective ferromagnetic second-neighbor two-body ex-
change terms which further stabilizes the two-sublattice Néel
order by reducing the transverse spin fluctuations42,47 �see
Eq. �2.54��. For x greater than about 12% dilution, this sta-
bilization effect is largely destroyed and the two curves
merge up to the percolation threshold. This is explained by
the fact that, as these interactions involve more than two
sites, they are more sensitive to dilution than the nearest-
neighbor terms, and their effect becomes negligible long be-
fore the percolation threshold is reached. The effects at high
dilution would be very different for the p model �see Fig. 12�
with frustrating farther-neighbor interactions that are inde-
pendent of the presence of nearest-neighbor exchange path-
ways. However, in the context of comparison with experi-
mental results on La2Cu1−x�Mg /Zn�xO4, such terms should
only appear through direct electronic hopping over farther
neighbors in the Hubbard model. We have recently consid-
ered this problem in the absence of dilution,47 but extending
this work to include dilution is beyond the scope of the
present study.

2. Finite charge mobility renormalization

The charge mobility, or electron delocalization effect,
leads to a decrease in the magnetization42,47 �see Eq. �2.20��.
However, the delocalization is also conditioned by the al-
lowed nearest-neighbor electronic hopping pathways and is
consequently also dilution dependent. We have found that the
finite-size scaling of the magnetization, as described by Eq.
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FIG. 11. �Color online� Size dependence of the staggered mag-
netization of the effective spin-only Hamiltonian Hs

�4�. Farther-
neighbor interactions are generated through the existence of
nearest-neighbor electronic hopping pathways. Charge-mobility-
renormalization effects are not included here.
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�4.2�, is not changed qualitatively by this renormalization
�not shown here� and the results are extrapolated to the ther-
modynamic limit using Eq. �4.2�. As shown in Fig. 14, there
is a significant decrease in the magnetization compared with
�M�perc without charge mobility renormalization, or with the
Heisenberg model �see Fig. 13�. This difference is again re-
duced as the dilution increases. For x=0% the decrease is on
the order of 14%, whereas it goes down to 9.5% for x
=30% and goes toward zero at the percolation threshold. We
conclude therefore that the charge delocalization term is a
major contribution to the corrections found by extending, to
order t4 /U3, the canonical transformation of the Hubbard
model into an effective spin Hamiltonian. It is explicitly a
property of the Hubbard model and is not present in a phe-
nomenological spin-only model. It is therefore clear that care
must be taken when using such phenomenological spin-only
models without directly considering the mobility of the un-
derlying system of electrons when aiming at obtaining a
quantitative description and comparison between experiment
and a microscopic theory. This is the main result of this
paper.

C. Experimental considerations

Figure 14 illustrates our main result concerning compari-
son with experiment: inclusion of the charge-mobility-
renormalization factor shifts the scale of magnetization
downward over the whole dilution range. Comparing results
for zero dilution, for the Heisenberg model, the ground-state
moment is �Ms��0.303, while experiment yields �Ms�exp
�0.25.63 Hence a comparison of �M�x�� data not normalized
by M�x=0� will show the Heisenberg model, either from
spin wave or from QMC, to be above those from the dilution
experiments. Including hopping processes to order t4 /U3 for
t /U=1 /8, a fair estimate for La2CuO4, one finds36,47 �Ms�
�0.27. This is still above the experimental value, but it is
clear that, taken altogether, the extra corrections arising from
both transverse spin fluctuations and finite electron mobility
away from the t /U→0 Heisenberg limit have scaled the

magnetization in the right direction. This is an important
result indicating that the canonical perturbation method pro-
posed here can describe many of the magnetic features of
La2Cu1−x�Mg /Zn�xO4.

We replot in Fig. 15 the data of Fig. 14 now normalized
by the ground-state order parameter at zero dilution, M�x
=0�. The two data sets for the Heisenberg �J1 only� model
and that for the spin model Hs

�4� with farther-neighbor inter-
actions, with the effects of electron delocalization via virtual
hopping included, lie on top of each other. Hence, the im-
provements brought in by developing the effective spin de-
scription of the Hubbard model up to four virtual hopping
terms, including ring exchange, are not evident when the
data are normalized in this way. The data sets would there-
fore continue to give the same favorable but fortuitous com-
parison with the experimental data of Vajk et al.,31 as seen in
Fig. 10 and discussed in Ref. 45.

V. CONCLUSIONS AND PERSPECTIVES

A. Conclusions

In this paper we investigated the problem of site dilution
in systems described by the half-filled one-band Hubbard
model. We extended the canonical transformation technique
to calculate an effective spin Hamiltonian up to order t4 /U3,
for magnetic site dilution x. We used a real-space spin-wave
technique, linear in �1 /S� to calculate the dilution depen-
dence of quantum fluctuations on the staggered magnetiza-
tion. Specifically, we considered two problems. We first stud-
ied the Heisenberg t /U→0 limit, comparing our results with
those from QMC studies30 on the same model. We confirm,
to a high degree of accuracy, previous results from Ref. 45,
using a similar 1 /S technique. Hence, our results also con-
firm a systematic deviation between the QMC �Ref. 30� and
the spin-wave results for finite dilution. This difference,
which is small for zero dilution, illustrates the dilution-
dependent generation of magnon-magnon interactions and
Berry phase terms, both of which are neglected in the 1 /S
spin-wave calculation. By comparing the QMC results and
the 1 /S results, one concludes that these two effects work to
stabilize the semiclassical two-sublattice Néel order rather
than to drive the system into an exotic quantum phase.
Hence, while the spin-wave technique predicts the magnetic
moment on the percolating cluster going to zero at, or very
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FIG. 14. �Color online� Evolution of the staggered magnetiza-
tion with dilution for the effective spin-only Hamiltonian with
charge mobility effects included. The open circles are the data for
the Heisenberg �t /U→0� model �filled squares in Fig. 9 and open
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close to, the percolation threshold, QMC simulations find a
renormalized classical result, with the moment on the perco-
lating cluster taking a discontinuous jump to zero at the per-
colation threshold.

The second and main objective of our work was to inves-
tigate how corrections to a site-diluted spin-only Hamil-
tonian, originating from a site-diluted one-band Hubbard
model, affects the dilution dependence of the Néel order pa-
rameter �staggered magnetization �M�x���. Underlying this
question, was the goal of obtaining some information on
the capacity of the one-band Hubbard model to describe
data from experiments on site-diluted La2CuO4,
La2Cu1−x�Mg /Zn�xO4.31

Within the one-band Hubbard model, the best estimates
from fitting to magnon excitation spectra36,47 give t /U
�1 /8, placing the system away from the Heisenberg limit
and into the intermediate-coupling regime, where higher-
order electron correlations need to be taken into account.
Integrating out the kinetic degrees of freedom via a canonical
transformation, implemented to order t4 /U3, introduces
second- and third-neighbor interactions into the resulting
spin-only Hamiltonian, as well as ring exchange term from
electronic pathways around a closed square plaquette. Calcu-
lation of the magnetization operator for the original Hubbard
model introduces at this order a charge mobility term that
renormalizes the magnetization below that obtained by con-
sidering the �trivial� definition of the staggered magnetiza-
tion of a spin-only Hamiltonian given by Eq. �2.21�. Includ-
ing all these effects, and staying within the linear �1 /S� spin-
wave approximation, we find a reduced estimate for the
moment at zero dilution, �0.27�B, compared with 0.31�B
for the Heisenberg model.42 As farther-neighbor and ring ex-
change interactions mediated by four electronic hops require
unbroken exchange pathways over length scales greater than
nearest neighbor, their effects disappear well before the per-
colation threshold is reached. The net result is therefore that
the evolution of the ground-state moment as a function of
dilution is qualitatively similar to that for the Heisenberg
model, disappearing at the percolation threshold in the same
way, but with the absolute scale renormalized downward by
10%–15%. While the 1 /S method is subject to the limita-
tions described above, our results clearly illustrate that for an
ultimate detailed and quantitative understanding of the role
of site dilution in a correlated electron system, such as
La2Cu1−x�Mg /Zn�xO4, the charge mobility effects must be
taken into account. Such a description is beyond a spin-only
model, decoupled from an electronic model describing the
behavior of the strongly correlated electrons.

B. Perspectives

To expand on the work presented in this paper, it would
be interesting to carry out further theoretical and numerical
studies using a common calculation scheme for both the site-
diluted Hubbard model expressed in the framework of a
spin-only Hamiltonian with ring exchange and the site-
diluted Heisenberg �t /U→0� model. However, in the ab-
sence of a solution to the sign problem for frustrated quan-
tum spin systems, quantitative results for the generalized

dilution problem from large quantum Monte Carlo simula-
tions will remain inaccessible for some time.

Angle-resolved photoemission spectroscopic �ARPES�
experiments as well as ab initio calculations on a number of
copper oxide materials provide strong evidence that an effec-
tive one-band Hubbard model description of these systems
must include direct hopping parameters t� and t� to second-
and third-nearest-neighbor sites. Furthermore, such experi-
ments and calculations indicate that these parameters are not
significantly smaller than the nearest-neighbor hopping t,
with t� / t�−0.3 and t� / t�0.15. We have recently included
direct hopping parameters t� and t� in a derivation of a spin-
only Hamiltonian representation of the half-filled t-t�-t�-U
Hubbard model.47 As a result of these sizable energy scales,
our analysis of magnon excitation spectra in La2CuO4 re-
veals that the contributions from these parameters are of
similar magnitude to the four hop �of order 1 /U4� processes
for nearest-neighbor hopping, which give rise to the ring
exchange interactions studied in Ref. 36 and in the present
paper �last term in Hs

�4� of Eq. �2.9��.
A key result of Ref. 47 is that the ground-state staggered

moment, approximately 0.235, is further reduced from the
value found for the t-U Hubbard model, �0.27, using the t
and U values of Coldea et al.36 This value is closer to but
undershoots the experimental estimate of 0.25.63 Although
this progression lies within the experimental uncertainty, the
detailed analysis of Ref. 47 suggests that the t-t�-t�-U Hub-
bard model is an improved starting point for a quantitative
description of the magnetic properties of La2CuO4. This con-
clusion is in accordance with ARPES studies and ab initio
calculations on various cuprates.

A natural extension of the work presented in this paper
would be to investigate the role of t� and t� in the site-
dilution problem. In this model a large number of different
ring exchange terms are generated47 and the farther-neighbor
hopping terms allow for connected pathways for dilution
concentrations above the nearest-neighbor percolation
threshold. It seems likely that these extra terms would
change the shape of the �Ms�x�� vs x curve, especially for x
close to xp, and hence change the qualitative aspect of the
results even when the magnetization scale is factorized out of
the problem, as in Fig. 15.

The realization that t� and t� are important energy scales
in a Hubbard model description of La2CuO4 leads to an in-
teresting experimental puzzle when considering the substitu-
tion of Cu2+ by nonmagnetic Zn2+ and/or Mg2+. As discussed
earlier in this paper, and as illustrated by the convergence of
the results of Fig. 13 for the Heisenberg model �J1 only� and
the t /U=1 /8 Hubbard model �J1, J2, J3, and Jc�, the dilution
dependence of the electronic hopping pathways leads to a
crossover concentration x� �x��15% for t /U=1 /8� above
which the influence of the J2−J3−Jc terms of order 1 /U3 has
essentially vanished. However, the presence of direct t� and
t� hoppings leads to additional frustrating second- and third-
nearest neighbor exchanges with J2��4�t��2 /U and J3�
�4�t��2 /U, respectively. Unlike the J2 and J3 interactions
generated by fourth-order hopping processes, J2� and J3� do
not depend on the presence of nearest-neighbor pathways
and hence are unaffected by the dilution �see discussion in
Sec. IV B 1 and the one accompanying Fig. 12�. As there is
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now frustration which is independent of the existence of
nearest-neighbor pathways, one would expect that upon di-
lution there would be a proliferation of Villain canted
states21–26 as the concentration of impurities approaches the
percolation threshold xp. This could ultimately lead to a
Heisenberg spin-glass phase for a dilution concentration x
�xp. In this context, it is perhaps surprising that experiments
find sharp �resolution-limited� magnetic Bragg peaks in
La2Cu1−x�Mg /Zn�xO4 all the way to x=xp.31 It would cer-
tainly be interesting to revisit this question and study in more
detail the possibility of a spin-glass phase developing in
La2Cu1−x�Mg /Zn�xO4 close to the percolation threshold. We
note further that in the region close to the percolation thresh-
old there is the possibility of a freezing transition of the
transverse spin components only. Such a transition could be
observable in nuclear-quadrupolar-resonance �NQR� or
muon-spin-relaxation ��SR� experiments64 as were done
sometime ago on La2Cu1−xZnxO4.20 However, in those early
experiments,20 it now seems likely that the then detected
transverse spin freezing was driven by doped holes intro-
duced by an imperfect control of the oxygen stoichiometry in
La2Cu1−x�Mg /Zn�xO4.31,32 It would be interesting to repeat
such NQR and �SR experiments on La2Cu1−x�Mg /Zn�xO4
samples of the same quality as those used in neutron-
scattering experiments of Ref. 31.

Another effect that could be relevant for
La2Cu1−x�Mg /Zn�xO4 is the local distortion of the lattice due
to the small difference in the ionic radii between Cu2+ and
Mg2+ or Zn2+.65,66 This difference could lead to a local modi-
fication of the hopping parameter t in the neighborhood of a
site where a Cu2+ ion is replaced by a nonmagnetic ion �see
Fig. 2 of Ref. 65�. Such disorder-induced variations in the
hopping parameters could then contribute to explain the dif-
ference between the experimental data and QMC data in Fig.
1. The importance of local distortions could perhaps be pro-
vided by local probe experiments such as �SR, NMR, or
NQR. This problem may also be considered as a precursor to
the study of disorder-induced static magnetism in cuprate
superconductors.67 In this case the inclusion of mobile holes
makes it much more complicated. But the study of the dia-
magnetic dilution problem in La2Cu1−x�Mg /Zn�xO4 main-
tained at half filling could provide a useful framework on
which to build.

In conclusion, we have explored in this work the problem
of the evolution of the magnetic order in a spin-only repre-
sentation of a site-diluted one-band Hubbard expressed in
terms of a spin-only Hamiltonian, taking into account up to
four hop processes. For a finite ratio of hopping constant to
on-site Coulomb energy, t /U, the resulting spin Hamiltonian
differs from the simpler site-diluted S=1 /2 Heisenberg
model, containing effective exchange coupling beyond near-
est neighbor as well as ring exchange interactions. The long-
range exchange interactions, the ring exchange, and the
renormalization of the nearest-neighbor exchange depend
specifically on the local random hopping pathways that re-
main uninterrupted by the missing �diluted� sites. We hope
that this study can motivate further analytical and numerical
studies of the site-diluted one-band Hubbard model as well
as new experiments on La2Cu1−x�Mg /Zn�xO4 in the vicinity
of the percolation threshold.
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APPENDIX A: CALCULATION PROCEDURE FOR THE
BOGOLIUBOV TRANSFORMATION

We summarize below the steps required to obtain the ei-

genvector matrix for H̃, Ẽ, satisfying the boson commutation
relations �2.38�:

�1� Diagonalize H̃ using the LAPACK routines. This yields
a set of eigenvalues �i with corresponding eigensubspaces
generated by the eigenvectors Ei

n, where n� 
1, pi� and
where pi is the degeneracy of the eigenvalue and dimension
of the subspace.

�2� For the subspace i define Ei, a 2N� pi matrix of the
corresponding eigenvectors Ei

n. Form the block matrix Mi,

Mi = Ei
†ĨEi, �A1�

of size pi� pi.
�3� Invert Mi to get Mi

−1.
�4� Diagonalize Mi

−1, thus defining Ki and Di:

Mi
−1 = KiDiKi

−1. �A2�

�5� Define the matrix:

Ai = Ki
��DiKi

−1. �A3�

�6� In this expression, the sign � corresponds to the sign
of �i.

�7� Define the new matrix of eigenvectors for the sub-

space i, Ẽi:

Ẽi = EiAi. �A4�

�8� Repeat subspace by subspace to construct the eigen-

vector matrix Ẽ.

APPENDIX B: STATISTICAL ERRORS

In this section we discuss the origin of statistical errors in
the numerics. Consider, as an example, the lattice of size
L2=24�24. For x=12%, we studied N0=620 different real-
izations of disorder. The average magnetization and root-
mean-square �rms� variation �M were found to be

�M�x = 12%,L = 24��perc = 0.305, �M = 0.0052,

�B1�

from which we estimate the error on the measure to be
��M�x�,
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�M�x� =
�Ms

�N0

. �B2�

In this example the estimated error is thus extremely small,
around 0.1%, and the errors rise to around 1% near the per-
colation threshold. This small error estimate is consistent
with the statistical fluctuations observed in Figs. 5 and 7.

For the example considered above, the ratio of the disper-
sion to the mean value is

�M

�M�perc
= 1.705% . �B3�

The ratios of the dispersion �M to mean value �M�perc for
fixed dilution L as a function of x and for fixed x as a func-
tion of L are shown in Tables I and II, respectively.

We can model this dispersion using three sources of varia-
tion: first, for a given x the number of magnetic sites varies
from configuration to configuration. Second, for fixed N the
number of sites on the percolating cluster will also vary.
Third, there will also be a contribution from configurational
fluctuations for a fixed number of sites. We stress that all
these contributions are quantum in origin. That is, the clas-
sical ground state is perfectly ordered for all concentrations
above the percolation threshold, as discussed in the main
text. Hence at the classical level, changing the number of
sites or local structures on the percolating cluster will not
change the order parameter. However, the dilution reduces

the local spin stiffness for spins in contact with nonmagnetic
sites and increases the zero-point spin fluctuations. Hence
these variations in number of sites and structure change the
value of the order parameter. Indeed this point is already
manifested by the fact that �M�perc decreases with x.

If Ni�L2 ,x� is the number of sites for realization i, and the
mean number of sites is defined in Eq. �4.1�, then for the
example considered we find

N̄�L = 24,x = 12%� = 506.8 � 7.7. �B4�

Hence

�N̄

N̄
= 1.51% . �B5�

To check the importance of fluctuations in the number of
participating sites on the percolating cluster, �Nperc�i, we ana-
lyze the ratio

�Nperc�i

Ni
, where the subscript i labels a given

realization of site dilution. We find

�Nperc�i

Ni
= 0.999 � 6.67 � 10−3. �B6�

Equation �B6� was obtained after performing an average over
the realizations of disorder �dilution� of

perci

Ni
. This gives

�
Nperc

N

Nperc

N

= 0.6% . �B7�

For a fixed number of magnetic sites, we can define the
quantity

� �M

�M�perc
�

mag

as a measure of the configurational contribution to the dis-
persion in ground-state order-parameter values, where

TABLE I. Staggered magnetizations for L2=24�24 and x
� �0,40�%.

x
�%� �M�perc �M

�M
�M�perc

�%�

0 0.338 0 0

2 0.334 0.0014 0.419

4 0.329 0.0022 0.668

6 0.324 0.0028 0.864

8 0.319 0.0036 1.128

10 0.313 0.0041 1.310

12 0.305 0.0052 1.705

14 0.298 0.0060 2.013

16 0.290 0.0070 2.414

18 0.281 0.0080 2.847

20 0.272 0.0096 3.529

22 0.261 0.0109 4.176

24 0.249 0.0135 5.421

26 0.236 0.0154 6.525

28 0.221 0.0183 8.281

30 0.204 0.0213 10.440

32 0.186 0.0237 12.742

34 0.166 0.0274 16.506

36 0.147 0.0291 19.795

38 0.125 0.0316 25.280

40 0.109 0.0330 30.275

TABLE II. Staggered magnetizations for x=20% and L
� �10,34�.

L �M�perc �M

10 0.325 0.0181

12 0.311 0.0166

14 0.298 0.0160

16 0.291 0.0134

18 0.284 0.0118

20 0.279 0.0114

22 0.276 0.0103

24 0.272 0.0096

26 0.269 0.0090

28 0.267 0.0079

30 0.264 0.0080

32 0.263 0.0075

34 0.261 0.0068
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�¯ �mag is the disorder average over the restricted set of con-
figurations with Ni=const. For the example discussed here
we find

� �M

�M�perc
�

mag
= 0.4677% , �B8�

from which we estimate the total dispersion

� �M

�M�perc
�

tot
=

�N̄

N̄
+

�
Nperc

N

Nperc

N

+ � �M

�M�perc
�

mag
� 2% ,

�B9�

in good agreement with Eq. �B3�. The analysis can be gen-
eralized to the other values of x and L. For example, for L2

=24�24 and x=30% we have

�N̄

N̄
= 3.48% ,

�
Nperc

N

Nperc

N

= 1.41% ,

� �M

�M�perc
�

mag
= 5.45% , �B10�

which correspond to � �M
�M�perc

�tot�10%, as obtained in Table I.
Hence this analysis seems to account for the dispersion in
magnetization values to a good level of approximation. The
three sources of dispersion are of the same order of magni-
tude as long as one remains well away from the percolation
threshold. At low defect concentration �small x�, it is the
fluctuations in the number of magnetic sites that dominate.
As x increases the fluctuations increase, as one might expect
as one approaches the critical percolating regime, and at
large x it is the configurational contribution for fixed particle
number which dominates. At 40% dilution the dispersion in
values approaches 30% of the mean order-parameter value.
Despite this large dispersion for this value of x, the number
of configurations, N0=2000, is large enough to keep the es-
timated error at the 1% level.

1 G. Grinstein, in Fundamental Problems in Statistical Mechanics
VI, Proceedings of the Sixth International Summer School,
Trondheim, Norway, 1984, edited by E. G. D. Cohen �North-
Holland, Amsterdam, 1985�.

2 Ill-Condensed Matter, Ecole D’été de Physique Théoretique, Les
Houches, 3 July–18 August 1978, edited by R. Balian, R. May-
nard, and G. Toulouse �North-Holland, Amsterdam, 1979�.

3 A. Harris, J. Phys. C 7, 1671 �1974�.
4 Y. Imry and S.-K. Ma, Phys. Rev. Lett. 35, 1399 �1975�.
5 K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 �1986�.
6 P. W. Anderson, Science 235, 1196 �1987�.
7 S. Sachdev, Nat. Phys. 4, 173 �2008�.
8 E. F. Shender and S. A. Kivelson, Phys. Rev. Lett. 66, 2384

�1991�.
9 S. Eggert and I. Affleck, J. Magn. Magn. Mater. 272-276, E647

�2004�.
10 J. Sirker, S. Fujimoto, N. Laflorencie, S. Eggert, and I. Affleck,

J. Stat. Mech.: Theory Exp. �2008� P02015.
11 M. Azuma, Y. Fujishiro, M. Takano, M. Nohara, and H. Takagi,

Phys. Rev. B 55, R8658 �1997�.
12 S. Wessel, B. Normand, M. Sigrist, and S. Haas, Phys. Rev. Lett.

86, 1086 �2001�.
13 A. W. Sandvik and M. Vekic, Phys. Rev. Lett. 74, 1226 �1995�.
14 R. Yu, T. Roscilde, and S. Haas, Phys. Rev. B 73, 064406

�2006�.
15 S. Ghosh, T. F. Rosenbaum, G. Aeppli, and S. N. Coppersmith,

Nature �London� 425, 48 �2003�.
16 M. A. Metlitski and S. Sachdev, Phys. Rev. B 76, 064423

�2007�.
17 A. Chakraborty, A. J. Epstein, M. Jarrell, and E. M. McCarron,

Phys. Rev. B 40, 5296 �1989�.

18 S. W. Cheong, A. S. Cooper, L. W. Rupp, B. Batlogg, J. D.
Thompson, and Z. Fisk, Phys. Rev. B 44, 9739 �1991�.

19 C. C. Wan, A. B. Harris, and J. Adler, J. Appl. Phys. 69, 5191
�1991�.

20 M. Corti, A. Rigamonti, F. Tabak, P. Carretta, F. Licci, and L. L.
Raffo, Phys. Rev. B 52, 4226 �1995�.

21 J. Villain, Z. Phys. B 33, 31 �1979�.
22 K. Binder, W. Kinzel, and D. Stauffer, Z. Phys. B 36, 161

�1979�.
23 G. N. Parker and W. M. Saslow, Phys. Rev. B 38, 11718 �1988�.
24 W. M. Saslow and G. N. Parker, Phys. Rev. B 38, 11733 �1988�.
25 J. Vannimenus, S. Kirkpatrick, F. D. M. Haldane, and C.

Jayaprakash, Phys. Rev. B 39, 4634 �1989�.
26 P. Gawiec and D. R. Grempel, Phys. Rev. B 44, 2613 �1991�.
27 Y.-C. Chen and A. H. Castro Neto, Phys. Rev. B 61, R3772

�2000�.
28 A. L. Chernyshev, Y. C. Chen, and A. H. Castro Neto, Phys.

Rev. B 65, 104407 �2002�.
29 K. Kato, S. Todo, K. Harada, N. Kawashima, S. Miyashita, and

H. Takayama, Phys. Rev. Lett. 84, 4204 �2000�.
30 A. W. Sandvik, Phys. Rev. B 66, 024418 �2002�.
31 O. P. Vajk, P. K. Mang, M. Greven, P. M. Gehring, and J. W.

Lynn, Science 295, 1691 �2002�.
32 O. P. Vajk, M. Greven, P. K. Mang, and J. W. Lynn, Solid State

Commun. 126, 93 �2003�.
33 S. Notbohm et al., Phys. Rev. Lett. 98, 027403 �2007�.
34 A. Gößling, U. Kuhlmann, C. Thomsen, A. Löffert, C. Gross,

and W. Assmus, Phys. Rev. B 67, 052403 �2003�.
35 M. Roger, J. Phys. Chem. Solids 66, 1412 �2005�.
36 R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost,

T. E. Mason, S.-W. Cheong, and Z. Fisk, Phys. Rev. Lett. 86,

DELANNOY et al. PHYSICAL REVIEW B 79, 224414 �2009�

224414-18



5377 �2001�.
37 A. M. Toader, J. P. Goff, M. Roger, N. Shannon, J. R. Stewart,

and M. M. Enderle, Phys. Rev. Lett. 94, 197202 �2005�.
38 L. Raymond, G. Albinet, and A.-M. S. Tremblay, Phys. Rev.

Lett. 97, 049701 �2006�.
39 A. M. Toader, J. P. Goff, M. Roger, N. Shannon, J. R. Stewart,

and M. M. Enderle, Phys. Rev. Lett. 97, 049702 �2006�.
40 A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev. B

37, 9753 �1988�.
41 A. L. Chernyshev, D. Galanakis, P. Phillips, A. V. Rozhkov, and

A.-M. S. Tremblay, Phys. Rev. B 70, 235111 �2004�.
42 J.-Y. P. Delannoy, M. J. P. Gingras, P. C. W. Holdsworth, and

A.-M. S. Tremblay, Phys. Rev. B 72, 115114 �2005�.
43 R. G. Melko and R. K. Kaul, Phys. Rev. Lett. 100, 017203

�2008�.
44 L. R. Walker and R. E. Walstedt, Phys. Rev. B 22, 3816 �1980�.
45 E. R. Mucciolo, A. H. Castro Neto, and C. Chamon, Phys. Rev.

B 69, 214424 �2004�.
46 E. V. Castro, N. M. R. Peres, K. S. D. Beach, and A. W. Sandvik,

Phys. Rev. B 73, 054422 �2006�.
47 J.-Y. P. Delannoy, M. J. P. Gingras, P. C. W. Holdsworth, and

A.-M. S. Tremblay, arXiv:0808.3167, Phys. Rev. B �to be pub-
lished�.

48 A. B. Harris and R. V. Lange, Phys. Rev. 157, 295 �1967�.
49 A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev. B

41, 2565 �1990�.
50 A. H. MacDonald, S. Girvin, and D. Yoshioka, Phys. Rev. B 43,

6209 �1991�.
51 P. Chandra and B. Doucot, Phys. Rev. B 38, 9335 �1988�.
52 E. Dagotto and A. Moreo, Phys. Rev. Lett. 63, 2148 �1989�.
53 A. P. Young, in Strongly Interacting Fermions and High Tc Su-

perconductivity, Les Houches, 1991, edited by B. Douçot and J.
Zinn-Justin �North-Holland, Amsterdam, 1995�.

54 A. Chubukov, E. Gagliano, and C. Balseiro, Phys. Rev. B 45,
7889 �1992�.

55 J. Y. Delannoy, Ph.D. thesis, ENS-Lyon, 2005.
56 A recent study �Ref. 47� that incorporates the effect of

second-�t�� and third-nearest-neighbor �t�� hoppings also found
that a value of t /U�1 /8 allows for a spin-only Hamiltonian
whose magnon excitations suitably describe the spin waves of
La2CuO4 �Ref. 36�.

57 D. A. Huse, Phys. Rev. B 37, 2380 �1988�.
58 P. W. Anderson, Phys. Rev. 86, 694 �1952�.
59 R. B. Stinchcombe, J. Phys. C 4, L79 �1971�.
60 E. Manousakis, Rev. Mod. Phys. 63, 1 �1991�.
61 J.-I. Igarashi, Phys. Rev. B 46, 10763 �1992�.
62 J.-I. Igarashi and T. Nagao, Phys. Rev. B 72, 014403 �2005�.
63 Y. S. Lee, R. J. Birgeneau, M. A. Kastner, Y. Endoh, S.

Wakimoto, K. Yamada, R. W. Erwin, S.-H. Lee, and G. Shirane,
Phys. Rev. B 60, 3643 �1999�.

64 I. Mirebeau et al., Hyperfine Interact. 104, 343 �1997�.
65 T. Edagawa, Y. Fukumoto, and A. Oguchi, J. Magn. Magn.

Mater. 310, e406 �2007�.
66 C.-W. Liu, S. Liu, Y.-J. Kao, A. L. Chernyshev, and A. W. Sand-

vik, Phys. Rev. Lett. 102, 167201 �2009�, have recently ex-
plored how local impurities such as Mg2+ and Zn2+ in La2CuO4

can lead to some local random frustration.
67 B. M. Andersen, P. J. Hirschfeld, A. P. Kampf, and M. Schmid,

Phys. Rev. Lett. 99, 147002 �2007�.
68 M. Boas, Mathematical Methods in the Physical Sciences

�Wiley, New York, 1983�.

SITE DILUTION IN THE HALF-FILLED ONE-BAND… PHYSICAL REVIEW B 79, 224414 �2009�

224414-19


