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Ab initio density-functional calculations have been used to study the response of two face-centered-cubic

metals �Al and Cu� to shearing parallel to the close-packed �111� planes along two different directions, �112̄�
and �1̄10�. Two different types of deformations—affine and alias—have been investigated. Under an affine
shear deformation, all atoms are shifted parallel to the shearing direction by a distance proportional to their
distance from the fixed basal plane. In the alias regime, only the top layer is displaced in the shearing direction.
In both regimes, calculations have been performed with �pure shear� and without �simple shear� relaxation. For
a pure alias shear, due to the interaction between the atoms, the displacement propagates through the sample;
this is certainly the most realistic description of the shearing processes. In the pure alias regime, shear
deformation, theoretical shear strength, and stacking fault formations may be described on a common footing.
For small strains �in the elastic region�, affine and alias shears lead to very similar results. Beyond the elastic
limit, relaxation has a strong influence of the response on an applied shear strain. The elastic shear moduli are
significantly larger for Cu than for Al, but a much higher shear strength is calculated for Al, although the shear
strength is limited by the occurrence of a stacking fault instability before the stress maximum is reached. Under

�1̄10� �111� shear the analysis of the atomistic deformation mechanism shows that in this case the formation of

a stacking fault leads to a splitting of the 1
2 �1̄10� dislocation into two partial Shockley dislocations. Due to the

repulsive interaction between the atoms in adjacent close-packed planes, the atoms in the top A layer move

along 1
6 �2̄11� to a position directly above the B layer such that the stable intrinsic stacking fault configuration

is the same for both slip systems. The analysis of the variation in the lattice parameters under strain reveals
significant differences in the relaxation behavior of both metals: Al is very stiff, but Cu is rather soft along the
�112�; in-plane relaxation is very strong for Cu but modest for Al. This much stronger relaxation explains that
while the differences in the unstable stacking fault energies of both metals are only modest, the intrinsic
stacking fault energies differ by as much as a factor of 4. A detailed comparison of the response to shear and
tensile deformations has been performed. A phonon instability of the uniaxial tensile deformation along the

�110� direction has been explained by the close connection with the shear system �112̄� �111�.

DOI: 10.1103/PhysRevB.79.224103 PACS number�s�: 62.20.F�, 61.72.Nn, 62.25.�g

I. INTRODUCTION

High strength and good ductility are the most important
properties of metallic structural materials. The strength of a
material is determined by the maximum stress that the mate-
rial can sustain. If this critical stress is exceeded the material
fails either by fracture or by yielding. For real materials the
strength is controlled by the formation and propagation of
line defects �dislocations� or microcracks. The movement of
dislocations controls the plastic deformation of the material;
the propagation of cracks leads to brittle fracture.1 The ideal
or theoretical strength can be reached only in a perfect single
crystal free of any defects; it is determined solely by the
chemical binding forces holding the atoms together. The
value of the ideal strength depends on the type of deforma-
tion �tension or shear� and the direction of the applied strain.
Theoretically the value of the ideal shear strength �ISS� is
related to the stress necessary for the nucleation of a dislo-
cation and for the formation of stacking faults �SFs�. The
value of the ideal tensile strength �ITS� is determined by the
local stress required for the generation and propagation of a
microcrack. Hence, since plastic deformation is controlled by
the nucleation and propagation of dislocations,2 while brittle

cleavage is initiated by crack formation, the ratio of the ideal
tensile and shear strengths can be used to characterize the
ductility or brittleness of a material.1,3

A model of an edge dislocation can be produced by re-
moving from the crystal half a lattice plane terminating at the
dislocation line and carefully joining back together the two
planes on either side of the missing plane such that the per-
fect crystal lattice is disturbed only in the vicinity of the
dislocation. A screw dislocation can be constructed by choos-
ing a lattice plane terminating at the dislocation line, displac-
ing the upper part of the crystal by a lattice vector parallel to
the line, and joining it again to the lower part of the crystal
such that the crystalline structure is restored everywhere ex-
cept close to the dislocation line. A dislocation is character-
ized by the dislocation-displacement vector b� �or Burgers
vector� defined as follows: �i� construct a closed path defined
by a series of lattice vectors in a perfect dislocation-free
region. �ii� Go through the same series of lattice vectors in a
region where a line defect could exist. If the path fails to
reconnect to the starting point, it surrounds a dislocation. The
lattice vector connecting end and starting points of the path
is the Burgers vector b� of the dislocation. The Burgers vector
is perpendicular to the dislocation line for an edge disloca-
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tion and parallel for a screw dislocation. A shear deformation
where a lattice plane glides over another can be produced by
one or more dislocations. A particular shear deformation is
described by the definition of the glide plane and the direc-

tion of the deformation. E.g., the �112̄� �111� shear system in
a face-centered-cubic lattice describes a relative displace-

ment of two close-packed �111� planes along the �112̄� direc-
tion. For each lattice type there exist a number of experimen-
tally observed slip systems characteristic for the crystal
symmetry.

The results of all investigations consistently indicate that
a �110� �111� shear deformation is the major operative slip
system for face-centered-cubic �fcc� structures.4 The smallest
possible dislocation generated by this shear deformation is
described by the Burgers vector b� = 1

2 �110�. However, the for-
mation of a dislocation with this Burgers vector may be pre-
vented by the splitting of the dislocation into two partial
Shockley dislocations which is favored by the presence of a
stacking fault with a lower misfit energy.4 The ideal fcc lat-
tice consists of a …ABCABCABC… stacking sequence of
close-packed �111� planes �see Fig. 1�a��, and a �110� �111�
slip is realized by moving top layer A over layer C along the

�1̄10� direction, as sketched in Fig. 1�b�. A shift of the atoms
in top layer A over the atoms in the C layer along this direc-
tion leads to a steeper increase in the energy than if the A
atoms are shifted first to the B positions. This can be written

as a splitting of the Burgers vector according to 1
2 �1̄10�

→ 1
6 �2̄11�+ 1

6 �1̄21̄�. The dislocation displacement of type
1
6 �112� is called a Shockley partial and is glissile on the �111�
plane. Such a displacement between layers C and A leads
into a local . . .ABC 	BCA. . . stacking sequence with a SF
marked as 	 . The stacking fault is surrounded by layers
stacked in the same sequence as in a hexagonal-close-packed
�hcp� structure �…BCBC…�.5 Partial dislocations are impor-
tant in twinning reactions which are the predominant defor-
mation mechanism of fcc metals and alloys with a low stack-
ing fault energy �SFE�,6 e.g., Cu.7 However, recently also
experimental observations of partial Shockley dislocations in
nanocrystalline fcc metals with a high SFE �e.g., Al �Refs. 8
and 9� or Pd �Ref. 10�� have been reported. Partial disloca-
tions are also important barriers to dislocation motion.4

In this paper we present ab initio density-functional cal-
culations of the ideal shear strength in fcc metals during
�111� shear deformations in connection with possible stack-
ing faults effects. In the past different methods have been
used for the determination of the ideal strength and for the
calculation of stacking fault energies and the investigation of
dislocation motions. The IS has been calculated by applying
an affine shear strain to the crystalline lattice,11–16 whereas
dislocation studies been based on a supercell approach where
two parts of the cell are displaced against each other14,17–21

leading directly to the calculation of generalized stacking
fault energy �GSFE� curves.22,23 Both concepts have been
used in our study, leading to a unified view of shear strength,
stacking fault energies, and dislocations movement. A similar
synthesis has also been attempted by Finkenstadt and
Johnson.24

II. COMPUTATIONAL METHODOLOGY

Our ab initio total-energy and force calculations are based
on density-functional theory �DFT� as implemented in the
Vienna ab initio simulation package �VASP�.25,26 A gradient-
corrected functional has been used to describe electronic ex-
change and correlations.27 Electron-ion interactions are
treated within the projector-augmented-wave �PAW�
method.28,29 For both elements we used the standard PAW
pseudopotentials �PP� distributed with VASP with reference
configurations 13Al:�Ne�3s23p1 and 29Cu:�Ar�3d104s1. The
plane-wave basis set contained components with kinetic en-
ergies up to 350 eV. The lattice parameter a, the elastic con-
stants Cij, and the shear moduli relating stress and strain
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FIG. 1. �Color online� �a� The geometry of the computational

cell used for the investigation of �112̄� �111� and �1̄10� �111� shear
deformations of fcc metals. The three lattice vectors spanning the

cell are parallel to the �112̄�, �1̄10�, and �111� directions of the fcc
unit cell. Atoms within this cell occupy three close-packed planes
labeled as A, B, and C. The isosurface of the difference charge
density as calculated for Al is shown for a density of 18

�10−3 e /Å3. �b� The smallest possible perfect dislocation 1
2 �1̄10�

is split into two partial Shockley dislocations 1
6 �2̄11�+ 1

6 �1̄21̄� be-
cause a stacking fault leads to a lower misfit energy. This state is
called as an intrinsic stacking fault configuration �ISFC� located at

the 1
12�1̄1̄2�+ 1

6 �1̄21̄� position, what is associated with the spitting

mechanism of the half-perfect dislocation 1
4 �1̄10�.
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along the �112̄� and �1̄10� directions in the �111� plane cal-
culated with these potentials for both metals are collected in
Table I. The shear moduli are defined as

Gu
112 = C55� =

1

3
�C11 − C12 + C44� , �1�

Gr
112 =

1

S55�
=

3C44�C11 − C12�
4C44 + C11 − C12

, �2�

for the �112̄� �111� shear system11,30,31 and

Gu
110 = C44� =

1

6
�C11 − C12 + 4C44� , �3�

Gr
110 =

1

S44�
=

3C44�C11 − C12�
2�C44 + C11 − C12�

, �4�

for the �1̄10� �111� shear system. The good agreement be-
tween theory and experiment shows that a gradient-corrected
functional, combined with the all-electron PAW methods,
yields a very accurate description of the structural and elastic
properties.

The Brillouin zone �BZ� was sampled using a 21�35
�15 and 12�17�7 mesh for Al and Cu, respectively, con-
structed according to the Monkhorst-Pack scheme.34 The in-
tegration over the BZ used the Methfessel-Paxton smearing
method with 0.3 eV smearing width35 or the tetrahedron
method with Blöchl corrections.36 The total energy was cal-
culated with a high precision, converged to 10−6 eV /atom.

The basal plane of the orthorhombic computational cell is
parallel to the �111� plane of the fcc structure; the a� and b�

lattice vectors are parallel to the �112̄� and �1̄10� directions
of the fcc lattice, respectively. The lattice vector c� is perpen-
dicular to this plane and parallel to the �111� direction. The
cell contains six atoms on three close-packed planes, ar-
ranged in a –ABC– stacking sequence �see Fig. 1�. This com-

putational cell has been used for studying both the �112̄�
�111� and the �1̄10� �111� slip systems.

Using this cell we investigated the response of the mate-
rial to shear deformations by applying two different types of
deformation: affine and alias. For an affine shear transforma-
tion all atoms are shifted parallel to the direction of shearing
by a distance proportional to their perpendicular distance

from the fixed basal plane �see Fig. 2�a��. The affine shear
transformation preserves horizontal lines and parallelism
�parallel lines are mapped onto parallel lines�. The affine
shear deformation changes only the lattice vectors, while the
fractional coordinates of the atomic positions within the cell
remain unchanged.

For an alias shear deformation only the top layer of the
cell is displaced in the shear direction, while the atoms in all
other layers remain in their original positions �see Fig. 2�b��.
The designation as “alias shear” is derived from the alias
transformation in which the coordinate system is changed,

TABLE I. Lattice parameter a, elastic constants Cij, and shear modulus G for face-centered-cubic Al and
Cu, compared with experiment �Refs. 32 and 33�. Gu and Gr stand for the unrelaxed ��ij =0 except �13 or �23�
and the relaxed ��ij =0 except �13 or �23� shear constants �see Ref. 30�. Superscripts 112 and 110 denote the
relation to the �112� �111� and �110� �111� shear deformations, respectively. All elastic constants and shear
moduli are presented in GPa units.

a �Å� C11 C12 C44 Gu
112 Gr

112 Gu
110 Gr

110

Al Theor. 4.046 111 56 32 29.2 29.1 30.7 30.5

Exp. 4.045 108 62 28 24.7 24.5 26.5 26.3

Cu Theor. 3.632 180 120 84 47.9 38.0 66.0 52.4

Exp. 3.616 177 125 81 44.4 33.5 62.9 47.5

(a)

(b)

(c)

FIG. 2. �Color online� The schematic view of possible deforma-
tion regimes: �a� the affine shear, �b� the alias shear, and �c� the
regime used commonly for the calculation of GSFE curves-slab
regime.
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leaving vectors in the original coordinate system “fixed”
while changing their representation in the new coordinate
system. This type of deformation assumes that all atomic
positions are represented in the same coordinate system as
the lattice vectors �Cartesian coordinate system�. The result-
ing structure differs from that produced by an affine shear
deformation. The displacement of the top layer at first influ-
ences only the next layer, but a relaxation at a fixed displace-
ment of the upper layer leads to a propagation of the dis-
placement from top→down. In some sense this leads to a
more realistic description of the deformation mechanism
than the affine shear deformation. In particular, this mecha-
nism also permits generation of stacking faults. A similar
type of deformation is commonly used nowadays in theoret-
ical investigations of the nucleation of dislocations. The
energy-displacement curves, known as GSFE curves, are of-
ten calculated by a relative displacement of two slabs of the
crystal in opposite directions, while relaxation processes are
allowed only along the normal vector of the gliding plane.
Figure 2�c� illustrates this type of deformation which is en-
tirely analogous to the alias deformation shown in Fig. 2�b�.

A quasireversible deformation process at zero absolute
temperature was assumed for all types of deformation. For
both affine and alias shear deformations we considered two
modes of shearing, as defined by Ogata et al.,14 pure and
simple shear. Simple shear means that the shear deformation
is not followed by a relaxation of the shape of the sheared
cell and the positions of the atoms. Pure shear implies a full
relaxation of the cell �shape and atomic coordinates�, with
the only constraint that the shearing angle is fixed; i.e., all
components of the stress tensor �ij except �13 or �23 have to

vanish after relaxation for the �112̄� �111� or �1̄10� �111�
shear systems, respectively. Relaxation has been performed
using the external optimizer GADGET developed by Bučko et
al.,37 which allows the use of symmetry-adapted generalized
coordinates. The forces acting on the atoms were computed
via the Hellmann-Feynman theorem;38 the stress tensor act-
ing on the unit cell was computed via the generalized virial
theorem.39,40 The structural relaxation was stopped when all
forces acting on the atoms were converged to within
10−3 eV /Å and all components of the stress tensor �except
�13 or �23� were converged to within 0.05 GPa �note that this
is much smaller than the size of a data point in the stress-
strain curves�.

At each step of a pure shear deformation, the configura-
tion of the previous step was used as a starting point. Here,
an important point is the increment by which the displace-

ment is increased in succeeding steps. For �112̄� �111� shear
deformation the increment in the displacement was in gen-
eral 2.5%, but in all cases we have used a much smaller
increment of 1% around the unstable stacking fault configu-
ration �USFC� in order to locate the occurrence of the stack-
ing fault instability very precisely. A very small increment of
the displacement has also been used for simple alias shear

under �112̄� �111� shear deformation for Cu �see Fig. 3� and

for pure alias shear of both metals under a �1̄10� �111� shear
deformation �see Fig. 8�.

III. RESULTS

The main results of our investigation can be cast into the
form of energy- and stress-displacement curves. These are
shown in Figs. 3 and 8 for the two different slip systems,

�112̄� �111� and �1̄10� �111�, respectively. Each figure shows
a set of four curves corresponding to simple and pure shear
modes for affine and alias deformations. As measure of the
shear deformation we have chosen the value of the displace-
ment of the top layer relative to the bottom layer of the
computational cell. We find that this is more intuitive than a
representation in terms of the engineering shear strain for
which there is no unique definition at finite strain.11 The
displacement is given as �	x�	 / 	b� 	�100%, where x� is the dis-
placement of the end point of lattice vector c� along the Bur-
gers vector b� . We will distinguish between two displace-
ments, � and �, associated with the displacement along the

b� 
b� �112̄�= �112̄�a0 and b� 
b� �1̄10�= �1̄10�a0, respectively,
where a0 stands for the equilibrium lattice constant of the fcc
structure.

In dislocation theory, the deformation is usually measured

in fractions of the partial Burgers vector b�p
b�p
�112̄�= 1

6b� �112̄�

or b�p
b�p
�1̄10�= 1

2b� �1̄10�. With these definitions the basal lattice
vectors of the computational cell can be expressed as

a� �lattice�=
1
2b� �112̄�=3b�p

�112̄� and b� �lattice�=
1
2b� �1̄10�=2b�p

�1̄10�. This al-
ternative scale is shown on the top of graphs. Deformation
energies are given both in meV/atom �left-hand scale� and in
units of mJ /m2 as usual for the GSFE defined as ��x��
=E�x�� /S0, where S0 is surface of the basal plane of the un-
deformed cell �as shown on the right side of graphs�. If a
relaxation of the cell shape is permitted, the area of the basal
plane might be slightly changed. However, corrections to the
stacking fault energies are always smaller than 2%.

A. Š112̄‹ {111} slip system

1. Energy- and stress-displacement curves

The energy- and the stress-displacement curves for Al and

Cu under �112̄� �111� shear deformation are presented in Fig.
3. In the elastic limit �up to 1%� the results obtained with the
different modes of shear deformation are indistinguishable.
Except simple alias shear, the remaining three deformations
produce identical results of up to �10% and �5% displace-
ments for Al and Cu, respectively. It is remarkable that a
simple �unrelaxed� affine shear deformation yields correct
results up to these limits. Pure �relaxed� affine and alias shear
deformations lead to almost identical energies and stresses of
up to �20% and �25% displacements for Al and Cu, re-
spectively.

Beyond this limit, the response to affine and alias defor-
mations is substantially different. While under an affine shear
deformation the stress continues to increase monotonously,
pure alias shear deformation leads to the generation of a SF.
This is not surprising since stacking fault generation consists
in a displacement of two neighboring layers in opposite di-
rections. This is possible in the alias regime but suppressed
by definition in the affine shear regime. A comparison of
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simple and pure shear deformations allows assessment of the
importance of relaxation processes. Under affine shear defor-
mation, relaxation effects are modest up to �12.5% and
�5% displacements for Al and Cu, respectively. Hence re-
laxation processes are much more important for Cu, and the
difference is also illustrative of different relaxation
mechanisms.14,31 In contrast, for alias shear deformation, re-
laxation is very important even in the elastic region.

The deformation curve calculated for simple alias shear is
closely related to the GSFE curves. The first energy maxi-
mum determines the so-called unstable stacking fault energy
�USFE� �USF, which represents the energy barrier for the
generation of a stacking fault. The first energy minimum de-
fines the intrinsic �stable� stacking fault energy �ISFE�. The

USFE under �112̄� �111� shear deformation also represents
the lowest energy barrier for dislocation nucleation, while
under �110� �111� shear at the displacement corresponding to
the intrinsic stacking fault the dislocation dissociates into a
pair of Shockley partials.46 The calculated stacking fault en-
ergies are collected in Table II and are compared to previous
results. We note that available values scatter appreciably, de-
pending on the exchange-correlation functional and the de-
scription of the electron-ion interaction. For Al the wide scat-
ter is partially a consequence of the well-known poor

convergence of total energy of Al with the number of k�
points in the BZ. This is not the case for Cu, where the total
energy can be computed accurately with relatively sparse
k�-point meshes. Agreement is best with recently published
results of Kibey et al.6,42 which were obtained with a com-
parable method. The wide scatter of the experimental stack-
ing fault energies for Al reflects the difficulty in resolving the
Shockley partial dislocations.

For simple alias shear applied to Cu the displacement vec-
tors associated with the �ISF and �USF configurations are
given by 1

6 �112̄�=b�p and 1
12�112̄�= 1

2b�p, respectively. For Al
the situation is different. The ISFC is of course again given
by the partial Burgers vector b�p, but the USFC is found at a
substantially larger displacement and—also in contrast to
Cu—the stress-strain curve is strongly asymmetric. The high
degree of symmetry observed for Cu results from a short-
range interaction, only the relative displacement of the two
top layers is important. For Al the displacement dependence
of energy and strain is modified by long-range interactions
between the layers. Similar results have also been reported
by Ogata et al.14 If the system is allowed to relax �“pure”
shear� for Cu a larger displacement is possible before reach-
ing the unstable stacking fault configuration �see Figs. 3�a�
and 3�b��, while the displacement for the intrinsic stacking
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FIG. 3. �Color online� Energy- and stress-displacement curves under a �112̄� �111� shear deformation in Al �left� and Cu �right� for
different modes of deformation. The labels IS, ISFC, and USFC, mark the displacement, energy, and shear stress for ideal strength, intrinsic,
and unstable stacking fault configurations, respectively. The essential difference in the response of Al and Cu to a shear deformation is that
the value of the IS �determined by an affine shear deformation� is reached before generation of a stacking fault �by an alias shear
deformation� for Cu but not for Al.
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fault is of course still fixed by symmetry. For Al the displace-
ment at the USFC is unchanged by relaxation. Without re-
laxation in the USFC the atoms in two neighboring layers are
exactly superposed. If relaxation is admitted this exact super-
position is avoided as long as possible. The shift of the
USFC is much larger for Cu than for Al, again illustrating the
much more important role of relaxation.

The inflection point on the energy vs strain curve �corre-
sponding to the first stress maximum� for affine shear deter-
mines the ISS,47 provided that no other instabilities occur
before reaching such a large strain. Our values for the ISS of
Al and Cu, together with the corresponding values of the
displacement � �or the engineering shear strain �E�, are com-
piled in Table III, together with the results of previous cal-
culations and experimental estimates. The comparison with
the previous published results is difficult because the results
scatter widely due to different computational methods and
setups, but we note very good agreement with those of Ogata
et al.14 Application of the alias regime of shear deformation
leads to identical results for Cu, while for Al the unstable
stacking fault configuration is reached at a displacement
which is lower than that corresponding to the ISS.

2. Microscopic mechanism of pure alias shear deformation

The microscopic mechanism of deformation under pure
alias shear strain is most directly illustrated by projecting the

structure on the �1̄10� plane. The stacking sequence of three
neighboring layers can be described by a rhombus: for the
…ABC… stacking sequence of close-packed layers in the

fcc lattice the obtuse angle of the rhombus is �=109.4° �i.e.,
the ideal tetrahedral angle�. If this stacking sequence is con-
tinued, all rhombi have the same shape �see Fig. 4�. For the
…BCBC… stacking sequence the rhombus is replaced by a
rectangle ��=90°�. If an alias shear strain is applied to the
top layer, its displacement induces a force on the adjacent
layer which partially follows the displacement of the top
layer and hence exerts force on the next layer. These dis-
placements are visualized by a decreasing obtuse angle of the
rhombi describing the stacking sequence. As long as the dis-
placement of the top layer is only modest, this will lead to a
deformation which is almost identical to that produced by a
pure affine shear; i.e., the angle � will be the same in all
rhombi throughout the computational cell. This homoge-
neous shear deformation applies almost until reaching the
USFC. At a displacement of �21%, the angle in the two
rhombi describing the stacking sequence differs only by 1.3°
for Al; for Cu the difference is smaller than 1% up to the
stacking fault instability. It is important to emphasize that for
Al a large change in the angles of the rhombi at stacking
fault formation �the angles split by 13.3°� is related to a
change in energy of less than 5 meV �cf. Figs. 3 and 5�. To
determine the angles with an accuracy which is significantly
better than 1° would require an accuracy of the total energy
which must be equal to or better than 0.1 meV. This would
be outrageously computationally expensive without yielding
significant new information: with the present data, the onset
of the stacking fault instability is determined with an accu-
racy which is 1% of the displacement or better. The only
open question is whether a slightly inhomogeneous deforma-

TABLE II. Unstable and intrinsic stacking fault energies �in mJ /m2� of Al and Cu for �112̄� �111� shear
deformation, calculated for simple and pure alias shear deformation. More data for comparison can be found
in Ref. 41.

Data source

Al Cu

�USF �ISF �USF �ISF

This work Simple alias shear 169 134 180 41

Pure alias shear 169 126 186 37

Others �GGA-PAW�b 162 130 180 41

�GGA-PAW�d 178 146 164 38

�GGA-US�c 175 158 158 39

�GGA-PAW�f
¯ ¯ 181 41

�LDA-US�a
¯ 134 ¯ ¯

�GGA-US�a
¯ 124 ¯ ¯

�GGA-PAW�a
¯ 122 ¯ ¯

�LDA�e 174 133 ¯ ¯

Experiments Ref. 43 ¯ 120 ¯ ¯

Ref. 44 ¯ 166 ¯ ¯

Ref. 45 ¯ ¯ ¯ 45

aReference 2.
bReference 6.
cReference 14.
dReference 21.
eReference 24.
fReference 42.
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tion �difference in the angle of the rhombi by about 1%�
precedes the formation of a stacking. This question is ex-
tremely hard to answer �it would require not only a dramati-
cally enhanced level of convergence but also a larger super-
cell�, and the results could not be verified experimentally. A
stacking fault is created at a displacement of 21.5%: the
rhombus describing the stacking of the lower three close-
packed layers almost immediately recovers the ideal angle
��=109.9°�, while the angle of the rhombus describing the
stacking in the upper half of the cell relaxes to a smaller
value, �=96.3° �see Fig. 4�. With further increasing dis-
placement, this angle continues to decrease until at the ISFC
it reaches a value of �=90°, signaling the formation of an
. . .ABC 	BCA. . . stacking fault.

The variation in the angle is illustrated in the top panels of
Fig. 5 for Al and Cu. For an affine shear deformation, the
angle decreases linearly with the displacement. Under pure
alias shear the variation is the same for Al up to 16.5% and
for Cu up to 22% displacement �corresponding to 11% and
15.5% engineering strains, respectively�. When a stacking
fault is created, the angle undergoes a bifurcation: the angle

in the rhombus describing the ABC stacking sequence imme-
diately returns to the ideal tetrahedral angle, while the angle
in the rhombus describing the BCB stacking first decreases
discontinuously by about 5° and than decreases continuously
to 90°.

The deformation induced by a pure alias shear is not re-
stricted to a relative displacement of the �111� planes; the
atomic arrangement in these planes is also strongly affected.
For Al and Cu, these deformations of the slip planes are very
different �see Fig. 5�. As already noticed by Krenn et al.30,31

and by Ogata et al.,14 Al is very stiff against relaxation along
the a� 
�112� direction, while for Cu the lattice parameter a
contracts linearly with increasing displacement until a stack-
ing fault is created. Along the b� 
�110� direction Al is also
quite stiff, while for Cu the lattice parameter b increases. The
different relaxation in the �111� plane also leads to a different
variation in the interlayer distances. Shearing naturally leads
to a stretching of the lattice constant c. For Al the resistance
against in-plane relaxation enforces also an increase in the
interlayer distance, while for Cu the distance between the
close-packed layers remains unchanged. For Al, the forma-

TABLE III. The value of the ideal shear strength � �in GPa� for Al and Cu under a �112̄� �111� shear
deformation, calculated for simple and pure affine and alias deformation. The strain at which the limiting
strength is reached is given both in terms of the displacement � �in %� and the engineering shear strain �E

�in %� defined as 	x�	 / 	proj�111��c��	�100%, i.e., in terms of the relation of the displacement to the height of the
computational cell.

Shear Al Cu

Regime Mode Source � �E � � �E �

Affine Simple This worka 30.0 21.2 3.82 22.7 16.0 3.41

Ref. 48g
¯ 20.0 3.60 ¯ 15.7 3.48

Ref. 49b
¯ ¯ 3.00 ¯ ¯ 3.16

Refs. 15 and 20b
¯ 21.0 3.73 ¯ 15.7 3.43

Ref. 14b
¯ ¯ 3.71 ¯ ¯ 3.45

Ref. 14c
¯ ¯ 3.83 ¯ ¯ 3.61

Refs. 11 and 30d
¯ ¯ 3.40 ¯ ¯ 4.00

Pure This worka 28.0 19.0 2.84 19.1 13.5 2.15

Ref. 24f
¯ ¯ 2.72 ¯ ¯ ¯

Refs. 15 and 20b
¯ 20.0 2.84 ¯ 13.7 2.16

Ref. 13e
¯ 18.5 3.33 ¯ ¯ ¯

Ref. 13e,h ¯ 14.5 3.16 ¯ ¯ ¯

Ref. 14b 28.0 20.0 2.84 19.0 13.0 2.15

Ref. 14c
¯ ¯ 2.98 ¯ ¯ 2.23

Refs. 11 and 30d
¯ 14.5 1.85 ¯ 13.0 2.65

Alias Simple This worka 9.5 6.7 0.94 7.8 5.5 1.14

Pure This worka 21.0 14.5 2.60 19.6 13.7 2.11

aGeneralized gradient approximation �GGA�-PAW.
bGGA-US.
cWIEN2K.
dLocal density approximation �LDA�-Troullier-Martins �TM� or Hamann-Schlüter-Chiang �HSC� pseudopo-
tential scheme for Cu and Al, respectively.
eLDA-Goedecker-Teter-Hutter �GTH� pseudopotential schemes.
fLDA.
gGGA-US �for Al� and PAW �for Cu�.
hPhonon instability occurrence.
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tion of a stacking fault does not affect the in-plane lattice
constants, while in Cu the lattice constants a and b jump
back to their values in the ideal fcc lattice already at the
USFC. Beyond the ISFC, the relaxation patterns are the same
as for the unfaulted original structure.

Clatterbuck et al.13 demonstrated that under �112̄� �111�
shear deformation a phonon instability occurs at an engineer-
ing strain of 14.5%. This instability occurs at a wave vector
between 1

3 �111� and 1
2 �111�, with atomic displacements in

the �1̄12� direction; i.e., it results in �1̄12� �111� shear failure
with a periodicity of two or three �111� planes. Under
uniaxial �110� tension a phonon instability develops at 11%
engineering strain. The soft phonon has a wave vector close
to 1

3 �111�; it corresponds to atomic displacements in the

�1̄12� direction. Hence the failure described by the instable

phonon mode is the same as that induced by the �112̄� �111�
shear. Clatterbuck et al.13 suggested that “this is probably
because �110� tension can be visualized as a superposition of

�112̄� �111� shear and an expansion perpendicular to the
shear plane.” The relation between the tensile and shear de-
formation modes will be discussed in detail in the following
section.

3. Relation of Š112̄‹ {111} shear to uniaxial tension along the
[110] direction

The structure defined by the computational cell used for

the modeling of the �112̄� �111� shear deformation can also
be described as a body-centered tetragonal �bct� lattice with
space group I4 /mmm �139� �see Fig. 6 �left��. The lattice
parameters are given by �b1 ,b2 ,b3�= ��2 /2,�2 /2,1�a0. They
represent just another description of the fcc lattice which was
used in our investigations of the response of fcc-like struc-
tures to uniaxial tensile loading along the �110� direction.50

Uniaxial tensile deformation of the fcc lattice along �110�
corresponds to a tensile deformation of the bct cell along the
lattice vector a� .

Figure 6 shows how the bct unit cell is embedded into the

larger orthorhombic cell used in our simulations of the �112̄�
�111� shear deformation. If a �112̄� �111� shear is applied to
the large orthorhombic cell, this corresponds to an elongation
of the lattice vector a� of the bct lattice, i.e., to a �110� tensile
deformation of the fcc crystal. Strictly speaking, not only the
length but also the direction of the lattice vector a� are
changed such that the bct cell undergoes a monoclinic defor-
mation. However, for not too large shear deformation the
relaxation of the atomic positions restores the orthogonality
of the bct lattice vectors. This holds for displacements up to
those where a stacking fault is generated, as shown in Fig.
6�b�. After SF generation the bct cell extending on both sides
of the stacking fault is severely deformed; relaxation can no
longer restore the orthogonality of the lattice vectors. Seen
from the point of view of a tensile deformation of the fcc
lattice along the �110� direction, this process illustrates the
occurrence of a shear instability on the tensile deformation
path.

Figure 7 shows the energy-strain curves and the variation
in the lattice parameters of the bct lattice under uniaxial ten-
sion along the �110� direction for Al �left panel� and Cu
�right panel�; for Al an extended version of these results has
been published very recently.50 Onto the energy-strain curves
under tensile deformation we have mapped the appropriate
energy-strain curves for shear deformation, with the strain
determined according to the change in the length of the lat-
tice vector a� of the bct lattice �note that this is possible only
up to the point where a stacking fault is generated�. The same
definition of the strain has also been used for the mapping of
the variation in the lattice parameters under tensile and shear
loading. For shear deformation we have recorded the results
for pure affine and pure alias shears; for tensile deformation
the results for epitaxial tension �ET� �isotropic biaxial stress
in the �a� ,b�� plane, tetragonal symmetry� and uniaxial tension
�UT� �orthorhombic deformation� are shown. For the alias
regime, the mapping is valid only up to the occurrence of a
SF.

For the energy-strain curves �Fig. 7�a�� we note an exact
coincidence of the high-symmetry configurations �energy
maximum and minimum� on the tensile and affine shear
paths. The different constraints applied to the bct lattice un-
der tensile or shear loading result in slightly different energy-
strain paths at intermediate strains. The energy maximum
corresponds to a metastable and stress-free bct structure with

(a) (b)

(c) (d)

FIG. 4. �Color online� Microscopic mechanism of the �112̄�
�111� shear deformation of Al obtained by the alias regime. �a�
Starting configuration represented by two rhombi in a �112̄� plane
with an obtuse angle of �=109.4°, visualizing the ideal …ABC…
stacking sequence. �b� Configuration close to the generation of a
stacking fault at a displacement of 21.0%. Both rhombi have nearly
identical angles of �=102.3 and 100.1° for the red �dark� and blue
�light� rhombi, respectively. �c� Configuration immediately after
formation of a stacking fault at 21.5% displacement. The red �dark�
rhombus has almost completely recovered its initial shape ��
=109.9°�, while the blue �light� rhombus has been transformed to
another configuration ��=96.3°�. �d� The intrinsic stacking fault

configuration at 33.3% displacement � 1
6 �112̄�=b�p�. The first �red,

dark� rhombus represents the return of the lower half of the cell to
the ideal ABC stacking sequence ��=109.4°�, while the second
�blue, light� rhombus represents the …BCBC…stacking fault ��
=90.0°�.
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space group I4 /mmm �139� reached at 50.0% and 47.2%
shear displacements or 22.6% and 15.0% tensile strains for
Al and Cu, respectively. The close relation between these
two deformation paths is evident. The close relation between
shear and tensile deformations becomes even more evident if
a linear transformation between shear displacement and en-
gineering strain under tension is assumed. The scaling fac-
tors of this transformation are determined by the value of
engineering tensile strain and shear displacement at the en-
ergy maximum; i.e., they are given by 22.6/50.0 for Al and
15.0/47.2 for Cu, respectively. This linear transformation
also allows mapping of the alias shear beyond SF generation
onto the tensile path. Figure 7�b� show that this linear trans-
formation leads to an almost perfect coincidence of the
energy/strain curves for tensile and shear deformations, es-
pecially for Al while for Cu small differences remain. This
analysis shows that the generation of a stacking fault corre-
sponds to the occurrence of a shear instability under tensile
deformation at 10.0% and 8.8% strain for Al and Cu, respec-
tively. This critical strain is in very good agreement with the
results of Clatterbuck et al.13 who found a phonon instability

in Al at �11% engineering tensile strain, resulting in a �1̄12�
�111� shear failure. Our results demonstrate that a similar
phonon/shear instability develops in Cu under an even lower
tensile strain.

The variation in the lattice parameters under strain reveals
significant differences between the relaxation processes in Al
and Cu. In the previous section we have arrived at a similar
conclusion: the relaxation patterns in the �111� planes are
very different: Al is very stiff, but Cu is rather soft along the
�112� direction �parallel to the lattice vector b� common to the
cell used for describing tensile and shear deformations, see
Fig. 6�. This can be now understood from another point of
view. Figure 7�c� demonstrate that for Al, the lattice param-
eter b remains almost unchanged under both shear and ten-
sile deformations up to the occurrence of the SF instability,
whereas it gradually expands for Cu. The relaxation of the
lattice parameter c of the bct cell under shear and uniaxial
tensions is slightly different; shear deformation leads to a
variation in c which is more comparable to the response to
biaxial �epitaxial� tension along the �110� direction. In prin-
ciple this difference is understandable because this direction
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FIG. 5. �Color online� Variation in the structural parameters of fcc Al �left panel� and Cu �right panel� under �112̄� �111� shear
deformation. The top panel shows the variation in the obtuse angle of two rhombi characterizing the stacking sequence �see Fig. 4�. The
lower panels show the variation in the lattice parameters of the computational cell as a function of the displacement. The open symbols stand
for the z component of c�, i.e., the height of the computational cell.
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is under compression during shear deformation causing a
steeper decrease with increasing strain. This also explains the
small differences in the energy-strain curves under affine
shear and tensile deformations �Fig. 7�a��.

The same effect also explains that for Al the response to
epitaxial and uniaxial tensile deformations is very different,
while for Cu the two tensile deformation paths are much
more similar. At the energy maximum along the epitaxial
deformation path the symmetry is body-centered-cubic �bcc�;
if the volume is conserved, the bcc structure is reached at a
strain of ��62−1��100%=12.25% and has a lattice param-
eter of 1 /�32�a0=0.794�a0. Due to the small volume dif-
ference between the fcc and bcc phases, the bcc structure is
realized at a strain of 13.2% and 12.5% for Al and Cu, re-
spectively. Beyond the energy maximum the energy de-
creases to a local minimum coincident with the local maxi-
mum along the uniaxial deformation path. The two extrema
represent energetically degenerate tetragonal structures
�space group I4 /mmm, no. 139� differing in the orientation
of the tetragonal axis. A tetragonal structure T1, with a=c, is
realized under uniaxial tension or shear deformation, while
epitaxial tension leads to a structure T2 with b=c �see Fig.
7�c��. This indicates that the potential-energy surface is very
flat at this point. For Cu, the energy difference between these
tetragonal phases and the bcc structure is only about 2 meV/
atom, but it is nearly 30 meV for Al. Under slightly increased
uniaxial strain, phase T1 transforms to another tetragonal
phase; for details we refer to our earlier work �Ref. 50�.

The important result of this comparative analysis of shear-
ing and uniaxial tensile deformations is to demonstrate that
under uniaxial tension a shear instability occurs for Al at an
engineering strain of �10.0% ��is�3.8 GPa�, lower than
the strain at the ideal tensile strength of 13.6% ��is
=4.2 GPa�.50 The situation for Cu is more difficult since
both mapping methods of the shearing on a tensile deforma-

tion do not work as well as for Al. Depending on the scaling,
the shear instability occurs at strain of �6.2% or �8.8%.
The ideal tensile strength �ITS� under uniaxial tension along
the �110� direction is reached at strain of �6.2% ��is
=4.6 GPa�. Hence, the shear instability in Cu can coincide
with the position of ITS or can be slightly beyond. However,
we note again that this is just qualitative information based
on our mapping methods. For Al, where the mapping works
well and the SF instability occurs sufficiently before the ITS,
the situation seems to be quite clear. For Cu, a final statement
would be made with caution; a detailed analysis of both pro-
cesses is required.

Another possible description of the change in the bct lat-
tice is to use the length of the c� lattice vector, which is under
permanent compression during the shear deformation. This
process can be seen as uniaxial compression along the �100�
direction; a more detailed analysis will be published later.

B. Š1̄10‹ {111} slip system

1. Energy- and stress-displacement curves

The energy- and stress-displacement curves obtained for

Al and Cu under a �1̄10� �111� shear deformation are shown
in Fig. 8. A detailed analysis leads to similar conclusions as

for the �112̄� �111� shear deformation. In the elastic region
there is no difference between simple and pure, and between
affine and alias shears. For larger strains, the response of Al
and Cu differs substantially. While for Al the stress depends
linearly on the applied strain up to displacements reaching
nearly 20% �except the simple alias shear�, for Cu differ-
ences between the affine and alias regimes appear already at
modest displacements. Common to both metals is the identi-
cal response to pure affine and alias shears up to a displace-
ment of �35% and �41% for Al and Cu, respectively. For
larger strains stacking faults are created in the alias regime.

For this slip system, the formation of a stacking fault

leads to a dissociation of the 1
2 �1̄10� dislocation into two

partial Shockley dislocations. The splitting of the dissocia-
tion is caused by the possibility of forming an inequivalent
stacking fault with a lower misfit energy. Figure 1�b� shows
schematically this displacement path. It is evident that the
shift in top layer A by 50% leads to an energetically unfa-
vorable position; for a simple alias shear this corresponds to
an energy maximum at the USFC. Upon relaxation �i.e., in
the pure alias shear mode� the atoms in layer A move along

the 1
12�1̄1̄2�+ 1

6 �1̄21̄� direction to a position directly above
the atoms in the B layer. This results in the formation of an
. . .ABC 	BCA. . . stacking sequence of the close-packed �111�
planes. In the pure alias shear regime the stable intrinsic
stacking fault configuration �ISFC� is reached at a displace-
ment of 50 %.

The relation between the USFC and ISFC and the influ-
ence of relaxation on the location and energy of the USFC
are significantly different for both slip systems. In both
cases, the location of the ISFC is determined by the length of

the partial Burgers vector b�p, and this coincides for the �1̄10�
�111� shear deformation with the USFC if relaxation is sup-

pressed �simple alias shear�. In contrast, for �112̄� �111�

(a)

(c)

(b)

a

b

c

FIG. 6. �Color online� Left panel: two body-centered tetragonal
cells describing an fcc lattice embedded into the large orthorhombic

cell used for the modeling of a �112̄� �111� shear deformation �cf.
Text�. The right panel shows the deformation of the bct cells under
a shear deformation: �a� the starting configuration. �b� The configu-
ration at 21.0% displacement, just before the generation of stacking
fault. �c� The configuration at 21.5% displacement immediately af-
ter creation of the stacking fault.
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shear, the USFC under simple alias shear is reached at a
displacement corresponding to �0.5→0.6�b�p, which is
equal to �for Al� or even smaller than �for Cu� the displace-
ment at which the USFC under pure alias shear is reached.

Hence for the �1̄10� �111� slip system relaxation has a drastic
influence on the unstable stacking fault configurations and
energies. From values of 503 and 735 mJ /m2 calculated for
simple alias shear, the stacking fault energy is reduced to 226
and 196 mJ /m2 under pure alias shear for Al and Cu, re-
spectively. The USFC is also reached at much smaller dis-
placements, at �35% and �41% for Al and Cu, respectively,
if relaxation is admitted �see Table IV�. In contrast, the po-

sition of ISFC is fixed at b�p= 1
2 �1̄10�a0 and the intrinsic

stacking fault energy necessarily agrees with the value cal-

culated for �112̄� �111� shear deformation, i.e., 126 and 37
meV for Al and Cu, respectively. Due to the splitting of the

dislocation into two Shockley partials, the �1̄10� �111� shear

deformation leads to the same ISFC than a �112̄� �111� shear

deformation—in agreement with experimental observations.

The energy-displacement profiles for the �1̄10� �111� and

�112̄� �111� slip systems can be mapped onto each other if
the initial and ISF configurations are matched. The profiles

for �112̄� �111� shear are superposed in Fig. 8 to those under

the �1̄10� �111� shear �open symbols�. The comparison shows

that under the �112̄� �111� shear the instability under pure
alias shear is always reached at a smaller displacement than

under the �1̄10� �111� shear and followed by a more pro-
nounced relaxation after slip. The important point is that the
energy maxima �i.e., the USF energies under pure alias
shear� are almost the same for both slip systems �the differ-
ence is slightly larger for Al than for Cu�; this indicates that
both mechanisms for the formation of a stacking fault can

coexist. However, for a �112̄� �111� shear deformation, the
stacking fault is generated already at a smaller displacement

	b�p
�112̄�	=�6 /6�a0 and 	b�p

�1̄10�	=�2 /2�a0.
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FIG. 7. �Color online� �a� and �b� The energy-strain curves and �c� the variation in the lattice parameters of the bct cell under �112̄� �111�
shear deformation mapped onto the results obtained for uniaxial tension along the �110� direction �see Ref. 50�. The left side of the figure
shows the results for Al; the right side shows the results for Cu. In panels �a� and �c� the displacement under tensile deformation has been
measured in terms of the change in the length of the lattice vector a of bct cell; in panel �b� a linear relation between the strains under shear
and tension has been assumed �cf. text�. UT stands for uniaxial tension ��=�1�, ET stands for epitaxial tension ��=�1+�2�, and UC stands
for uniaxial compression ��=−�1�. The vertical dashed lines indicate the strain at the USFC and at the common energy maximum under
affine shear and uniaxial tensile deformations.
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The ideal strength is defined by the stress maximum �or
the inflection point on the energy-displacement curves�; the
values are collected in Table V. We note a substantial differ-
ence between Al and Cu. For Al under alias shear, a stacking
fault is generated before the stress maximum under pure af-
fine shear is reached; the ideal shear strength is reduced from
3.47 GPa at 50% displacement to 3.07 GPa at 41%. The
shear strength is even much lower under simple alias shear.
In contrast for Cu the stress maximum is reached before a
stacking fault is generated, the ideal strength is exactly the
same under pure affine and alias shears �see Table V�, it is

only slightly lower than under simple alias shear. The ideal
strength under �1̄10� �111� shear is higher by about 20% than
under the �112̄� �111� shear if relaxation is allowed �cf.
Tables III and V�.

Finally, we note the extreme importance of relaxation for
this shear system, especially for Cu. As will be discussed in
more detail in the next subsection, both alias and affine
shears lead to large changes in the volume and shape of the
unit cell. Figure 8 shows for comparison the energy-
displacement and stress-displacement curves �denoted as
FAA� where during the relaxation all lateral shifts are sup-
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FIG. 8. �Color online� Energy- and stress-displacement curves under a �1̄10� �111� shear deformation for Al �left� and Cu �right�,
calculated for different deformation modes. The labels IS, USFC, and ISFC mark the ideal strength, unstable, and intrinsic stacking fault

configurations. The dashed lines show for comparison the energy- and strain-displacement curves calculated for �112̄� �111� shear �cf. text�.
The abbreviation FAA �fixed all angles� denotes curves where all lateral shifts are suppressed and where the angles of the computational cell
are kept constant.

TABLE IV. Stacking fault energies �in mJ /m2� for Al and Cu for �1̄10� �111� shear deformation.

Data source

Al Cu

�usf �isf �usf �isf

This work Simple alias shear 503 ¯ 735 ¯

Pure alias shear 226 126 196 37

Pure alias shear �FAA� 234 191 313 156

Others �LDA�a 250 ¯ ¯ ¯

aReference 46.
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pressed and where the angles of the computational cell are
kept constant. This implies that there are no atomic rear-
rangements in the basal plane. This restricted relaxation
leads to a large increase in energy and strain; the profiles are
similar to those for a simple alias shear nearly up to the
generation of a stacking fault.

2. Microscopic mechanism of alias pure shear

The microscopic mechanism for a �1̄10� �111� shear de-
formation differs in characteristic aspects from that under a

�112̄� �111� shear. Figure 9 shows the displacements of the

atoms in the A, B, and C layers during the �1̄10� �111� shear
deformation. The small black circles indicate the actual po-
sitions at each step of displacement after a full relaxation.

Initially the displacement of the A atoms follows the �1̄10�
direction of the applied shear strain indicated by the arrow.
The shift in the A layer also induces a smaller shift in the
underlying C and B layers. At a sufficiently large displace-

ment a repulsive interaction between the A atoms and those
in the C layer begins to be felt. Due to this repulsive inter-
action the displacement of the A atoms develops a compo-

nent along the �1̄1̄2� direction. The A atoms approach a po-
sition above the atoms in the B layer. The atoms in the C and
B layers follow the displacement of the A atoms with a re-
duced amplitude. Under increasing strain the displacements
increase until the unstable stacking fault configuration is
reached. At this point the A atoms jump to a position above
the atoms in the B layer; but because these atoms have also

been displaced in the �1̄10� direction, the position of the A
atoms immediately after stacking fault generation is dis-
placed from the ideal stacking position. The relaxation under
further increasing strain brings the atoms in all layers back to
their ideal sites in the ISFC �marked by white diamonds in
Fig. 9�.

The position of the atoms in the A layer can be described

as P� = P� �� ,��=�b�p
�112̄�+�b�p

�1̄10�, i.e., as a superposition of the

displacements in the two orthogonal directions �1̄10� and

�1̄1̄2�. If �=0, the A atoms are shifted only in the direction
of the applied shear strain; i.e., the influence of the repulsive
interactions with the C atoms is ignored, e.g., by applying an
additional constraint �fixed angles of the computational cell�.
The energy- and stress-displacement curves computed under
this constraint are presented in Fig. 8. It is evident that this
constraint leads to a strong increase in energy and stress at a
fixed displacement, approaching the values calculated for
simple affine shear.

The second limiting case is described by �=−�; i.e., the

displacement of the A atoms under �1̄10� �111� shear is fully

redirected into the �1̄21̄� direction because of a very strong
repulsive interaction even at small strain. The stronger the
repulsive interaction, the more the atomistic displacement

patterns under �1̄10� �111� and �112̄� �111� shear deforma-
tions will be similar.

The common feature of both slip systems is the ISFC

formed at P� �− 1
2 ,1�=− 1

2b�p
�112̄�+b�p

�1̄10�= 1
12�1̄1̄2�+ 1

6 �1̄21̄�
= 1

4 �1̄10�. This decomposition of the displacement vector of

TABLE V. The value of the ideal strength � �in GPa� for Al and Cu for �1̄10� �111� shear deformation.
The position of � can be represented as value of displacement � �in %� or engineering shear strain �E �in %�
defined as 	x�	 / 	proj�111��c��	�100%, i.e., division of the displacement and height of the computational cell.

Shear Al Cu

Regime Mode Source � �E � � �E �

Affine Simple This worka
¯ ¯ ¯ ¯ ¯ ¯

Ref. 49b
¯ ¯ 3.77 ¯ ¯ 5.90

Pure This worka 50.0 20.4 3.47 28.0 11.4 2.51

Pure �FAA� This worka 50.0 20.4 3.64 60.0 24.5 5.55

Alias Simple This worka 22.5 9.2 1.73 26.0 10.5 3.04

Pure This worka 41.0 16.7 3.07 28.0 11.4 2.51

Pure �FAA� This worka 40.0 16.3 3.21 40.0 16.3 5.34

aGGA-PAW.
bGGA-US.

3b/2 b b/2 0 -b/2
-a/2
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FIG. 9. �Color online� Displacement of the atoms in the A, B,

and C �111� layers of fcc Al under a pure alias �1̄10� �111� shear �cf.
text�.

SHEAR DEFORMATION, IDEAL STRENGTH, AND… PHYSICAL REVIEW B 79, 224103 �2009�

224103-13



the A atoms describes the splitting the dislocation into two
Shockley partials. For the ISFC the positions of the atoms in
the A, B, and C planes are marked by white diamonds in Fig.
9. This demonstrates that after a large displacement from
their ideal positions at intermediate strain, the atoms in the C
and B layers return to their ideal positions after stacking fault
generation and full relaxation. The state of maximal distor-
tion is very close to the USFC; the values of � for atoms in
the A, C, and B layers are �−0.33 /−0.13 /−0.09� and
�−0.62 /−0.25 /0.01� for Al and Cu, respectively. The corre-
sponding values of � �measuring the displacement in the di-
rection of the applied shear strain� are �0.84/0.45/0.21� and
�0.87/0.48/0.23�. Al and Cu differ mostly in the values of �;
i.e., because of a stronger repulsive interaction the atoms in
the top A layer of Cu are much more redirected to move
along the �1̄21̄� direction. The displacement of the atoms in
the A layer up to SF generation is described by �Al

A 0.05�
−0.52�2 for Al and by �Cu

A −0.29�−0.54�2 for Cu. The im-
portant difference is seen in the linear term; at small dis-
placements the Al atoms move essentially in the direction of
the applied strain, while the Cu are already pushed toward

the �1̄21̄� direction. This is also reflected in the change in the
cell shape under applied shear strain �see below�. The differ-
ent response of both metals is also reflected in the propaga-
tion of the displacement from the top to the underlying lay-
ers; the displacement amplitude of the C layer is almost
twice as large for Cu than for Al, but the B layer is displaced
only for Al, while it remains almost stationary for Cu �see
the values of � at the USFC�.

The ISFC can be represented in a similar way as for a

�112̄� �111� shear deformation where we have described the
variation in the stacking of the close-packed layers in terms
of two interpenetrating rhombi. For a fcc stacking sequence
the obtuse angle of the rhombus is 109.5°, while for a hcp
stacking sequence it becomes 90° �see Fig. 4�. These rhombi

are in fact projections of parallepipeds onto the �112̄� plane.

Under the �112̄��111� shear deformation the obtuse angles of
these rhombi first decrease continuously, while at stacking
fault generation a discontinuous change takes place; upon
relaxation the angle describing the stacking fault approaches
90°, while that describing the stacking of the underlayers

returns to its initial value. Under a �11̄0� �111� shear defor-
mation the two parallelepipeds are not only sheared but also

displaced in the �112̄� direction. The combined change due to
shearing and lateral displacement is visualized in Fig. 10 for
the ISFC �which agree for both slip systems�.

The development of the lattice parameters of the compu-
tational cell under increasing strain is shown in Fig. 11. This
is further illustration of the difference in the response of Al

and Cu to shear loading. Under the �112̄� �111� shear defor-
mation the shape of the cell is monoclinic at all displace-

ments; under the �1̄10� �111� shear the symmetry is reduced
to triclinic. The angle � increases linearly with the displace-
ment under both affine and alias shears. For Al, the angles 	
and � undergo only small variations up to stacking fault
generation, while for Cu 	 increases and � decreases. For Al,
the in-plane lattice constants a and b remain almost un-
changed, while for Cu a increases, while b decreases with

the applied strain. The response to affine and alias shears is
identical almost up the USFC. The results illustrate that in-
plane relaxation is strong for Cu and modest for Al �as al-
ready discussed above�. Due to the much higher stiffness of
Al against in-plane distortions, the lattice constant c in-
creases much more strongly for Al than for Cu.

IV. DISCUSSION AND CONCLUSION

We have used ab initio density-functional calculations to
investigate the response of two fcc metals, Al and Cu, to
shear deformation parallel to the close-packed �111� planes

along the �112̄� and �1̄10� directions. The simulations were
based on periodically repeated cells �i.e., having no free sur-
face� consisting of three �111� fcc layers. Two different re-
gimes of shear deformation have been considered: affine
shear where the crystal undergoes a homogeneous deforma-
tion of the lattice, and alias shear where only the top layer of
the computational cell is displaced and the deformation
propagates through the crystal due to the interaction between
the atoms in adjacent layers. The alias regime provides a
more realistic description of the shear deformation where an
external strain is applied to the top layer of a sample. In
addition, the alias regime allows the formation of stacking
faults such that shear deformation, theoretical shear strength,
and stacking fault formation can be discussed on a common
footing. In both the affine and alias regimes, studies for
simple and pure shear deformations �as defined by Ogata et
al.14� have been considered. Simple shear means that relax-
ation of the shape of the computational cell and of the inter-
nal coordinates of the atoms after each deformation step is
excluded, while pure shear implies a full relaxation such that

all elements of the stress tensor except �13 �for �112̄� �111�

FIG. 10. �Color online� Arrangement of the atoms in the com-
putational cell at 0% �top row� and 50% �bottom row� displacement

under a �11̄0� �111� shear deformation. This configuration corre-
sponds to another representation of the intrinsic stacking fault con-

figuration under �112̄� �111� shear deformation �cf. Fig. 4�. The
stacking sequence in triplets of close-packed planes is represented
by two interpenetrating parallelepipeds viewed under different
angles �cf. Text�.
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shear deformation� or �23 �for �1̄10� �111� shear� vanish. The
differences in the shear deformation between the two metals
due to the different character of the interatomic interactions
in the simple metal Al and in the noble metal Cu are most
evident in the pure alias regime.

In the elastic limit, i.e., for small applied strains, pure
affine and alias deformations lead to similar energy-strain
and stress-strain curves, but for larger strain the distinction
between both regimes becomes crucial. Simulations in the
pure alias mode demonstrate that for both slip systems in Al
the unstable stacking configurations are reached before the
stress maximum; i.e., the theoretical shear strength of Al is
limited by stacking fault formation. For Cu, the strain corre-
sponding to the theoretical shear strength is smaller than the
unstable stacking fault configuration. For both metals the

ideal strength is higher by about 20% under �1̄10� �111� than

under �112̄� �111� shear if the system is allowed to relax. The
ideal shear strength of Al is higher than for Cu—in contrast

to the much higher shear moduli of this metal.
Under the �1̄10� �111� shear the analysis of the atomistic

deformation mechanism shows that in this case the formation
of a stacking fault leads to a splitting of the 1

2 �1̄10� disloca-
tion into two partial Shockley dislocations. Due to the repul-
sive interaction between the atoms in adjacent close-packed
planes, the atoms in the top A layer move along 1

12�1̄1̄2�
+ 1

6 �1̄21̄� to a position directly above the B layer such that the
stable intrinsic stacking fault configuration is the same for
both slip systems.

For both slip systems, the analysis of the variation in the
lattice parameters under strain reveals significant differences
in the relaxation behavior of both metals: Al is very stiff, but

Cu is rather soft along �112̄�; in-plane relaxation is very
strong for Cu but modest for Al. This much stronger relax-
ation explains that while the differences in the unstable
stacking fault energies of both metals are only modest, the
intrinsic stacking fault energies differ by as much as a factor
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FIG. 11. �Color online� Variation in the shape of the computational cell for Al �left panels� and Cu �right panels� under the �1̄10� �111�
shear deformation. The top panels show the variation in the obtuse angles of the two rhombi used to describe the stacking of the close-packed
planes �cf. Fig. 10 and text�. The lower panels show the variation in the lattice parameters a, b, and c and of the angles �, 	, and � of the

computational cell as a function of the displacement under the �1̄10� �111� shear deformation. The open symbols show the variation in the
z component of c�, i.e., of the height of the computational cell �cf. Text�.
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of 4. Interesting conclusions can also be derived from the
comparison of the energy-strain curves under the �112̄� �111�
shear deformation and uniaxial or epitaxial tensile deforma-
tion along the �110� direction. It was shown that the energy-
strain curves for tensile and shear deformations can be
mapped on each other, demonstrating that the generation of a
stacking fault corresponds to the occurrence of a shear insta-
bility under tensile deformation at a critical strain, in agree-
ment with the finding of Clatterbuck et al.13 reporting a pho-
non instability under tensile strain resulting in shear failure.

The differences observed in the theoretical strength and
stacking fault energies, as well as the differences in the re-
laxation behavior, are directly related to the bonding proper-
ties of Al and Cu. These differences are correctly described
by density-functional calculations which account correctly

for all relevant bonding effects �s-d hybridization in Cu,
many-electron effects in Al, etc.�. The success of the present
study opens the way to ab initio investigations of shear de-
formations in transition-metal compounds, where covalent
bonding effects prevent a description in terms of classical
force fields, as demonstrated by our investigations of tensile
loading.51
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