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We report intimate relations between topological properties of full-gapped spin-triplet superconductors with
time-reversal invariance and the Fermi surface topology in the normal states. An efficient method to calculate
the Z2 invariants and the winding number for the spin-triplet superconductors is developed and connections
between these topological invariants and the Fermi surface structures in the normal states are pointed out. We
also obtain a correspondence between the Fermi surface topology and gapless surface states in the supercon-
ducting states. The correspondence is inherent to spin-triplet superconductivity.
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Search for possible states of quantum matter is one of the
central issues in condensed-matter physics. In addition to
local order parameters, gapped states can be characterized by
topological invariants which are constructed from the wave
functions. The quantum-Hall state is a prominent example of
such topological states in which the Hall conductance is
identified with the topological number introduced by Thou-
less, Kohmoto, Nightingale, and den Nijs �TKNN�.1 While
the TKNN number is nontrivial only when the time-reversal
symmetry is absent, recently new topological invariants,
namely, the Z2 invariants, were introduced in order to distin-
guish a topological state with time-reversal invariance from
ordinary band insulators.2–8 For such a “topological insula-
tor,” the bulk-edge correspondence between the topological
invariants in the bulk and gapless edge �or surface� states on
the boundary was discussed in a similar manner to the
quantum-Hall state.2,5,9 The topologically protected gapless
state is an origin of dissipationless �spin� Hall effects which
inspire an application to spintronics.10,11

In this paper, using the topological invariants, we study
topological properties of another class of gapped systems,
spin-triplet superconductors. Although conventional s-wave
superconductors are topologically trivial, it is known that an
unconventional superconductor can be topologically
nontrivial.12–14 In the following, we will develop a powerful
method to evaluate the topological invariants for spin-triplet
superconductors and find an intimate relation between the
topological properties in the spin-triplet superconducting
state and those in the normal state. In particular, from topo-
logical arguments based on the bulk-edge correspondence,
we derive formulas between the gapless surface �edge� state
on the boundary of the three-dimensional �3D� �two-
dimensional �2D�� spin-triplet superconductor and the topo-
logical invariants of the Fermi surface in the normal state.
Although the number N0 of the gapless surface �or edge�
states itself depends on the details of the gap function, it will
be shown that the index �−1�N0 does not depend on them and
is directly related to the Fermi surface topology in the nor-
mal state. We also introduce a tight-binding lattice model and
confirm the results by numerical calculations.

In the following, we consider mainly full-gapped spin-
triplet superconductors with time-reversal invariance. A gen-
eralization to those without time-reversal invariance will be

mentioned in the last part of this paper briefly.
Let us start with the single-band description of a spin-

triplet superconducting state with time-reversal invariance.
�Generalization to the multiband description is presented
later.� The Hamiltonian H of a spin-triplet superconductor in
a single-band is given by

H = �
k,�

��k�ck,�
† ck,� +

1

2 �
k,�,��

������k�ck,�
† c−k,��

† + H.c.� ,

�1�

where ck,�
† �ck,�� denotes a creation �annihilation� operator of

the electron, ��k� the dispersion of the electron in the normal
state, and ��k� the gap function given by ��k�= id�k� ·��2.
d�k� are odd functions and � are the Pauli matrices. By
rewriting H as

H =
1

2�
k

ck
†H�k�ck, ck

† = �ck,�
† ,c−k,�� , �2�

it is found that the spin-triplet superconducting state is de-
scribed by the 4�4 Bogoliubov-de Gennes �BdG� Hamil-
tonian

H�k� = ���k�12�2 ��k�
��k�† − ��k�12�2

� . �3�

We assume that the normal state has the inversion symmetry
and the time-reversal invariance, so ��−k�=��k�. From the
time-reversal invariance of H�k�,

�H�k��−1 = H�− k��, � = �i�2 0

0 i�2
� , �4�

d�k� should be real. Eigenstates of H�k� with negative ener-
gies E�k��0 are occupied in the ground state of the super-
conducting state.

The essential ingredient of our argument is the following
“symmetry” for the spin-triplet superconductor. Since the
parity of the gap function is odd, d�−k�=−d�k�, the BdG
Hamiltonian of the spin-triplet superconductor has the sym-
metry
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	H�k�	† = H�− k�, 	2 = 1 �5�

with

	 = �12�2 0

0 − 12�2
� = 12�2 � 
3. �6�

Using this, we will study topological properties for the spin-
triplet superconductor.

Let us consider special points k=�a in the Brillouin zone
which are time-reversal invariant and satisfy −�a=�a+G for
a reciprocal-lattice vector G. In terms of the primitive
reciprocal-lattice vectors b j, the time-reversal-invariant mo-
menta �a are expressed as

�a=�n1,n2� = �n1b1 + n2b2�/2 for two dimensions, �7�

�a=�n1,n2,n3� = �n1b1 + n2b2 + n3b3�/2 for three dimensions,

�8�

with nj =0,1. At these momenta, the time-reversal invariance
�Eq. �4�� reduces to �H��a��−1=H��a�� since H�k� satisfies
H�k+G�=H�k�. This implies that an occupied eigenstate
�un��a�	 �n=1,2� has the same energy as its Kramers partner
��un��a�	�. In addition, from the additional symmetry �Eq.
�5��, we have �H��a� ,	�=0. So the Kramers doublet of the
occupied states has the same eigenvalue of 	. The eigen-
value of 	 is given by

�a = − sgn ���a� , �9�

since H��a�=���a�	.
The eigenvalues 
�a� have the following interesting prop-

erties: �a� they are defined only at the time-reversal momenta

�a�; �b� they only take �a= 1; �c� their values can change
only when the gap of the system closes. To see the last prop-
erty �c�, consider the quasiparticle spectrum E�k�
= ���k�2+d�k�2 which is obtained by diagonalizing H�k�.
The gap of the system 2�E�k�� closes when ��k�=d�k�=0. At
the time-reversal momenta, the d vector vanishes identically,
d��a�=0, so only ���a�=0 is required for gap closing. There-
fore, the gap closes when �a changes.

The above properties suggest a connection between the Z2
invariants introduced in Ref. 2 and 
�a�. The Z2 numbers are
calculated from the quantities 
�a� �Ref. 6�

�a =
�det�w��a��
Pf�w��a��

, �10�

where w��a�nm is the antisymmetric U�2� matrix connecting
the occupied states �un��a�	 �n=1,2� with their Kramers
partners ��un��a�	�, w��a�nm�un��a����um��a�	�, and Pf
denotes its Pfaffian. While the quantities 
�a� depend on the
gauge �or phase choice� of the occupied states, their gauge-
independent combinations define the Z2 invariants, � for two
dimensions and �� ��=1,2 ,3 ,0� for three dimensions:6

�−1��=�nj=0,1�a=�n1,n2� for two dimensions, and �−1��0

=�nj=0,1�a=�n1,n2,n3� and �−1��k =�nj�k=0,1;nk=1�a=�n1,n2,n3� �k
=1,2 ,3� for three dimensions. We notice here that the quan-
tities 
�a� have properties similar to those of 
�a�: �A� they
are defined only at the time-reversal-invariant momenta; �B�

they only take �a= 1 since Pf�w��a��2=det�w��a��; �C�
with fixing the gauge �or phase choice� of the occupied
states, their values can change only when the gap of the
system closes. The last property �C� is obvious because their
gauge-independent combinations � and �� can change only
when the gap of the system closes.

These similarities suggest that the relation �a=�a holds
with a suitable phase choice of the occupied states. Indeed,
we can prove it by using a similar technique developed in
Ref. 6 with the replacement of the inversion symmetry P by
the symmetry 	 in the argument. As a result, we obtain
useful formulas of the Z2 invariants for the time-reversal-
invariant spin-triplet superconductor,

�− 1�� = �
nj=0,1

sgn ���a=�n1,n2�� for two dimensions,

�11�

�− 1��0 = �
nj=0,1

sgn ���a=�n1,n2,n3�� ,

�− 1��k = �
nj�k=0,1;nk=1

sgn ���a=�n1,n2,n3��

for three dimensions. �12�

Note that the Z2 numbers � and �� are mod 2 integers, which
are identified with �+2 and ��+2, respectively. Thus the Z2
numbers are nontrivial �trivial� when they are odd �even�.

Here we find that the right-hand sides of Eqs. �11� and
�12� have their own topological meanings related to the
Fermi surface structure in the normal state: For Eq. �11�, by
using the relation ��−k�=��k�, it is found that

�
nj=0,1

sgn ���a=�n1,n2�� = �− 1�p0�SF�, �13�

where p0�SF� is the number of different connected compo-
nents of the Fermi surface in the normal state. Also for Eq.
�12�, we obtain

�
nj=0,1

sgn ���a=�n1,n2,n3�� = �− 1���SF�/2,

�
nj�k=0,1;nk=1

sgn ���a=�n1,n2,n3�� = �− 1�p0�Ck�, �14�

where ��SF� is the Euler characteristic of the Fermi surface
and p0�Ck� is the number of different connected components
of the intersection Ck between the Fermi surface and the
time-reversal-invariant plane with k=bk /2. �For a single con-
nected Fermi surface, the Euler characteristic is given by
��SF�=2�1−g� with g the genus of the Fermi surface. When
there are multiple connected components of the Fermi sur-
face, ��SF� is the sum of the Euler characteristics of each
component.� We illustrate p0�SF�, ��SF�, and p0�Ck� in Figs.
1 and 2. Equations �13� and �14� are confirmed by these
examples. These quantities, p0�SF�, ��SF�, and p0�Ck�, are
topological invariants of the Fermi surface and they do not
change the values under deformations of the Fermi surface
unless the Fermi surface crosses one of the time-reversal-
invariant momenta. Therefore, Eqs. �11�–�14� make connec-
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tions between the topological invariants in two different
phases, i.e., the Z2 invariants in the superconducting phase
and p0�SF�, ��SF�, and p0�Ck� in the normal phase:

�− 1�� = �− 1�p0�SF� for two dimensions, �15�

�− 1��0 = �− 1���SF�/2,

�− 1��k = �− 1�p0�Ck� for three dimensions, �16�

An important physical consequence of our formulas �15�
and �16� is that one can obtain useful information about gap-
less surface �or edge� states in the spin-triplet superconductor
from the knowledge of the Fermi surface topology. From the
bulk-edge correspondence, a nontrivial Z2 number of a bulk
gapped system implies the existence of a gapless state local-
ized on the boundary.5 For time-reversal-invariant systems in
two dimensions, the gapless state is nonchiral and its Kram-
ers doublet forms a helical pair.11,15 The helical-edge pair
also satisfies the Majorana condition in the present case be-
cause of the particle-hole symmetry of the superconducting
system. From a topological argument similar to that in Ref.
5, it is shown that an odd �even� number of gapless helical
Majorana pairs exist on each edge when �−1��=−1 ��−1��

=1�. Thus from Eq. �15�, we find the following connection
between the number N0 of the gapless helical Majorana pairs
on each edge and the topological invariant p0�SF� of the
Fermi surface,

�− 1�N0 = �− 1�p0�SF�. �17�

This formula implies that when p0�SF� is odd N0 cannot be
zero and at least one gapless helical Majorana state should
exist on each edge.

For 3D time-reversal-invariant spin-triplet superconduct-
ors, the gapless boundary state is a 2D massless Majorana
fermion. By generalizing the argument in Ref. 5 to this case,
we have the following two properties of the surface state. �1�
The number N0 of 2D gapless Majorana fermions on a
boundary surface is related to the topological number �0 by
the equation �−1�N0 = �−1��0. �2� When �−1��0 =1, a nontrivial
�i implies the existence of 2D gapless Majorana fermions on
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FIG. 1. �Color online� The Fermi surfaces in the normal state
and the edge states in 2D time-reversal-invariant spin-triplet super-
conducting state. �Top row� The Fermi surfaces and �a= at the
time-reversal-invariant momenta. p0�=p0�SF�� is the number of the
connected components of the Fermi surface. �Bottom row� The en-
ergy spectra of the corresponding superconducting states described
by Eq. �25� with edges at ix=0 and ix=50. Here ky denotes the
momentum in the y direction and N0 the number of gapless helical
edge states. We set the parameters of the lattice model �Eq. �25�� as
�a� tx=0.4, ty =1, �=−1, and d=0.5, �b� tx= ty =1, �=−1, and d
=0.5, and �c� tx=1, ty =0.4, �=−1, and d=0.5, respectively.
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FIG. 2. �Color online� Various Fermi surface
topologies in three dimensions and the corre-
sponding gapless surface states for the 3D
time-reversal-invariant spin-triplet super-
conductor with d�k�=sin kxx̂+sin kyŷ+sin kzẑ.
�Top row� Fermi surfaces in the first Brillouin
zone and their topological invariants,
��SF� ; �p0�C1� , p0�C2� , p0�C3��. The green circles
are Cj �j=1,2 ,3� for �d�. �Middle and bottom
rows� The corresponding surface states on the
Brillouin zone for 001 surface �middle� and 100
surface �bottom� in the superconducting state.
The blue solid circles symbolize the Dirac cones
of the 2D gapless Majorana fermions and the en-
ergies of the surface states become zero at the
time-reversal-invariant momenta enclosed by the
blue circles. N0 denotes the number of 2D gapless
Majorana states on each surface.

TOPOLOGICAL PROPERTIES OF SPIN-TRIPLET… PHYSICAL REVIEW B 79, 214526 �2009�

214526-3



surfaces determined by �i. To specify the surfaces, consider a
surface G which is perpendicular to a reciprocal-lattice vec-
tor G. If the surface G satisfies G��i��i+2mi�bi for any
integers mi, then there exist 2D gapless Majorana fermions
on the surface. Combining the former property with Eq. �16�,
we have a relation between the gapless surface state of a 3D
time-reversal-invariant spin-triplet superconductor and its
Fermi surface topology as

�− 1�N0 = �− 1���SF�/2, �18�

where N0 the number of the 2D gapless Majorana fermions
on the boundary surface. Moreover, taking into account the
latter property as well, we obtain the following predictions.
�i� When the Fermi surface satisfies �−1���SF�/2=−1, an odd
number of 2D gapless Majorana fermions exist on each
boundary surface. In particular, at least one gapless Majorana
fermion exists on each boundary surface. �ii� When the
Fermi surface satisfies �−1���SF�/2=1, the number of the 2D
gapless Majorana fermions on a boundary surface is even.
Then if the surface G satisfies G��i�p0�Ci�+2mi�bi with
arbitrary integers mi, at least two 2D massless Majorana fer-
mions exist on the boundary surface G. On the other hand, if
G=�i�p0�Ci�+2mi�bi with integers mi, no gapless Majorana
fermion is possible on the surface G.

In Table I, we summarize the relations between the Fermi
surface topology and the boundary gapless state.16 Later, we
will check these results by using concrete models.

For 3D time-reversal-invariant spin-triplet superconduct-
ors, it is also known that there exists another topological
invariant �w called the winding number.17,18 Now we will
derive a useful formula for �w and show that �w also has an
intimate relation to the Fermi surface topology. In the single-
band description, the winding number �w is given by

�w =
1

12�2�
T3

dk3�ijk�abcd�̂a�i�̂b� j�̂c�k�̂d, �19�

where T3 denotes the first Brillouin zone and �̂a�k�
=�a�k� /��a�k�2 with �a�k�= �d�k� ,��k��. �w counts the num-
ber of times the unit vector �̂a wraps the 3D sphere S3 ��̂a

2

=1� when we sweep T3. In order for �̂a to wind S3, it is
necessary to pass the poles of S3 defined by �
��1 ,�2 ,�3�d=0. So consider the set of zeros k� satisfy-
ing ��k��=0. From the topological nature of �w, we can
rescale ��k� as ��k�→a��k� �a�1� without changing the
value of �w. Then it is found that only neighborhoods of the
zeros contribute to �w if a is small enough. By expanding �a
as �i=� jdi�k���k−k�� j + ¯ , �i=1,2 ,3�, �4=��k����1�, the
contribution from the zero k� is evaluated as

�w�k�� = −
1

2
sgn���k���sgn
det�� jdi�k���� . �20�

�When det�� jdi�k���=0, Eq. �20� is generalized to

�w�k�� = −
1

2
sgn���k��i�k�� , �21�

where i�k�� denotes the Poincaré-Hopf index19 of the zero
k�.� Summing up the contributions of all zeros, we have

�w = �
��k��=0

�w�k�� . �22�

From Eq. �22�, we can show that �w is also related to ��SF�.
For simplicity, suppose that the set of zeros k� contains only
the time-reversal-invariant points 
�a�. ��a is always zero
since it satisfies d��a�=0.� Dividing the set of zeros into
two subsets, �
�a ; sgn ���a�= 1�, we obtain �w
=−��a��+

i��a� /2+��a��−
i��a� /2. Then by using the

Poincaré-Hopf theorem �k�i�k��=0,20 it is recast into �w
=��a��−

i��a�. Here i��a� is an odd integer because of
d�−k�=−d�k�. Therefore, �w is an odd �even� integer if �−
has an odd �even� number of elements. From this, we obtain
the relation

�− 1��w = �
nj=0,1

sgn ���a=�n1,n2,n3�� . �23�

Combining this with Eqs. �14� and �18�, we find that �w is
also related to the Euler characteristic ��SF� and the number
N0 of 2D gapless surface states as

�− 1��w = �− 1���SF�/2 = �− 1�N0. �24�

Let us now illustrate our results with simple and impor-
tant examples. In Fig. 1, we illustrate possible Fermi surfaces
in the normal state and the corresponding p0�SF� in two di-
mensions. We also present the energy spectra for the corre-
sponding superconducting states with edges. To obtain the
energy spectra, we use the lattice model of the superconduct-
ing state with d=d�sin kxx̂+sin kyŷ�,

TABLE I. Topological invariants of the Fermi surface and the
possible number N0 of gapless boundary states for full-gapped time-
reversal-invariant spin-triplet superconductors. �a� 2D case. Here
p0�SF� denotes the number of connected components of the Fermi
surface and N0 the possible number of gapless helical Majorana
pairs on an edge. �b� 3D case. Here ��SF� is the Euler characteristic
of the Fermi surface, p0�Ck� the number of different connected
components of the intersection Ck between the Fermi surface and
the time-reversal-invariant plane with k=bk /2, and mi integers. The
surface G is perpendicular to the reciprocal-lattice vector G and N0

is the possible number of 2D Majorana fermion on the surface G.

�a�
�−1�p0�SF�=−1 N0=1,3 ,5 ,¯

�−1�p0�SF�=1 N0=0,2 ,4 ,¯

�b�
�−1���SF�/2=−1 N0=1,3 ,5 ,¯

�−1���SF�/2=1 On a surface G=�i�p0�Ci�+2mi�bi N0=0,2 ,4 ,¯

On a surface G��i�p0�Ci�+2mi�bi N0=2,4 ,6 ,¯
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H =
1

2�
ij

ci
†Hijcj, Hij = � tij idij · ��2

− i��2dji − tij
� , �25�

where ci
†= �ci�

† ,ci�� and tij and dij are given by tij=−tx��i,j+x̂
+�j,i+x̂�− ty��i,j+ŷ+�j,i+ŷ�−��ij, �dx�ij=−i�d /2���j,i+x̂−�i,j+x̂�,
�dy�ij=−i�d /2���j,i+ŷ−�i,j+ŷ�, and �dz�ij=0. The spectra are
calculated for the system with two edges at ix=0,50 under
the periodic boundary condition in the y direction. In Fig. 1,
ky denotes the momentum in the y direction. While no gap-
less edge state exists in Fig. 1�a�, it is found that there exist
gapless edge states in the bulk gap in Figs. 1�b� and 1�c�. The
relation Eq. �17� holds in Fig. 1.

In Fig. 2, we show various Fermi surfaces in the first
Brillouin zone and their topological numbers ��SF� and
p0�Ci� �i=1,2 ,3� in three dimensions. In addition, we
present gapless 2D Majorana surface states for the supercon-
ducting states with d�k�=sin kxx̂+sin kyŷ+sin kzẑ. This fig-
ure also confirms the connection between the gapless surface
states and the Fermi surface topology. The relation
�−1���SF�/2= �−1�N0 holds for all the cases. Furthermore, in the
cases with �−1���SF�/2=1 �i.e., Figs. 2�b� and 2�d��, there exist
a nonzero even number of 2D gapless Majorana fermions on
a surface G��i�p0�Ci�+2mibi� with integers mi. Note that in
Fig. 2, only the 001 surface in Fig. 2�b� does not satisfy this
condition. In this case, we have G=b3 and it coincides with
�ip0�Ci�bi=b3. From Eq. �22�, we find that �w’s for this gap
function are �a� �w=1, �b� �w=0, �c� �w=−1, and �d� �w
=−2, respectively. These values are also consistent with Eq.
�24�.

So far we have considered the single-band supercon-
ductor. However, the formulas �11� and �12� can be general-
ized to multiband systems. To see this, consider a multiband
system which has the inversion symmetry and the time-
reversal invariance in the normal state. If we assume that the
parity operator transforms only the momentum as k→−k,21

then the Hamiltonian in the normal state is given by a 2N
�2N matrix E�k� satisfying E�−k�=E�k�. �N is the number
of the bands.� Odd-parity superconducting states for this sys-
tem are described by the generalized BdG Hamiltonian

H�k� = � E�k� ��k�

��k�† − E�k� � , �26�

where the gap function ��k� is a 2N�2N matrix with odd
parity, ��−k�=−��k�. H�k� has the property

	H�k�	† = H�− k�, 	2 = 1 �27�

with 	=12N�2N � 
3 and for k=�a, H�k� becomes H��a�
=E��a� � 
3. Thus in a similar manner as the single-band
case, it is shown that

�− 1�� = �
nj=0,1

�
m=1

N

sgn
E2m��a=�n1,n2��� for two dimensions,

�28�

�− 1��0 = �
nj=0,1

�
m=1

N

sgn
E2m��a=�n1,n2,n3��� ,

�− 1��k = �
nj�k=0,1;nk=1

�
m=1

N

sgn
E2m��a=�n1,n2,n3���

for three dimensions, �29�

where En��a� �n=1, ¯2N� are the eigenvalues of E�k� at
k=�a and we have set E2m��a�=E2m−1��a� using the Kram-
ers degeneracy. For a filled or empty band in the normal
state, the signatures of En��a� are the same for all the time-
reversal points, so their contributions to Eqs. �28� and �29�
are canceled. Therefore, in order to evaluate the Z2 numbers,
it is enough to consider bands with the Fermi surfaces. Again
it is evident that topological properties of the spin-triplet
superconducting state are closely related to the topology of
the Fermi surface.

Finally we make several comments in order. �a� Although
we have assumed that the normal state has the inversion
symmetry, our formulas �11� and �12� �or �28� and �29��
could be useful even for the systems which do not have the
inversion symmetry in the normal state. Adiabatic continuity
allows us to calculate the topological invariants if the system
is adiabatically connected to materials which have the inver-
sion symmetry in the normal state. The topological invariants
for a class of noncentrosymmetric superconductors can be
calculated in this manner.22,23 �b� For spin-singlet supercon-
ductors, due to the inversion symmetry, their Z2 numbers are
calculated by the technique developed in Ref. 6. However, it
is found that all the Z2 numbers are trivial.24 Therefore, the
correspondence between the Fermi surface topology and the
gapless surface state discussed in this paper are inherent to
spin-triplet superconductors. �c� In this paper we have fo-
cused on the time-reversal-invariant spin-triplet supercon-
ductors. Here we mention a generalization to the time-
reversal-breaking case in brief. For 2D chiral spin-triplet
superconductors such as a p+ ip state, the topological prop-
erties are determined by the TKNN number �TKNN. In a simi-
lar manner to �w, in the single-band description it can be
shown that the TKNN number is related to the Fermi surface
topology by the equation

�− 1��TKNN = �− 1�p0�SF�, �30�

where p0�SF� is the number of the connected components of
the Fermi surface.24 This relation gives a simple explanation
of the quantum phase transition from the weak paring phase
to the strong one discussed in Ref. 25. This phase transition
is accompanied with disappearance of the Fermi surface,
thus p0�SF�=1→p0�SF�=0. From the above relation, this
causes a change of �TKNN which brings about different topo-
logical properties between the weak and strong phases.
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