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The validity of the commonly used quantum corrections for mapping a classically predicted thermal con-
ductivity onto a corresponding quantum value are assessed by self-consistently predicting the classical and
quantum thermal conductivities of a crystalline silicon system via lattice-dynamics calculations. Applying the
quantum corrections to the classical predictions, with or without the zero-point energy, does not bring them
into better agreement with the quantum predictions compared to the uncorrected classical values above tem-
peratures of 200 K. By examining the mode dependence of the phonon properties, we demonstrate that thermal
conductivity cannot be quantum corrected on a system level. We explore the source of the differences in the
quantum and classical phonon relaxation times on a mode-by-mode basis.
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I. INTRODUCTION

Classical molecular-dynamics �MD� simulation is a pow-
erful tool for predicting physical behavior and material
properties.1–3 As a general rule, MD simulations of solids are
considered valid near and above a material’s Debye tempera-
ture, where all of the vibrational modes �i.e., phonons in a
crystal� are fully excited. Molecular-dynamics simulations
are not valid at lower temperatures, where quantum effects
cannot be neglected. To mitigate this limitation, quantum
corrections �QCs� have been developed. The purpose of QCs
is to map predictions made for a classical system onto cor-
responding values in a quantum system. Quantum correc-
tions have been derived from first principles for thermody-
namic, mechanical, and structural properties �e.g., Helmholtz
free energy, entropy, bulk modulus, and pair-distribution
function�.4–6 Rigorous QCs for transport properties such as
thermal conductivity are more difficult to obtain.7

The commonly used QCs for thermal conductivity are
based on ad hoc physical arguments rather than fundamental
theory. These QCs are applied to the temperature T and the
thermal conductivity k.8,9 The temperature correction is made
by equating the total energies of the classical and quantum
systems. The energy equality can be expressed as
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where the sums are over all phonon modes denoted by N
wave vectors � and 3n dispersion branches �, E� �

� � is the
energy of a phonon mode, and the superscripts C and Q
indicate classical and quantum. By assuming �i� equipartition
of the classical energy and subtracting the three translational
degrees of freedom, and �ii� the quantum energy to be har-
monic, Eq. �1� becomes
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Here, kB is the Boltzmann constant, � is the Planck constant
divided by 2�, and �� �

� � and f� �
� � are the mode-dependent

frequency and equilibrium occupation number. For the quan-
tum system, the equilibrium occupation number follows the
Bose-Einstein distribution,

fQ =
1

exp� ��

kBTQ� − 1
. �3�

The term ��� �
� � /2 in Eq. �2� is the zero-point �ZP� energy.

The ZP energy has no parallel in a classical system and, as
will be shown, plays an important role in the QCs. Equation
�2� cannot be explicitly solved for TQ but TQ can be deter-
mined by computing TC for a series of TQ values and then
interpolating.

The thermal conductivity correction is

kQ = kC dTC

dTQ , �4�

which arises from equating the heat fluxes obtained from the
Fourier law in the classical and quantum systems. The QCs
given by Eqs. �2� and �4� have been applied to classical MD
thermal conductivity predictions for amorphous silicon,9

crystalline silicon in bulk10–12 and thin films,13 �-silicon
carbide,14 silicon-germanium superlattices,15 carbon
nanotubes,16 and transition metals �the phonon
contribution�.17

The validity of Eqs. �2� and �4� is questionable as they are
not derived from fundamental relations and have not been
rigorously tested. The doubts regarding these QCs are further
exemplified by the nonconsensus on whether to include the
ZP energy in Eq. �2� or to ignore it.18 The objective of this
work is to rigorously assess the validity of the QCs for ther-
mal conductivity given by Eqs. �2� and �4�. To do so, we
self-consistently predict the classical and quantum thermal
conductivities of crystalline silicon via lattice-dynamics
�LD� calculations and then apply the QCs to the classical
predictions. We find that the QCs are not valid and demon-
strate why by using phonon properties obtained from the LD
calculations.
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II. LATTICE-DYNAMICS METHOD FOR PREDICTING
PHONON PROPERTIES

We predict the classical and quantum thermal conductivi-
ties of an ordered �i.e., crystalline� material in a self-
consistent manner using LD calculations. Consider a crystal
with N lattice sites and an n-atom unit cell with periodic
boundary conditions applied in all directions. Harmonic LD
is first used to find the phonon frequencies and polarization
vectors e �i.e., the normal modes of vibration� under the har-
monic approximation by solving the eigenvalue problem

�2��
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� = D���e��

�
� . �5�

The dynamical matrix D��� has dimension 3n�3n and ele-
ments
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where b and � index over the atoms in the unit cell and the
Cartesian coordinates, � is the total potential energy, r� l

b � is
the average position vector for the bth atom in the lth unit
cell with r�� l

b � as its � component, and m is the atomic
mass.19,20

The harmonic phonon frequencies and polarization vec-
tors are then used as input to an anharmonic LD calculation
to compute the mode-dependent phonon frequency shifts 	
and linewidths 
. For a quantum system these two quantities
are determined for mode 0 �i.e., �0 and �0� from21,22
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where � �p and �� � denote the Cauchy principal value and
Dirac delta function, and �1 implies ��

�1

�1
�. The term
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� contains the jth-order derivative of the potential

energy evaluated at the average atomic positions �i.e., the
jth-order force constant� and is
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where ej�
bj

� j
� is the eigenvector component associated with

atom bj and the � j direction. The Kronecker delta
���1+�2+¯+�i�,K

is one if the sum of the wave vectors is a
reciprocal-lattice vector K and zero otherwise. We use Eqs.
�7� and �8� to evaluate the frequency shifts and linewidths for
a classical system by substituting fC−1 /2 in place of fQ. The
expressions for the phonon occupation number for quantum
and classical harmonic oscillators are given in Table I.

The thermal conductivity is then evaluated using the rela-
tion
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which is derived from the Boltzmann transport equation un-
der the relaxation-time approximation, and is valid for both
the quantum and classical systems.23 Expressions for the
phonon specific heat cph, x component of the group velocity
vg,x, and relaxation time � are given in Table I.

We will use the LD method to predict the thermal con-
ductivity of isotopically pure crystalline silicon modeled

TABLE I. Quantum and classical expressions for phonon prop-
erties. In these expressions, V is the system volume, x���A /kBT,
�A=�+	, and 
x is the wave vector along the x direction, which
we choose to be �100�.
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with the Stillinger-Weber �SW� interatomic potential24 be-
tween temperatures of 10 and 1000 K. While the low-
temperature approximations inherent in the LD techniques
cause them to loose accuracy at high temperature, the quan-
tum and classical thermal conductivity predictions remain
self-consistent.23 The thermal conductivity predictions only
account for phonon-phonon scattering and neglect other scat-
tering mechanisms, such as impurity and boundary scatter-
ing, which would be present in a real sample. We perform the
calculations on the eight-atom unit cell arrayed on a simple
cubic N0�N0�N0 lattice. We set the lattice parameter to
5.43 Å, which is within 0.4% of the MD-predicted lattice
parameters at all temperatures considered.25 To achieve size-
independent thermal conductivity predictions, we use N0
=12 for temperatures above 100 K and N0=30 for lower
temperatures. Further details about LD theory and our imple-
mentation of the LD method for predicting thermal conduc-
tivity are given by Turney et al.23

III. ASSESSING THE QUANTUM CORRECTIONS

A. Quantum and classical thermal conductivity

The SW silicon thermal conductivities predicted using the
LD method are plotted in Fig. 1 for the quantum and classi-
cal systems between temperatures of 10 and 1000 K. The
quantum and classical predictions converge at high tempera-
ture, as they must. The low-temperature thermal conductivity
behavior is also as expected. The quantum thermal conduc-
tivity peaks at a temperature of 30 K then approaches zero as
the temperature goes to zero. The classical thermal conduc-
tivity prediction increases monotonically as the temperature
decreases and diverges to infinity at zero temperature. For
temperatures less than 100 K, phonon scattering from de-
fects, isotopes, and boundaries is important.26 We have ne-
glected these scattering mechanisms, resulting in very large
thermal conductivity values at these temperatures. We note
that Broido et al.26 predicted the thermal conductivity of SW
silicon using an approach related to the LD method presented
here with these additional scattering mechanisms included.

For temperatures above 15 K, the classical thermal con-
ductivities are less than the quantum values. This result is not

necessarily intuitive because the classical phonon specific
heats are always greater than their quantum counterparts and,
according to Eq. �10�, will tend to increase the classical ther-
mal conductivity over the quantum value. The thermal con-
ductivity, however, is also affected by the group velocities
and the relaxation times. Because SW silicon is a stiff mate-
rial, the group velocities for the quantum and classical sys-
tems are nearly identical and show weak temperature depen-
dence. The relaxation times, however, have a large impact.

Plotted in Fig. 2 are the phonon linewidths � 1
2� � versus

harmonic frequency at a temperature of 100 K. At frequen-
cies below 80 rad/ps, the quantum phonons have smaller
linewidths than the classical phonons. At higher frequencies,
the situation is reversed. Considering the equation for the
linewidth �Eq. �8��, we see that two types of phonon interac-
tions contribute to 
0. One is the decay of the phonon �0 into
two phonons ��0→�1+�2, a type-I interaction�. The other is
the annihilation of the phonon with a second to create a third
��0+�1→�2 or �0+�2→�1, a type-II interaction�. The dif-
ferences between the quantum and classical linewidths are
driven by the occupation numbers, fQ and fC, which weight
the phonon interactions. For the quantum and classical sys-
tems, the type-I interactions are weighted by f1

Q+ f2
Q+1 and

f1
C+ f2

C. Of these two weighting factors, the quantum expres-
sion is always greater than the classical expression for the
same set of frequencies at the same temperature. The type II
weighting factor for the quantum system, f1

Q− f2
Q, is always

less than its classical counterpart, f1
C− f2

C. We note that en-
ergy conservation, enforced by the Dirac delta functions in
Eq. �8�, causes type-I interactions to dominate when �0 is
large, resulting in quantum linewidths that are greater than
their classical counterparts. When �0 is small, type-II inter-
actions dominate, giving rise to quantum linewidths that tend
to be smaller than the classical values. At intermediate fre-
quencies, both type-I and type-II interactions play an impor-
tant role. This discussion illustrates an important point,
which is that the relaxation time for a single-phonon mode
depends strongly on the other phonon modes in the system.

To explore the consequences of the different relaxation
times on the thermal conductivity, consider Fig. 3 where the
ratio of the mode-dependent thermal conductivities, kph
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C
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FIG. 1. �Color online� Thermal conductivity predictions for the
quantum and classical systems and the quantum-corrected classical
prediction using the ZP energy �QCs with ZP� and neglecting it
�QCs without ZP�.
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�=cph
Q �vg,x

Q �2�Q /cph
C �vg,x

C �2�C�, is plotted against the ratio of the
relaxation times �Q /�C at a temperature of 100 K. We iden-
tify four regions separated by the lines kph

Q /kph
C =1, �Q /�C

=1, and kph
Q /kph

C =�Q /�C. Region IV is inaccessible because
the quantum specific heat is always lower than the classical
specific heat. In regions I and II, the mode-dependent quan-
tum thermal conductivity is lower than the classical value,
despite the quantum relaxation time being larger than the
classical relaxation time in region II. For phonon modes in
region III, the quantum relaxation time is so much larger
than the classical value that it negates the reduction caused
by the specific heat. The net result in this region is that the
mode-dependent quantum thermal conductivity is larger than
the classical value. For temperatures above 15 K, the
phonons in region III dominate the thermal transport, causing
the total quantum thermal conductivity to be greater than the
classical prediction �see Fig. 1�.

B. Quantum-corrected thermal conductivity

The temperature mapping from the classical system to the
quantum system defined by Eq. �2� is plotted in Fig. 4 when
the ZP energy is both considered and neglected. Also plotted

is the scaling factor dTC /dTQ defined by Eq. �4�. This factor
is independent of the ZP energy and is always less than one.
The scaling factor can be written as

dTC

dTQ =
1

3�Nn − 1�kB
�
�,�

N,3n

cph
Q ��

�
� , �11�

which is obtained by differentiating Eq. �2� with respect to
TQ and assuming the phonon frequencies to be temperature
independent. The temperature mapping depends strongly on
the inclusion or exclusion of the ZP energy. For the same
quantum temperature, the classical temperatures for the two
cases are offset by the average ZP energy divided by kB,
which is 270 K for SW silicon. When the ZP energy is in-
cluded, the corrected temperature is greater than the quantum
temperature, the corrected and quantum temperatures con-
verge in the high-temperature �i.e., classical� limit, and a
classical system below a temperature of 270 K has no quan-
tum counterpart. When the ZP energy is excluded, the cor-
rected temperature is less than the quantum temperature and
the corrected and quantum temperatures do not converge in
the high-temperature limit but are separated by 270 K.

The effect of the QCs on the classical thermal conductiv-
ity prediction is shown in Fig. 1, where we plot the quantum-
corrected classical predictions. Neglecting the ZP energy in-
creases the thermal conductivity. Including the ZP energy
causes the thermal conductivity to shift downward away
from the quantum predictions.

For QCs to be valid, the corrected classical predictions
must �i� converge to the quantum predictions at high tem-
perature and �ii� provide a better estimation of the quantum
thermal conductivity than the uncorrected classical predic-
tions. Our four sets of results �quantum, classical, and two
sets of quantum-corrected classical values� do converge at
high temperature, although the convergence is slow for both
sets of quantum-corrected values. At the SW silicon Debye
temperature of 710 K,27 the corrected thermal conductivities
with and without the ZP energy are 10% lower and 30%
higher than the quantum value while the uncorrected classi-
cal prediction is within 5% of the quantum value. At a tem-
perature of 300 K, less than half the Debye temperature, the
classical prediction is still within 15% of the quantum value.
For temperatures above 200 K, neither of the QC approaches
improves upon the agreement between the uncorrected clas-
sical value and the quantum value.

When including the ZP energy, a maximum in the thermal
conductivity is predicted. The location and magnitude of this
maximum, however, are clearly wrong. The lowest uncor-
rected temperature we consider is 10 K, which corresponds
to a temperature of 105 K for the QCs without the ZP energy.
The quantum-corrected thermal conductivity predictions
without the ZP energy can be extended to lower temperatures
by fitting a power function to the uncorrected classical pre-
dictions and extrapolating. In doing so �not shown�, we find
that the quantum-corrected thermal conductivity does not ex-
hibit a maximum when the ZP energy is neglected. From
these observations, we conclude that the QCs prescribed by
Eqs. �2� and �4�, with the ZP energy either included or ne-
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glected, do not properly account for quantum effects. These
QCs even fail at high temperatures, where quantum effects
are small.

C. Analyzing the quantum corrections

The reasons why the QCs given by Eqs. �2� and �4� fail
can be deduced by considering the mode dependence of the
phonon properties ��, cph, vg,x, and ��. In Fig. 5, we plot the
contribution to the thermal conductivity versus phonon fre-
quency, both scaled by their maximum values, for tempera-
tures of 10, 100, and 500 K. When plotted this way, the
results for the classical systems collapse to a single
temperature-independent curve. For the quantum system,
however, the low-frequency phonons increasingly dominate
the thermal conductivity as the temperature decreases. This
effect is due to the temperature dependence of the occupation
number �Eq. �3��, which effectively freezes out the high-
frequency modes at low temperatures. Applying the QCs
given by Eqs. �2� and �4� shifts the thermal conductivity by a
temperature-dependent scale factor. Yet, we see from Fig. 5
that the frequency dependence of the mode contribution is
strongly temperature dependent. The thermal conductivity
thus cannot be properly corrected by applying a system-level
scaling factor.

We can further address the reasons why the QCs fail by
investigating what would need to be done to properly correct
a classically predicted thermal conductivity. From the discus-
sion in the previous paragraph, we know that QCs must be
performed on the level of the phonon modes �i.e., the terms
inside the summation in Eq. �10��. To simplify the analysis,
we retain the assumption of a temperature-independent lat-
tice constant and further assume the frequency shift to be
negligible. This assumption is good for SW silicon as the
root mean square of 	 /� is less than 0.03 for all tempera-
tures considered. When the frequency shift is neglected, the
group velocity becomes temperature independent, and is the
same in the quantum and classical systems. The phonon spe-
cific heats and relaxation times, however, differ between the
two systems. If these two mode-dependent properties can be
properly quantum corrected, then we would be able to pre-
dict a quantum thermal conductivity from classical phonon

properties. In what follows, we will assume that all the clas-
sical phonon properties are known. Although not typically
found in a Green-Kubo28,29 or direct28,30 MD-based thermal
conductivity prediction, these phonon properties can be ob-
tained from MD simulations.23,31

Correcting the specific heat is straightforward. The classi-
cal specific heat is a constant and the quantum specific heat
can be computed from the phonon frequency �see Table I�.
The first step in converting the classical thermal conductivity
to a quantum thermal conductivity thus involves scaling the
contribution of each phonon mode by cph

Q /cph
C .32 From Eq.

�11�, we see that the quantum correction defined by Eq. �4� is
on the right track in that it scales the classical thermal con-
ductivity by the ratio of the quantum specific heat to the
classical specific heat. This scaling, however, is performed
on the system level rather than on the level of the phonon
modes, as is required.

The relaxation times cannot be corrected in the same
manner. Using the LD approach described in Sec. II, the
effort required to compute quantum relaxation times is the
same as the effort required to compute classical relaxation
times. Additionally, if the quantum relaxation times were
known, we could compute the quantum thermal conductivity
directly using Eq. �10�.

What we would like is for the classical relaxation times to
be representative of the relaxation times of a corresponding
quantum system. We determine the quantum system repre-
sented by the classical relaxation times by setting �Q=�C for
each phonon mode, which is equivalent to letting 
Q=
C.
The equation for the quantum linewidth �Eq. �8�� can be
converted to a classical linewidth by setting

fC = fQ + 1/2. �12�

This condition links the quantum and classical systems.
Solving Eq. �12� for TQ, we find the temperature of a quan-
tum system that has the same occupation number as the clas-
sical system to be

TQ =
��

kB ln�2kBTC + ��

2kBTC − ��
� . �13�

We can immediately see a problem with Eq. �13�. The quan-
tum temperature is a function of the phonon frequency,
meaning that the classical relaxation times cannot be mapped
onto an equilibrium quantum system at a single temperature.
The quantum temperature corresponding to classical tem-
peratures of 100, 420, 710, and 1000 K is plotted versus
frequency in Fig. 6. Above the Debye temperature �710 K�,
the range of quantum temperatures associated with the clas-
sical temperature is small. The classical relaxation times at
these temperatures are a good approximation of the quantum
relaxation times and there is no need to perform a quantum
correction. As the classical temperature decreases below the
Debye temperature, the range of quantum temperatures in-
creases and the classical relaxation times are not indicative
of the relaxation times of an equilibrium quantum system.
When the classical temperature drops below 420 K, some of
the high-frequency phonon modes cannot be mapped onto
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FIG. 5. �Color online� Scaled contribution to the thermal con-
ductivity as a function of frequency ratio. The classical results at all
temperatures collapse to a single curve.
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any quantum system. Although they make a small direct con-
tribution to the thermal conductivity, these high-frequency
phonons are important in that they scatter with low-
frequency phonons. These mapping issues are also inherent
in Eq. �2� �where TQ is found as a weighted average� and
contribute to the failure of the QCs.

D. Discussion

Others have argued for the QCs given by Eqs. �2� and �4�
because they can bring classical MD thermal conductivity
predictions into better agreement with experimental mea-
surements. When examining all the available data, however,
we find that some find better agreement when the ZP energy
is considered13,14,16,32 while others find better agreement
when the ZP energy is ignored.11,12 Based on the results pre-
sented in Sec. III B, we believe that any improved agreement
is fortuitous as MD-predicted thermal conductivities are sen-
sitive to the chosen interatomic potential. Interatomic poten-
tials are an approximation of the complex interactions that
exist between atoms, which only quantum calculations �e.g.,
density-functional theory� can accurately capture. Using an
approach related to the LD method presented here, Broido
and co-workers26 found that a fully quantum-mechanical
treatment of SW silicon does not match the experimental
thermal conductivity data while the same treatment using
input from density-functional-theory calculations does.33

Alternative approaches for obtaining a quantum thermal
conductivity prediction from classical MD simulations have
been suggested. These approaches are based on modifying
the MD simulation itself, making them fundamentally differ-
ent than QCs, which are a postprocessing procedure. Li34

suggested initializing a classical MD simulation with a pho-
non distribution corresponding to a quantum system at equi-
librium. Wang35 proposed a classical MD simulation that in-
teracts with heat baths that are forced to maintain quantum
phonon distributions. The drawback of these approaches is
that the MD simulation is limited temporally or spatially. A
system with an initial quantum configuration will eventually
relax to an equilibrium classical state. A large MD system in
contact with quantum heat baths will have a classical phonon
distribution far from the heat baths.

Quantum MD simulation �e.g., Car-Parrinello36� in con-
junction with the Green-Kubo or direct method has not been
used to predict thermal conductivity because it is too com-
putationally expensive. A less computationally expensive ap-
proach is to use Feynman path integrals to effectively trans-
form a quantum system into a classical system, whose static
properties can then be computed using classical MD or
Monte Carlo simulations.37 Centroid MD, an extension of
path-integral MD developed by Cao and Voth,38,39 has been
used to predict transport properties of quantum systems, such
as thermal conductivity and shear viscosity.40

Fully quantum-mechanical predictions of thermal conduc-
tivity, made using the LD method employed here or a related
method developed by Omini and Sparavigna,41,42 are an ex-
cellent alternative to MD-based predictions for ordered sys-
tems well below the Debye temperature, where the weakly
interacting phonon model is valid. Lattice-dynamics-based
predictions of the thermal conductivity have the additional
advantages of allowing their input to come from density-
functional-theory calculations and providing the complete
phonon properties.23 At higher temperatures, quantum effects
are unimportant and classical MD-based methods are suit-
able if an accurate interatomic potential is available.

IV. CONCLUSIONS

We have assessed the validity of the commonly used QCs
for thermal conductivity �Eqs. �2� and �4�� by using har-
monic and anharmonic LD calculations to self-consistently
predict the quantum and classical thermal conductivities of
SW silicon. Applying the QCs to the classical predictions,
with or without the ZP energy, does not bring them into
better agreement with the quantum predictions compared to
the uncorrected classical values above temperatures of 200 K
�see Fig. 1�. When neglecting the ZP energy, the quantum-
corrected temperature does not approach the quantum tem-
perature in the high-temperature limit and there is no maxi-
mum in the thermal conductivity. When the ZP energy is
included, the corrected thermal conductivity shifts away
from the quantum prediction, and the location and magnitude
of the maximum do not agree with the quantum results. Al-
though not presented here, we have seen the same behavior
in Lennard-Jones argon.

By examining the frequency dependence of the thermal
conductivity �see Fig. 5�, we found that system-level proper-
ties, such as those used in Eqs. �2� and �4�, cannot be used to
bring classical thermal conductivities into agreement with
quantum values. While the specific heat can be quantum cor-
rected on a mode-by-mode basis, the system temperature
cannot be quantum corrected because the phonons in a clas-
sical system are not representative of the phonons in an equi-
librium quantum system at a single temperature �see Fig. 6�.
Differences between the classical and quantum relaxation
times �see Figs. 2 and 3� can be attributed to the frequency
dependence of the occupation numbers and the dominant
scattering mechanism. The mapping of classical phonons
onto an equivalent quantum system is approximately correct
only at high temperatures, where QCs are unnecessary.
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FIG. 6. Frequency-dependent quantum temperatures as deter-
mined by Eq. �12� for various classical temperatures. For tempera-
tures less than 420 K, some of the high-frequency phonons cannot
be mapped into any quantum system.
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