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Using the ab initio exact muffin-tin orbitals method in combination with the coherent-potential approxima-
tion, we have calculated the elastic parameters of ferromagnetic Fe1−mMgm �0�m�0.1� and Fe1−cCrc �0
�c�0.2� random alloys in the body-centered cubic �bcc� crystallographic phase. Results obtained for Fe1−cCrc

demonstrate that the employed theoretical approach accurately describes the experimentally observed compo-
sition dependence of the polycrystalline elastic moduli of Fe-rich alloys encompassing maximum �10% Cr.
The elastic parameters of Fe-Cr alloys are found to exhibit anomalous composition dependence around 5% Cr.
The immiscibility between Fe and Mg at ambient conditions is well reproduced by the present theory. The
calculated lattice parameter for the Fe-Mg regular solid solution increases by �1.95% when 10% Mg is
introduced in Fe, which corresponds approximately to 11% decrease in the average alloy density, in perfect
agreement with the experimental finding. At the same time, we find that all of the elastic parameters of bcc
Fe-Mg alloys decrease almost linearly with increasing Mg content. The present results show a much stronger
alloying effect for Mg on the elastic properties of �-Fe than that for Cr. Our results call for further experi-
mental studies on the mechanical properties of the Fe-Mg system.
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I. INTRODUCTION

According to the common phase diagrams, iron and mag-
nesium are almost immiscible at ambient pressure.1 In the
liquid phase, the solubility of Mg in Fe is on the order of
0.025 atomic percent �at. %�. The maximum solid solubility
of Fe in Mg is 0.00041 at. % and the Fe content in Mg at the
eutectic point is less than 0.008 at. %.2 Below 1273 K the
solubility of Mg in �-Fe is below the detection limit and
about 0.25 at. % Mg can be solved in �-Fe at the monotectic
temperature. The immiscibility of Fe and Mg at ambient con-
ditions is in line with the well-known Hume-Rothery rules,
according to which more than 15% atomic size difference
between alloy constituents hinders solid solution formation.3

In spite of the negligible solubility of Mg in Fe, several
Fe-rich metastable Fe-Mg solid solutions have been synthe-
sized. According to the pioneering work by Hightower et
al.,4 mechanical alloying produced Fe-Mg substitutional
solid solutions with up to 20 at. % Mg and having the body-
centered-cubic �bcc� crystallographic phase of �-Fe. Later,
using the similar alloying procedure, Dorofeev et al.5–7 found
that about 5–7 at. % Mg in �-Fe forms supersaturated solid
solution. These authors suggested that the driving force for
the formation of Fe-Mg solid solutions is associated with the
excess energy of coherent interfaces in the Fe-Mg nanocom-
posite, which facilitates incorporation of Mg into �-Fe. In-
deed, based on semiempirical thermodynamic calculations,
Yelsukov et al.7 obtained 6 kJ/mol for the enthalpy of forma-
tion for Fe0.93Mg0.07, compared to 20 kJ/mol calculated for
the corresponding Fe-Mg nanocomposites.

In addition to the mechanical alloying techniques, pres-
sure was also found to facilitate the solid solution formation

between Fe and Mg. Dubrovinskaia et al.8 reported that at
pressures around 20 GPa and temperatures up to 2273 K, the
solubility of Mg in bcc Fe was increased to 4 at. %. They
found that the lattice parameter of the bcc Fe-Mg alloy in-
creased approximately by 0.6% per at. % Mg. Furthermore,
recent theoretical simulations in combination with experi-
mental measurements demonstrated that at the megabar pres-
sure range more than 10 at. % Mg could be dissolved in
liquid Fe, which then could be quenched to ambient
conditions.9 The mechanism behind the high-pressure alloy-
ing is the much larger compressibility of Mg compared to
that of Fe.

Most of the theoretical and experimental investigations of
the Fe-Mg solid solutions so far focused on the phase dia-
gram, crystallographic structure, nanostructure, grain bound-
aries, and segregation. However, much less is known about
the mechanical properties of Fe-rich Fe-Mg alloys. Here we
present a systematic first-principles study of the effect of Mg
on the elastic properties of ferromagnetic bcc Fe-Mg alloys.
We calculate the single crystal and polycrystalline elastic pa-
rameters by using the all-electron exact muffin-tin orbitals
�EMTO� method10–12 in combination with the coherent-
potential approximation �CPA�.13–16 Since at ambient condi-
tions the Fe-rich Fe-Mg alloys were found to adopt the fer-
romagnetic bcc structure,4,5,9 all calculations are performed
for this magnetic and crystallographic phase. Using Mös-
bauer spectroscopy, Hightower et al.4 found that bcc Fe-Mg
alloys encompassing �18 at. % Mg possess large chemical
heterogeneities. According to that study only few Fe atoms
have Mg atoms as first-nearest neighbors and the Mg atoms
cluster into Fe-depleted zones on the bcc lattice. On the other
hand, Dorofeev et al.5,7 determined the effect of nearest-
neighbor and next-nearest-neighbor Mg atom on the hyper-
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fine magnetic field of Fe nuclei in Fe-Mg alloys containing
5–7 at. % Mg. Moreover, the Fe0.96Mg0.04 synthesized by
Dubrovinskaia et al.8 at high temperature and moderate pres-
sures was reported to be homogeneous. It is also noticeable
the excellent agreement obtained between the experimental
and theoretical equation of states for Fe0.96Mg0.04, the latter
obtained for completely random alloy.9 These findings indi-
cate that clustering of Mg atoms is less significant in Fe-rich
alloys. Because of that, we limit the present study to
Fe1−mMgm alloys with 0�m�0.1 and assume random dis-
tributions of the Mg atoms on the parent lattice.

In order to assess the accuracy of our theoretical ap-
proach, first we carry out a comprehensive study of the elas-
tic properties of Fe and Fe-rich Fe-Cr alloys, for which a vast
number of experimental17–20 and theoretical21–24 data are
available. This study is also of fundamental interest because
no ab initio theoretical investigation of the elastic properties
of Fe-rich Fe-Cr alloys has been presented so far. The Fe-Cr
alloys, except the high-temperature Fe-rich � phase and the
� phase observed around equimolar concentrations, adopt
the bcc structure.25 The present calculations are performed
for random Fe1−cCrc alloys with 0�c�0.2. At normal con-
ditions, these bcc alloys are ferromagnetic with Curie tem-
peratures around 900–1050 K.25 For c�0.1 and T�600 K,
the Fe-Cr system is fully miscible, whereas the nucleation or
spinodal ���� decomposition-driven clustering occurs at
higher Cr concentrations.26,27 Nevertheless, it has been
shown28,29 that the energetics of Fe-Cr alloys with
�20 at. % Cr are well described using the substitutional dis-
ordered ferromagnetic bcc phase employed in the present
study.

The paper is divided in two main sections. The theoretical
tool is presented in Sec. II. Here we give a brief overview of
the electronic structure method and the most important de-
tails of the numerical calculations. The results are presented
and discussed in Sec. III. After we make a comparison be-
tween the present and former theoretical and experimental
elastic constants for Fe and Fe-Cr alloys, we put forward our
theoretical predictions obtained for the ferromagnetic Fe-Mg
solid solution.

II. COMPUTATIONAL METHOD

A. Total energy calculations

The present calculations are based on density functional
theory �DFT� �Ref. 30� formulated within the Perdew-Burke-
Ernzerhof generalized gradient approximation31 for the
exchange-correlation functional. The Kohn-Sham
equations32 were solved using the exact muffin-tin orbitals
method.10–12 The substitutional disorder was treated within
the coherent-potential approximation.13–16 From the self-
consistent charge density the total energy was calculated us-
ing the full charge-density technique.33

The EMTO method is an improved screened Korringa-
Kohn-Rostoker method,10 where the full potential is repre-
sented by overlapping muffin-tin potential spheres. By using
overlapping spheres one describes more accurately the exact
crystal potential, when compared to the conventional muffin-
tin or nonoverlapping methods.12,34 Further details about the

EMTO method and its self-consistent implementation can be
found in Refs. 10–12, 15, and 16. The EMTO approach en-
sures the accuracy needed for the calculations of anisotropic
lattice distortions in random alloys. It has been applied suc-
cessfully in the ab initio study of the thermophysical prop-
erties of random Fe-based alloys,9,28,35–38 simple- and
transition-metal alloys,12,39–43 and oxide solid solutions.44–47

B. Numerical details

The elastic properties of single crystals are described by
the elements Cij of the elasticity tensor. There are three in-
dependent elastic constants for a cubic lattice: C11, C12, and
C44. They are connected to the tetragonal shear-modulus
C�= �C11−C12� /2 and bulk-modulus B= �C11+2C12� /3.
Dynamical �mechanical� stability requires that48 C44	0,
C�	0 and B	0.

In the present study, the cubic elastic constants of the
random ferromagnetic bcc Fe1−cCrc �0�c�0.2� and
Fe1−mMgm �0�m�0.1� were calculated as a function of the
chemical composition. At each concentration the theoretical
equilibrium volume and the bulk modulus were derived from
an exponential Morse-type function49 fitted to the ab initio
total energies of bcc structures calculated for seven different
atomic volumes. In order to obtain the two cubic shear-
moduli C� and C44, we used volume-conserving orthorhom-
bic and monoclinic deformations as described, e.g., in
Ref. 50.

From the single-crystal elastic constants we obtained the
polycrystalline shear modulus �G� according to the Hill av-
eraging method G= �GV+GR� /2,51 where the Reuss and
Voigt bounds16 are

GR = 5�C11 − C12�C44�4C44 + 3C11 − 3C12�−1,

and

GV = �C11 − C12 + 3C44�/5. �1�

For cubic solids, the polycrystalline bulk modulus is equiva-
lent with the single-crystal bulk modulus, and Young’s
modulus �E� and the Poisson ratio �
� are connected to B and
G by the relations E=9BG / �3B+G� and 
= �3B−2G� / �6B
+2G�. Finally, the polycrystalline elastic Debye temperature
��� was calculated from the longitudinal and transversal
sound velocities obtained from B ,G and the average alloy
density �see, e.g., Ref. 50�.

In the present electronic-structure and total-energy calcu-
lations, the one-electron equations were solved within the
scalar-relativistic and soft-core approximations. The Green
function was calculated for 16 complex energy points distrib-
uted exponentially on a semicircular contour. In the basis set
we included s, p, d and f orbitals �lmax=4�, and the one-
center expansion of the full-charge density was truncated at
lmax
h =8.16 To obtain the accuracy needed for the calculation

of elastic constants we used about 20 000–25 000 uniformly
distributed k points in the irreducible wedge of the ortho-
rhombic and monoclinic Brillouin zones. The electrostatic
correction to the single-site coherent-potential approximation
was described using the original screened impurity model52

with a screening parameter of 0.6. The radii of the overlap-
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ping muffin-tin spheres of Fe, Mg, and Cr were chosen to be
equal to the average atomic sphere radius.

III. RESULTS

A. Elastic properties of ferromagnetic bcc Fe

In order to assess the accuracy and reliability of our the-
oretical tool for pure Fe, in Tables I and II we compare the
present equilibrium lattice parameter, single-crystal elastic
constants, and polycrystalline elastic moduli for ferromag-
netic bcc Fe with former theoretical results and experimental
data.

For ferromagnetic bcc Fe, the present theoretical lattice
parameter �a� agrees with that calculated using the full-
potential linear augmented plane wave �FLAPW� and projec-
tor augmented wave �PAW� methods.21,23 The �1% devia-
tion between these theoretical values and the experimental
lattice parameters17,20 may be ascribed to the employed gen-
eralized gradient approximation,31 which is known to under-
estimate the equilibrium volume of magnetic 3d metals.16,54

A similar deviation is obtained for Cr, for which the present
theoretical lattice constant is 2.85 Å compared to the mea-
sured value of 2.88 Å.55 At ambient conditions, elemental Cr
has an incommensurable antiferromagnetic state, which we
approximate by the commensurable antiferromagnetic B2
structure.56,57

In Table I, we list four sets of single-crystal elastic con-
stants obtained from four different theoretical studies, all of
them employing the generalized gradient approximation for

the density functional. Taking the error bar associated with
such calculation to be the difference between these four in-
dependent full-potential results, we can conclude that the
present method gives accurate results for the elastic proper-
ties of ferromagnetic Fe. On the other hand, when compared
to the experimental data,17,20 we find that all theoretical ap-
proaches overestimate C11 and C� but give accurate values
for C12 and C44. Repeating the EMTO calculation for C� at
the experimental volume, we obtain C�=64.4 GPa, which
demonstrates that the volume effect can account for about
50% of the EMTO error for C�. At the same time, from the
measured Cij values for 4.2 and 300 K �Table I� one can see
that it is very unlikely that the remaining deviations between
theory and experiment to be connected with temperature ef-
fects. We speculate that the error in C� has a complex elec-
tronic structure and magnetic origin, which is not captured
by the present density-functional approximation.

All theoretical polycrystalline elastic moduli for �-Fe,
listed in Table II, were obtained using the Hill averaging
method described in Sec. II. The general agreement between
the five sets of theoretical polycrystalline data is good. The
mean deviation between the EMTO values for B, G, E, and 

and the experimental data at 4.2 K �Ref. 17� is around 7%,
which is typical for what has been obtained for the transition
metals in conjunction with the present density-functional
approximation.16,58 In particular, our approach is found to
give B /G and 
 for bcc Fe in excellent agreement with
experiment.

B. Elastic properties of Fe-Cr alloys

In this section, we investigate the composition depen-
dence of the elastic constants of ferromagnetic bcc Fe1−cCrc

TABLE I. Theoretical and experimental equilibrium lattice pa-
rameter �a in Å� and single-crystal elastic constants �in GPa� for
ferromagnetic bcc Fe. The quoted theoretical methods are FLAPW:
all-electron full-potential linear augmented plane wave �Ref. 21�;
PP: ultrasoft pseudopotentials �Ref. 22�; PAW: projector augmented
wave �Ref. 23� and FPLMTO: full-potential linear muffin-tin orbit-
als �Ref. 24�. In the PP and PAW calculations an earlier version of
the generalized gradient approximation �Ref. 53� was used. The
temperatures for the experimental data �Refs. 17 and 20� are
indicated.

Method a C11 C12 C� C44

Theory EMTO 2.84 297.8 141.9 77.9 106.7

FLAPWa 2.84 279 140 69 99

PPb 2.83 289 118 85.5 115

PAWc 2.84 271 145 63 101

FPLMTOd 2.81 297 148 74.5 123

Expt. 298 Ke 2.87 232 136 48 117

4.2 Kf 2.87 243.1 138.1 52.5 121.9

300 Kf 233.1 135.4 48.3 117.8

aReference 21.
bReference 22.
cReference 23.
dReference 24.
eReference 20.
fReference 17.

TABLE II. Theoretical and experimental polycrystalline elastic
constants �in GPa� for ferromagnetic bcc Fe. For notations see cap-
tion of Table I. The temperatures for the experimental data �Refs. 17
and 20� are indicated. The theoretical results were derived from the
single-crystal data �Table I� using the Hill averaging method �Ref.
51�.

Method B G B /G E 


Theory EMTO 193.9 94.1 2.06 243.0 0.291

FLAPWa 186 85.9 2.17 223.4 0.300

PPb 175 102 1.72 256.2 0.256

PAWc 187 84 2.23 219.2 0.305

FPLMTOd 201 103 1.95 263.9 0.281

Expt. 298 Ke 168 81.8 2.05 211.4 0.290

4.2 Kf 173.1 87.5 1.98 224.7 0.284

300 Kf 167.9 83.4 2.01 214.6 0.287

298 Kg 166 80.7 2.06 208.2 0.291

298 Kh 168.2 83.7 2.01 215.4 0.287

aReference 21.
bReference 22.
cReference 23.
dReference 24.

eReference 20.
fReference 17.
gReference 18.
hReference 19.
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�0�c�0.2� random alloys. This system has been selected
because of the following reasons. First, there are experimen-
tal polycrystalline elastic moduli available for Fe-Cr alloys
for Cr content up to �10 at. %, and thus this system can be
used to establish the accuracy of the EMTO method for the
composition dependence of the elastic constants in Fe-rich
bcc alloys. Second, no ab initio theoretical study of the elas-
tic properties of Fe-rich Fe-Cr alloys has been reported so far
in spite of the fact that these alloys constitute the basis for
stainless steels.

For each Cr concentration c, the elastic constants were
calculated at the corresponding theoretical equilibrium lattice
parameter a�c�. The composition dependence of a�c� is
shown in Fig. 1 along with the experimental data.59,60 Since
the lattice constant of bcc Fe is by �0.019 Å smaller than
that of B2 Cr, based on Vegard’s rule we would predict a
linear a�c� with slope of �a�c� /�c�0.210−3 Å per at. %
Cr. However, both the experimental and the theoretical lat-
tice parameters deviate from this simple linear trend. The
EMTO lattice parameter reaches a maximum value between
7.5 and 10 at. % Cr and remains above the lattice parameter
of pure Fe for all concentrations considered here. Using the
theoretical values below c=0.1, for the slope of a�c� we get
�1.710−3 Å per at. % Cr. This slope is larger than the
average experimental value of �0.510−3 Å per at. % Cr
calculated below 10 at. % Cr,60 but is in perfect agreement
with the former ab initio calculation based on special quasi-
random structures.29

In Fig. 2 and Table III, we display the present theoretical
single-crystal elastic constants Cij�c� for ferromagnetic bcc
Fe1−cCrc as a function of Cr concentration for 0�c�0.2. We
find that C11�c� and C12�c� have local minima around
5 at. % Cr, and these minimal values are by 6% and 10.6%
smaller than those corresponding to pure Fe. C��c� exhibits a
somewhat less pronounced minimum at 2.5 at. % Cr. For Cr
contents close to 20 at. %, the calculated C11�c�, C��c�, and
C44�c� are �2.5, �8.5, and 18.0%, respectively, lager than
those of pure Fe. At the same time, for c=0.2, C12�c� is about
�4% smaller than that of bcc Fe.

It is instructive to compare the calculated alloying effects
on the elastic constants of Fe-rich Fe-Cr alloys with those
estimated from the rule of mixing based on the experimental
data for Fe and Cr. Starting from the experimental elastic
constants of Fe �C11=243.1 GPa, C12=138.1 GPa, and C44
=121.9� �Ref. 61� and Cr �C11=391.0 GPa, C12=89.6 GPa,
and C44=103.2 GPa�,61 a linear rule of mixing predicts the
following slopes: �C11�c� /�c�1.5 GPa, �C12�c� /�c�
−0.5 GPa, and �C44�c� /�c�−0.2 GPa per at. % Cr. Using
the present results for c�0.05 for the average theoretical
slopes we obtain �C11�c� /�c�−4.5 GPa, �C12�c� /�c�
−3.6 GPa, and �C44�c� /�c�1.0 GPa per at. % Cr. Extend-
ing the averaging to all compositions below 20 at. % Cr
�Table III� gives �C12�c� /�c�−1.6 GPa per at. % Cr,
which is in qualitative agreement with the slope estimated
from the rule of mixing. However, even for this large con-
centration interval, �C11�c� /�c remains negative and
�C44�c� /�c positive, which is in sharp contradiction with
the rule of mixing. Therefore, in Fe-rich alloys the simple
rule of mixing fails to describe the actual trends of C11�c�
and C44�c�.

Since no experimental single-crystal elastic constants are
available for Fe-Cr alloy, we use the measured polycrystal-
line data18 to assess the accuracy of our method. The present

FIG. 1. �Color online� Theoretical �EMTO� and experimental
lattice parameter of ferromagnetic bcc Fe-Cr alloys as a function of
Cr concentration. The experimental data are from Ref. 59 �Sutton�
and Ref. 60 �Pearson�. The dashed line is obtained from Vegard’s
rule.

FIG. 2. �Color online� Theoretical �EMTO� single-crystal elastic
constants of ferromagnetic bcc Fe1−cCrc random alloys as a function
of Cr concentration.

TABLE III. Theoretical �EMTO� lattice parameter �in Å� and
single-crystal elastic constants �in GPa� for the ferromagnetic bcc
Fe1−cCrc �0�c�0.2� random alloys.

c a�c� C11�c� C12�c� C��c� C44�c�

0 2.8369 297.84 141.89 77.97 106.73

0.025 2.8426 284.17 131.51 76.33 108.56

0.05 2.8464 279.96 126.87 76.54 112.83

0.075 2.8474 283.52 127.19 78.16 117.51

0.10 2.8471 287.75 127.92 79.91 120.71

0.125 2.8462 292.32 129.54 81.39 122.42

0.15 2.8451 296.81 131.65 82.58 124.06

0.175 2.8433 304.95 137.18 83.89 125.58

0.20 2.8432 305.54 136.28 84.63 125.97
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theoretical polycrystalline elastic parameters for ferromag-
netic bcc Fe1−cCrc alloys are listed in Table IV and compared
to the experimental data18 in Fig. 3. We find that theory
slightly overestimates B�c�, G�c�, and E�c�. This overestima-
tion, however, appears to be almost constant with c, which
indicates that the errors obtained for pure Fe �Table II� are
simply carried over to the random alloys. More importantly,
the average experimental trends for B�c�, G�c�, E�c�, and
B /G�c� are very well captured by the present theory. In par-
ticular, the observed nonlinear behavior of B�c� and B /G�c�
and the average positive slope of G�c� and E�c� are well
reproduced by our results. The trends of polycrystalline elas-
tic moduli are clearly connected to the trends obeyed by the
equilibrium lattice parameter �Fig. 1� and single-crystal elas-
tic constants �Fig. 2�. For instance, the local minimum in
B�c� can partly be attributed to the volume expansion at low
concentrations, whereas the positive slope of E�c� and G�c�
is the consequence of the increasing C44�c� with Cr content.

In Fe1−cCrc solid solutions with c�0.2, the largest alloy-
ing effects in B�c� and B /G�c� with respect to pure Fe are

−8.3% �corresponding to Fe0.95Cr0.05� and −14.2%
�Fe0.875Cr0.125�, respectively. Furthermore, at 20 at. % Cr,
G�c� and E�c� enhance by about 14.1% and 11.8%, respec-
tively, relative to their values for pure Fe. According to the
present B /G�c�, we find that small amount of Cr�c�0.15�
makes the Fe-Cr alloy more brittle62 compared to pure Fe.
Nevertheless, placing the brittle-ductile boundary around
B /G�1.75,35,62 most of the Fe-Cr solid solutions considered
here remain far inside the ductile region.

The present Poisson ratio �
�c�� and the elastic Debye
temperature ���c�� for Fe-Cr alloys are shown in Fig. 4 as a
function of Cr content. The Poisson ratio slightly decreases
with Cr concentration up to 10 at. % Cr, in line with the
experimental data.18 The Debye temperature has a local
minimum at 2.5 at. % Cr, after which exhibits a monotonous
enhancement with Cr content. In Fe0.8Cr0.2, the calculated
Poisson ratio decreases by 8.9% and the Debye temperature
enhances by 6.3% with respect to that for pure Fe.

TABLE IV. Theoretical polycrystalline elastic constants �in
GPa�, Poisson’ ratio �
�, and Debye temperature ��, in K� for the
ferromagnetic bcc Fe1−cCrc �0�c�0.2� random alloys as a func-
tion of Cr content.

c B�c� G�c� B /G�c� E�c� 
�c� ��c�

0 193.9 94.12 2.0598 243.03 0.291 427.41

0.025 182.4 94.27 1.9349 241.25 0.280 426.28

0.05 177.9 96.58 1.842 245.34 0.270 430.40

0.075 179.3 99.79 1.7967 252.53 0.265 437.08

0.10 181.2 102.32 1.7709 258.33 0.262 442.47

0.125 183.8 103.94 1.7683 262.37 0.262 446.08

0.15 186.7 105.39 1.7715 266.09 0.262 449.37

0.175 193.1 106.83 1.8075 270.59 0.266 452.94

0.20 192.7 107.41 1.7941 271.73 0.265 454.11

FIG. 3. �Color online� Theo-
retical �EMTO� and experimental
�Speich� �Ref. 18� polycrystalline
bulk modulus �B�, Young’s modu-
lus �E�, shear modulus �G�, and
B /G ratio for ferromagnetic bcc
Fe1−cCrc random alloys as a func-
tion of Cr concentration.

FIG. 4. �Color online� Theoretical �EMTO� and experimental
�Ref. 18� Poisson’s ratio �upper panel� and theoretical �EMTO� De-
bye temperature �lower panel� of ferromagnetic bcc Fe1−cCrc ran-
dom alloys as a function of Cr concentration.
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From Figs. 1–4, we can see that the elastic properties of
Fe-Cr alloys exhibit some anomalous behavior in the low Cr
region. The local minima in C11�c�, C12�c�, and B�c�, and the
corresponding discontinuities in the first-order derivatives of
G�c�, E�c�, and ��c� around c�0.05 suggest the presence of
anomalous electronic transitions around this concentration.
Recently, Korzhavyi et al.63 reported a Fermi-surface topol-
ogy change in the majority-spin channel in Fe-Cr alloys en-
compassing about 7 at. % Cr. We suggest that the disclosed
anomalous trends of the elastic parameters from Figs. 1–4
are the manifestations of the above topological transition.

Based on our results obtained for Fe and Fe-Cr, we con-
clude that in general the EMTO method reproduces well the
observed alloying effects in ferromagnetic bcc Fe-Cr alloys
with Cr content up to 10 at. %. Therefore, we have confi-
dence in this theoretical approach and use it to study the
elastic properties of Fe-Mg random solid solutions for which
no corresponding experimental data are available yet.

C. Elastic properties of Fe-Mg alloys

According to the experimental phase diagram, the solid
solubility of Mg in Fe, and vice versa, is very small,1 mean-
ing that the formation energy of Fe-Mg alloy should be large
and positive. In Fig. 5 we compare the formation enthalpy of
Fe-Mg with that of Fe-Cr. For the standard states, we use the
ferromagnetic bcc Fe, the antiferromagnetic B2 Cr, and the
experimental hexagonal-close-packed �hcp� Mg with c /a
=1.624. The present enthalpy of formation for Fe-Cr shows a
local negative minimum and becomes positive near 5.5% Cr,
in good accordance with that reported in Refs. 28 and 63.
The enthalpy of formation for Fe-Mg, on the other hand, is
found to increase monotonously up to 10 kJ/mol obtained for
Fe0.90Mg0.10. This result is in line with the predicted enthalpy
of formation for Fe-Mg by de Boer et al.64 and also with that
calculated by Yelsukov et al.7 for Fe0.93Mg0.07.

For the atomic radius of hcp Mg we obtained 1.764 Å,
which agrees well with the experimental value of 1.77 Å.55

Using this atomic radius and that of pure Fe�1.40 Å�, for the

bcc Fe1−mMgm alloys Vegard’s rule predicts a lattice param-
eter with slope of �a�m� /�m�3.610−3 Å per at. % Mg.
The present EMTO results, shown in Fig. 6, give 5.5
10−3 Å increase per at. % Mg. Moderate lattice expansion
upon Mg addition to Fe was also reported by Hightower et
al.4 and Dorofeev et al.5 In their measurements, the average
lattice expansion below m=0.1 was 0.610−3 and 2.7
10−3 Å per at. % Mg, respectively. Thus, similar to Fe-Cr,
the present theoretical �a�m� /�m seems to overestimate its
experimental counterparts. On the other hand, the local ex-
perimental slope between 10 and 12.5 at. % Mg by Hight-
ower et al. reaches 5.410−3 Å per at. % Mg, which is very
close to the present value obtained for random solid solution.
Surprisingly, our calculated density change of 11% obtained
for m=0.1 is in perfect agreement with the average experi-
mental value measured below 10 at. % Mg �Fig. 5 in Ref.
4�.

In the following, we investigate the elastic properties of
ferromagnetic bcc Fe1−mMgm �0�m�0.1� random alloys as
a function of Mg content. The present theoretical single-
crystal elastic constants Cij�m� are listed in Table V and plot-
ted in Fig. 7 as a function of Mg content. We find that all
elastic constants decrease nearly linearly with Mg addition.
The theoretical C11�m�, C12�m�, C��m�, and C44�m� for m
=0.1 change by about −36.3%, −34.2%, −38.2%, and
−8.2%, respectively, compared to the corresponding values
for pure Fe. The monotonously decreasing trends of the

FIG. 5. �Color online� Theoretical �EMTO� enthalpy of forma-
tion for ferromagnetic bcc Fe-Mg random alloy. For comparison,
the enthalpy of formation for Fe-Cr is also shown. The latter has
been multiplied by 10 to match the scale. The predicted value by
Yelsukov et al. �Ref. 7� for Fe0.93Mg0.07 is shown by triangle.

FIG. 6. �Color online� Theoretical �EMTO� lattice parameter of
ferromagnetic bcc Fe-Mg random alloys as a function of Mg con-
centration. The experimental data are from Ref. 4 �Hightower� and
Ref. 5 �Dorofeev�.

TABLE V. Theoretical �EMTO� lattice parameters �in Å� and
single-crystal elastic constants �in GPa� for the ferromagnetic bcc
Fe1−mMgm �0�m�0.1� random alloys.

m a�m� C11�m� C12�m� C��m� C44�m�

0 2.8369 297.84 141.89 77.97 106.73

0.025 2.8489 263.70 125.25 69.22 103.62

0.05 2.8622 235.76 112.67 61.55 100.97

0.075 2.8767 210.97 102.41 54.28 98.903

0.10 2.8922 189.72 93.389 48.17 97.942
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single-crystal elastic constants of Fe-Mg �Fig. 7� are clearly
different from those obtained for Fe-Cr �Fig. 2�, indicating
the absence of electronic topological transition in Fe-rich
Fe-Mg random solid solutions.

Before turning to the polycrystalline elastic moduli, we
discuss the effect of local lattice relaxation �LLR� around the
impurity atoms on the single-crystal elastic constants. The
LLR effect, neglected in the EMTO-CPA calculations, is ex-
pected to become important in systems with large volume
mismatch. Here we use a supercell technique to establish the
order of magnitude of the effect of LLR on the C� elastic
constant of Fe-Mg and Fe-Cr solid solutions. The 222
bcc supercell contained one Mg �or Cr� atom and 15 Fe
atoms. First we calculated the tetragonal elastic constant of
Fe15Mg1 �Fe15Cr1� using ideal bcc underlying lattice with
lattice constant fixed to that obtained in a CPA calculation
performed for the bcc Fe0.9375Mg0.0625 �Fe0.9375Cr0.0625� ran-
dom alloy. Next we relaxed the first eight nearest-neighbor
�NN� Fe atoms around the impurity atom and recalculated C�

for the relaxed structure. In these calculations, we used
�2500 uniformly distributed k points in the irreducible
wedge of the Brillouin zone. Results from the supercell cal-
culations are summarized in Table VI. We find that in
Fe15Mg1 the equilibrium Fe-Mg distance is �0.8% larger
than the equilibrium Fe-Fe bond length in pure bcc Fe. This
figure may be contrasted with �0.1% contraction of the
Fe-Cr distance in the Fe-Cr system relative to the Fe-Fe bond
length. Comparing the tetragonal elastic constant calculated
for the supercell having the ideal bcc structure �Cu�� to that
calculated for the supercell with relaxed Fe-impurity distance
�Cr��, we can estimate the LLR effect in C�. In Fe15Mg1 this
effect is �0.7 GPa and in Fe15Cr1 �0.2 GPa. Since the al-
loying effects for both systems are significantly larger than
the above LLR effects �Tables III and V�, we conclude that
the composition dependence of the elastic parameters of
Fe-Mg and Fe-Cr systems is well captured by the present
EMTO-CPA approach.

The theoretical polycrystalline elastic moduli for ferro-
magnetic bcc Fe1−mMgm �0�m�0.1� random alloys are dis-
played as a function of Mg content in Fig. 8 and Table VII.
Similar to the single-crystal elastic constants �Fig. 7�, the
polycrystalline elastic moduli also decrease with Mg content.
These results could in fact be anticipated if, for instance, we
take into account that the theoretical bulk modulus of hcp
Mg is significantly smaller than that of bcc Fe. However, the

TABLE VI. Results of the supercell calculations for Fe15Mg1

and Fe15Cr1 systems. �NN is the relaxation of the first-nearest neigh-
bor Fe atoms around the impurity atom. Cu� and Cr� �in GPa� are the
tetragonal elastic constants obtained for the supercells without and
with local lattice relaxation, respectively.

System Cu� �NN Cr�

Fe15Mg1 56.61 0.8% 57.33

Fe15Cr1 77.40 −0.1% 77.57

FIG. 7. �Color online� Theoretical �EMTO� single-crystal elastic
properties of ferromagnetic bcc Fe-Mg random alloys as a function
of Mg concentration.

FIG. 8. �Color online� Theo-
retical �EMTO� polycrystalline
elastic properties of ferromagnetic
bcc Fe1−mMgm �0�m�0.1� ran-
dom alloys as a function of Mg
concentration.
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actual slope of B in Fig. 8 is much larger than that predicted
from the �157 GPa difference between the theoretical bulk
moduli of Fe and Mg by assuming a linear composition de-
pendence for B�m�. We find that for m=0.1, B�m�, G�m�,
E�m�, and B /G�m� decrease by about 35.2%, 21.7%, 23.9%,
and 17.3%, respectively, relative to those of pure Fe. Above
7.5 at. % Mg, the calculated B /G�m� ratio of Fe-Mg alloys
drops below the brittle-ductile limit of 1.75 set by Pugh,62

implying that Mg addition makes the ferromagnetic bcc
Fe-Mg alloys brittle.

The theoretical Poisson ratio and Debye temperature of
Fe-Mg are shown in Fig. 9. Both of them exhibit a nearly
linear decreasing dependence on the chemical composition.
At 10 at. % Mg, the Poisson ratio and Debye temperature
are by 12.4% and 13.6%, respectively, smaller than those
corresponding to pure Fe. This Debye temperature drop
when going from Fe to Fe0.90Mg0.1 is expected to give a
phonon-vibration energy contribution which stabilizes the
solid solution. To estimate this effect, we make use of the
high-temperature expansion of the phonon energy.65 Namely,
for two solids with similar Debye temperatures, the vibra-
tional free-energy difference is �Fvib�3kBT��� /��, where
T is the temperature, �� /� is the relative Debye tempera-
ture, and kB the Boltzmann constant. We write the phonon
free energy of formation for Fe1−mMgm as �Fvib�m�
=m�Fvib�m�−Fvib�Mg��+ �1−m��Fvib�m�−Fvib�Fe��, where
Fvib�m�, Fvib�Mg�, and Fvib�Fe� are the vibrational free ener-

gies for Fe1−mMgm, Mg, and Fe, respectively. For m=0.1 we
have ���0.1�−��Fe�� /��Fe��−0.136 and ���0.1�
−��Mg�� /��Fe��0.129, where for the Debye temperature
of Mg we used 327 K.48 Using these relative Debye tempera-
tures, we arrive at �Fvib�0.1��−2.7410−3 T kJ /mol /K
�referring to mole of atoms�. For comparison, the configura-
tion entropy for Fe0.90Mg0.1, evaluated within the mean-field
approximations, is �Fconf�0.1��−2.7010−3 T kJ /mol /K.
It is worth noting that according to Fig. 5, the total thermal
free-energy ��Fvib�0.1�+Fconf�0.1��=−5.4410−3 T
kJ /mol /K would stabilize the random Fe0.90Mg0.1 solid so-
lution at �1840 K, i.e., slightly above the melting point of
Fe.

Finally, for a direct comparison between the elastic prop-
erties of Fe-Cr and Fe-Mg alloys, in Fig. 10 we show the
chemical composition dependence of the bulk modulus and
shear modulus of the ferromagnetic bcc Fe-Cr and Fe-Mg
random alloys for concentrations up to 10 at. % solute.
Whereas the bulk modulus of Fe-Mg alloys reduces in a
nearly linear manner, on the same scale the bulk modulus of
Fe-Cr alloys shows a weak concentration dependence. The
alloying effects on G upon Cr and Mg addition are totally
different. In the Fe-Cr alloys, the shear modulus increases
slowly with Cr amount. At the same time, G decreases sig-
nificantly with increasing Mg concentration. We conclude
that Mg addition reduces to a high degree the elastic moduli
of Fe-Mg random alloys, while Cr has only a moderate im-
pact on the elasticity of �-Fe.

IV. CONCLUSIONS

Using the EMTO method in combination with the
coherent-potential approximation, we have calculated the
single crystal and polycrystalline elastic properties of ferro-
magnetic bcc Fe-Cr random alloys encompassing up to
20 at. % Cr. The present theoretical polycrystalline data for
Fe-Cr reproduce well the experimental trends18 available be-
low 10 at. % Cr, indicating that our theoretical tool is suit-
able to predict the elastic properties of Fe-based random
solid solutions. Assuming a similar ferromagnetic bcc struc-
ture for Fe-Mg, we have investigated the effect of Mg addi-

TABLE VII. Theoretical �EMTO� polycrystalline elastic con-
stants �in GPa�, Poisson’s ratio �
�, and Debye temperature ��, in
K� for the ferromagnetic bcc Fe1−mMgm �0�m�0.1� random
alloys.

m B�m� G�m� B /G�m� E�m� 
�m� ��m�

0 193.9 94.12 2.0598 243.03 0.291 427.41

0.025 171.4 88.15 1.9444 225.75 0.280 411.3

0.05 153.7 82.79 1.8565 210.56 0.272 396.34

0.075 138.6 77.74 1.7829 196.48 0.264 381.77

0.10 125.5 73.66 1.7038 184.83 0.255 369.24

FIG. 9. �Color online� Theoretical �EMTO� Poison’s ratio �up-
per panel� and Debye temperature �lower panel� of ferromagnetic
bcc Fe1−mMgm �0�m�0.1� random alloys as a function of Mg
concentration.

FIG. 10. �Color online� Comparison between the effect of Cr
and Mg on the bulk and shear modulus of ferromagnetic bcc Fe-Cr
and Fe-Mg random alloys calculated using the EMTO method.
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tion on the elastic properties of Fe-rich Fe-Mg alloys.
In the Fe-Cr system, the lattice parameter and elastic

properties exhibit anomalous composition dependence near
5 at. % Cr. We propose that these anomalies are due to the
recently reported electronic topological transition in these
alloys.63 No similar peculiarities are seen in Fe-Mg alloys.
For this system, all elastic parameters decrease in an almost
linear manner with Mg addition. In general, Mg is found to
have a more pronounced impact on the elastic properties of
Fe-based alloys than that of Cr. In particular, the B /G ratio
decreases by 17.3% when 10% Mg is added to bcc Fe, indi-
cating that Mg reduces the ductility of Fe. According to the
classical solid-solution strengthening models,66,67 the large

alloying effects obtained for the Fe-Mg alloys should result
in an enhanced mechanical hardness. These predictions are
subject for further theoretical investigations and call for well
designed experimental studies on the mechanical properties
of Fe-rich Fe-Mg solid solutions.
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