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A Chern-Simons theory for the doped spin-1/2 kagome system is constructed, from which it is shown that
the system is an exotic superconductor that breaks time-reversal symmetry. It is also shown that the system
carries minimal vortices of flux hc /4e �as opposed to the usual hc /2e in conventional superconductors� and
contains fractional quasiparticles �including fermionic quasiparticles with semionic mutual statistics and spin-
1/2 quasiparticles with bosonic self-statistics� in addition to the usual spin-1/2 fermionic Bogoliubov quasi-
particles. Two Chern-Simons theories—one with an auxiliary gauge field kept and one with the auxiliary field
and a redundant matter field directly eliminated—are presented and shown to be consistent with each other.
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I. INTRODUCTION

The “perfect” spin-1/2 kagome lattice, realized recently in
Herbertsmithite ZnCu3�OH�6Cl2,1–3 has produced great en-
thusiasm in both the experimental and the theoretical
condensed-matter community. Experimentally, the antiferro-
magnetic exchange is found to be J�190 K, and yet no
magnetic ordering is observed down to a temperature of 50
mK.1 Theoretically, with nearest-neighbor Heisenberg anti-
ferromagnetic interaction, several possible ground states
have been proposed, including the valance bond solid �VBS�
states4,5 and the Dirac spin liquid �DSL� state,6,7 while results
from exact diagonalization �ED� �Ref. 8� remains inconclu-
sive as to which state is preferred.

So far both the experimental and theoretical studies have
been focused on the half-filling �i.e., undoped� case. In this
paper, we investigate the situation in which the kagome sys-
tem is doped, which could in principle be realized by substi-
tuting Cl with S. We shall take the DSL state, which at low
energy is described by spin-1/2 Dirac fermions �spinons�
coupled to an emergent internal gauge field, as our starting
point. Naively, one might expect the system to be a Fermi
liquid with small Fermi pockets opening up at the spinon
Dirac nodes. However, since the system contains an emer-
gent internal gauge field ��, filled Landau levels �LLs� can
spontaneously form. When the flux quanta of this emergent
gauge field is equal to half of the doping density, the result-
ing LL state is energetically favorable. �the formation of
filled LLs, as induced by the internal gauge flux, has also
been proposed in the case when an external magnetic field is
applied to the undoped spin-1/2 kagome system�.9 Further-
more, the strength of this � field and the doping density can
cofluctuate smoothly across space, resulting in a gapless ex-
citation in density. Since this gapless density mode is the
only gapless excitation, the LL state is actually a supercon-
ducting state. This provides an unconventional superconduct-
ing mechanism which results in a time-reversal symmetry
breaking superconductor.

As typical for a superconductor, the state we proposed
also supports electromagnetically �EM� charged vortices. In
additional, since there are multiple species of emergent
spinons and holons, the system also contains EM-neutral to-
pological excitations that are analogous to quasiparticles in

quantum Hall systems. To describe the superconducting
state, the EM-charged vortices, and the EM-neutral quasipar-
ticles in a unified framework, we start with the t-J model and
the DSL ansatz and construct a Chern-Simons theory, well
known from the study of quantum Hall systems, for this
system.

In our scenario, the low-energy effective theory contains
four species of emergent holons, each carries a charge e. All
four species are tied together by the emergent gauge field ��.
Consequently, the flux through a minimal vortex in this su-
perconductor is found to be hc /4e, as opposed to the usual
hc /2e in conventional superconductor. Furthermore, the qua-
siparticles in this scenario are shown to exhibit fractional
statistics. In particular, there are fermionic quasiparticles
with semionic mutual statistics and bosonic quasiparticles
carrying spin 1/2.

This paper is organized as follows: In Sec. II, we derive
the Chern-Simons theory starting with the t-J model and
motivate the necessity of such an “unconventional” forma-
tion for superconductivity. In Sec. III, the existence of super-
conductivity is first explained intuitively, and then confirmed
by a more rigorous derivation. The physical vortices are then
discussed, with the hc /4e magnetic flux explained both intu-
itively and mathematically. In Sec. IV, the EM-neutral qua-
siparticles are introduced and their statistics are derived. The
discussion on these quasiparticles continue into Sec. V in
which their quantum numbers are analyzed. In Sec. VI, an
alternative formulation of the Chern-Simons theory is pre-
sented, in which the auxiliary gauge field �� and a redundant
matter field are eliminated directly, and the results obtained
are shown to be consistent with that of the previous sections.
The paper concludes with Sec. VII.

II. FROM t-J HAMILTONIAN TO CHERN-SIMONS
THEORY

The starting point of our model for the doped kagome
system is the t-J Hamiltonian,

HtJ = �
�ij�

J�Si · S j −
1

4
ninj� − t�ci�

† cj� + H.c.� , �1�

where ci�
† and cj� are projected electron operators that forbid

double occupation, and that J�0. Throughout this paper we
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shall assume that t�0 and that the system is hole doped. For
t�0, our results can be translated to an electron-doped sys-
tem upon applying a particle-hole transformation.

Using the U�1� slave-boson formulation,10 we introduce
spinon �fermion of charge 0 and spin 1/2, representing singly
occupied sites� operators f i� and holon �boson of charge +e
and spin 0, representing empty sites� operators hi such that
ci�

† = f i�
† hi, and apply the Hubbard-Stratonovich transforma-

tion. This yields the following partition function:

Z =	 DfDf†DhDh�D�D�D	 exp�− 	
0




d�L1� , �2�

where

L1 =
3J

8 �
�ij�

�
�ij
2 + 
	ij
2� + �
i�

f i�
† ��� − i�i�f i�

−
3J

8 ��
�ij�

�ij
���

�

f i�
† f j�� + c.c.�

+
3J

8 ��
�ij�

	ij�f i↑
† f j↓

† − f i↓
† f j↑

† � + c.c.�
+ �

i

hi
���� − i�i + �B�hi − t �

�ij�,�
hihj

�f i�
† f j�, �3�

in which the mean-field conditions are given by �ij
=���f i�

† f j�� and 	ij = �f i↑f j↓− f i↓f j↑�.
Assuming mean-field ansatzes in which 	ij =0 and �ij

=�e−i�ij, and rewriting �i=�0
i , we arrive at the following

mean-field Hamiltonian:

HMF = �
i�

f i�
† �i�0

i − �F�f i� −
3�J

8 �
�ij�,�

�ei�ij f i�
† f j� + H.c.�

+ �
i

hi
†�i�0

i − �B�hi − t��
�ij�

�ei�ijhi
†hj + H.c.� . �4�

Observe that an internal gauge field �� emerges naturally
from this formulation. Its space components �ij arise from
the phases of �ij, while its time component �0 arises from
enforcing the occupation constraint,

hi
†hi + f i↑

† f i↑ + f i↓
† f i↓ = 1. �5�

From Eq. �4�, it can be seen that the holons and spinons are
not directly coupled with each other at the mean-field level—
they are correlated only through the common gauge field ��.
Consequently, if we treat �� at the mean-field level, the
spinon spectra and the holon spectra will decouple, and up to
an overall energy scale both will be described by the same
tight-binding Hamiltonian.

By gauge invariance, a mean-field ansatz for �� is
uniquely specified by the amount of fluxes through the tri-
angles and the hexagons of the kagome lattice. In particular,
the DSL state is characterized by zero flux through the tri-
angles and � flux through the hexagons.4,6,7 By picking an
appropriate gauge, the DSL state can be described by a tight-
binding Hamiltonian with doubled unit cell, in which each
nearest-neighbor hopping is real, has the same magnitude,
but varies in sign. For the precise pattern see Fig. 1�a�. This

tight-binding Hamiltonian produces six bands, whose disper-
sions are, in units where the magnitude of the hopping pa-
rameter is set to 1,

Etop = 2 �doubly degenerate� �6�

E,� = − 1  �3 � �2�3 − cos 2kx + 2 cos kx cos �3ky .

�7�

At any k point, E−,+�E−,−�E+,−�E+,+�Etop. These tight-
binding bands have the following features that will be impor-
tant for our purposes: �1� four degenerate shallow quadratic
band bottoms in the first �lowest� band E−,+; and �2� two
degenerate Dirac nodes where the third band �E+,−� and the
fourth band �E+,+� touches. See Figs. 1�b� and 2 for illustra-
tions.

Now suppose the doped kagome system is described by
the DSL ansatz as in the undoped case, and that the doping is
x per site. Then each doubled unit cell will contain 6x holons
and 3−3x spinons per spin. By Fermi statistics, the spinons
will fill the lowest 3−3x bands and thus can be described by
antispinon pockets at each Dirac node. Similarly, by Bose
statistics the holons will condense at each quadratic band
bottom. This state shall be referred to as the Fermi-pocket
�FP� state.

However, the FP state is not the only possibility. In par-
ticular, an additional amount of uniform � field can be spon-
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FIG. 1. �Color online� �a� The kagome lattice with the DSL
ansatz. The dashed lines correspond to bonds with t=−1 while un-
broken lines correspond to bonds with t=1. r1 and r2 are the primi-
tive vectors of the doubled unit cell. �b� The original Brillouin zone
�bounded by unbroken lines� and the reduced Brillouin zone
�bounded by broken lines� of the DSL ansatz. The dots indicate
locations of the Dirac nodes at half-filling while the crosses indicate
locations of the quadratic minima of the lowest band. k1 and k2 are
the reciprocal-lattice vectors of the reduced Brillouin zone.
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FIG. 2. �Color online� The band structure of the kagome lattice
with the DSL ansatz �a� plotted along the line kx=0 and �b� of the
lowest band plotted along the line ky =0. Note that the top band in
�a� is twofold degenerate.
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taneously generated to produce LLs in both the holon and
spinon sectors. The resulting state shall be referred to as the
LL state. In the absence of holons �i.e., at half-filling�, both
mean-field calculation and projection wave-function study
indicate that the LL state is energetically favored over the FP
state.9 Since the spinon bands are linear near half-filling
while the lowest holon band is quadratic near its bottoms, at
the mean-field level the energy gain from the spinon sector
�which scales as 3/2 power of the � field strength� will be
larger than the energy cost in the holon sector �which scales
as square of the � field strength� at low doping. Therefore,
even after the holons are taken into account, the LL state is
expected to have a lower energy than the FP state.

Furthermore, from mean-field it can be seen that the en-
ergy gain will be maximal when the � field is adjusted such
that the zeroth spinon LLs are exactly empty. Since each flux
quanta of the � field corresponds to one state in each LL, and
that each antispinon pocket contains 3x /2 states for a doping
of x per site, the flux must be 3x flux quanta per doubled unit
cell for the zeroth spinon LLs to be empty.

As for the holon sector, there are 6x holons per doubled
unit cell or equivalently 3x /2 holons per band bottom. Since
the holon carries the electric charge and hence are mutually
repulsive, one may expect them to fill the four band bottoms
symmetrically. In such case the first LL of each of the holon
band bottom would be exactly half-filled, which implies that
the holons would form four Laughlin �=1 /2 quantum Hall
states. Since the Laughlin �=1 /2 state is gapped and incom-
pressible, this symmetric scenario should be energetically
favorable.11

From the physical arguments given above, it can be seen
that the effective description of this system is analogous to
that of a �multilayered� quantum Hall system, and thus may
contain nontrivial topological orders, manifesting in, e.g.,
fractional quasiparticles with nontrivial statistics. In order to
describe such system, we adopt a hydrodynamic approach
well known in the quantum Hall literature.12–14 In this ap-
proach, a duality transformation is applied, in which a gauge
field is introduced to describe the current associated with a
matter field, and which the two are related by

J� =
1

2�
������a�, �8�

where J� is the current of the matter field and a� is the
associated gauge field. Here �, �, and � are spacetime indi-
ces that run from 0 to 2, and ���� is the totally antisymmetric
Levi-Civita symbol.

In this formalism, a single-layer quantum Hall system of
filling fraction �a.k.a. Hall number� �=1 /m is described by
the following effective Lagrangian:

L = −
m

4�
����a���a� −

e

2�
����a���A� + �a�jV

� + ¯ ,

�9�

where A� is the external electromagnetic field and jV
� is the

current density associated with particlelike excitations. The
“¯” represents terms with higher derivatives, and hence un-
important at low energies. In particular, at the lowest order in

derivatives among the terms dropped is the “Maxwell term,”

LMaxwell = −
1

2g2 ���a� − ��a�����a� − ��a�� . �10�

The effective Lagrangian Eq. �9� can be understood by con-
sidering the equation of motion �EOM� with respect to the
dual gauge field a�. With a stationary quasiparticle at x0 such
that jV

�= ���x−x0� ,0 ,0, the EOM reads, in the time compo-
nent,

J0 = −
e�

2�
B + ����x − x0� + ¯ , �11�

which confirms that � indeed equals to the filling fraction
2�J0 / �−eB�, and that jV

�= ���x−x0� ,0 ,0 is a source term for
a quasiparticle having charge ��. In particular, a physical
electron at x0 can be associated with jV

�= ���x−x0� ,0 ,0 and
�=�−1.

Since jV
� is a source of “charge” in a�, from the duality

transformation Eq. �8�, it can alternatively be viewed as a
source of vortex in the matter-field current J�.

The statistics of the quasiparticles can be deduced by in-
tegrating out the dual gauge field a� in Eq. �9�, from which
we obtained the well-known Hopf term,

L� = � j̃��� ������

�2 � j̃� + ¯ , �12�

where j̃�=−�e /2��������A�+�jV
� is the sum of terms that

couple linearly to a�.
The statistical phase � when one quasiparticle described

by �=�1 winds around another described by �=�2 can then
be computed by evaluating the quantum phase eiS=ei�L�,
with j̃�=�1jV1

� +�2jV2
� being the total current produced by

both quasiparticles. This yields14 �=2���1�2.
In particular, for the statistical phase accumulated when

an electron winds around a quasiparticle of charge �� to be a
multiple of 2�, � must be an integer. This provides a quan-
tization condition for the possible values of �.

For an N-layer quantum Hall system, Eq. �9� generalizes
to

L = −
1

4�
����aI�KIJ��aJ� −

e

2�
����qIaI���A� + �IaI�jV

� + ¯

= −
1

4�
����a�K��a� −

e

2�
�����q · a����A�

+ �� · a��jV
� + ¯ , �13�

here aI
� is the dual gauge field corresponding to the matter

field in the Ith layer, a�= �a1
� , . . . ,aN

��T and q= �q1 , . . . ,qN�T

are N-by-1 vectors, �= ��1 , . . . ,�N�T is an N-by-1 integer vec-
tor, and K= �KIJ is an N-by-N real symmetric matrix. On the
second line of Eq. �13� and henceforth, we adopt a con-
densed notation in which the boldface and dot product al-
ways refer to the vector structure in the “layer” indices and
never in the spacetime indices.

In the multilayer case, assuming that det K�0, the proce-
dure for integrating out the dual gauge fields can similarly be
carried out, which yields
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L� = ��j̃T��K−1� ������

�2 �j̃� + ¯ . �14�

where j̃�=−q�e /2��������A�+�jV
�. The statistical phase �

when one quasiparticle described by �=�1 winds around an-
other with �=�2 can then be computed in a similar way as in
the single-layer case, which yields �=2��1

TK−1�2. The infor-
mation of quasiparticle statistics is thus contained entirely in
K−1.

Except for the complication that there is both an external
EM field A� and an internal constraint gauge field ��, the
doped kagome system we proposed is completely analogous
to a multilayer quantum Hall system. We shall therefore con-
struct a Chern-Simons theory similar to that of Eq. �14� by
assigning a dual gauge field to each species of matter field.

For the holon sector, we can represent the holons at each
of the four band bottoms by a dual gauge field bJ

� �J
=1,2 ,3 ,4�. Since the holons at each band bottom form a
Laughlin �=1 /2 state, the total Hall number for the holon
sector is �J�J=2. For the spinon sector the situation is more
subtle. Since the zeroth LL is empty and all the LLs below it
are fully filled at each Dirac node, we may represent the
spinons near each of the four Dirac nodes by a dual gauge
field aI

� �I=1,2 ,3 ,4� having Hall number �=−1. However,
since � is internal the combined system of holons and
spinons must be � neutral, which requires �all species�=0 and
hence in the spinon sector �I�I=−2. To circumvent this prob-
lem, we introduce two additional dual gauge fields a5

� and
a6

�, each having Hall number �=+1. The two fields a5
� and

a6
� can be thought of as arising from the physics of spinons

near the band bottoms of the two spin species. In this setting,
a1

� , . . . ,a4
� are expected to carry good spin and k quantum

numbers,15 while a5
� and a6

� are expected to carry good spin

quantum number only. Note also that a1
� , . . . ,a4

� possess an
emergent SU�4� symmetry of spin and pseudospin �i.e., k
points�.

Assembling the different species, the low-energy effective
theory for the doped kagome system is given by the follow-
ing Chern-Simons theory,

L =
1

4�
�
I=1

4

����aI���aI� −
1

4�
�
I=5

6

����aI���aI�

−
2

4�
�

J

����bJ���bJ� +
1

2�
������

I

aI� + �
J

bJ������

+
e

2�
�

J

����bI���A� + ��
I

�IaI� + �
J

�JbJ�� jV
� + ¯ ,

�15�

=−
1

4�
����c�

TK��c� +
e

2�
�����q · c����A� + �� · c��jV

� + ¯ .

�16�

As before, the ¯ denotes terms higher in derivatives, includ-
ing first and foremost the Maxwell term analogous to Eq.
�10�. In the second line, we have combined the 11 gauge
fields internal to the system into a column vector c�

= ��� ;a1
� , . . . ,a6

� ;b1
� , . . . ,b4

��T. Note that unlike Eq. �13�, we
have included the internal gauge field �� in c�. This is be-
cause �� is internal and can be spontaneously generated
while the EM field in the usual quantum Hall case is external
and fixed. This distinction is crucial, as will be evident soon.
The “charge vector” q in this case is q
= �0;0 ,0 ,0 ,0 ,0 ,0 ;1 ,1 ,1 ,1�T, and the K-matrix K takes the
block form,

K =�
0 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

− 1 − 1 0 0 0 0 0 0 0 0 0

− 1 0 − 1 0 0 0 0 0 0 0 0

− 1 0 0 − 1 0 0 0 0 0 0 0

− 1 0 0 0 − 1 0 0 0 0 0 0

− 1 0 0 0 0 1 0 0 0 0 0

− 1 0 0 0 0 0 1 0 0 0 0

− 1 0 0 0 0 0 0 2 0 0 0

− 1 0 0 0 0 0 0 0 2 0 0

− 1 0 0 0 0 0 0 0 0 2 0

− 1 0 0 0 0 0 0 0 0 0 2

� . �17�

The three terms in Eq. �16� can be understood as follows: the
first term describes smooth internal dynamics of the system;
the second term describes its response under an external EM
field; and the third term describes the topological excitations

of the system, which can be thought of as combinations of
vortices in various matter-field components. As in Eq. �13�, �
must be an integer vector. Furthermore, since the � field is
not a dual gauge field and contains no topological excitation
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�otherwise the local constraint Eq. �5� will be violated, the �
component of � for a physical topological excitation must be
zero.

As in the original quantum Hall case, the coefficients that
appear in K and q can be understood by considering the
EOMs resulting from it. Upon variations with respect to aI

�,
bJ

�, and ��, we get �for �=0�

JaI
� = −

1

2�
�������� �I = 1,2,3,4� , �18�

JaI
� =

1

2�
�������� �I = 5,6� , �19�

JbJ
� =

1

2
·

1

2�
�������� +

e

2�
������A�, �20�

0 = �
I

JaI
� + �

J

JbJ
� . �21�

The first three equations are in agreement with the picture
that spinons form integer quantum Hall states while holons
form Laughlin �=1 /2 states under the presence of � flux,
and that spinons carry no EM charge while holons carry EM
charge e. Moreover, the fourth equation can be seen as a
restatement of the occupation constraint Eq. �5�.

For brevity, we shall introduce two abbreviations hence-
forth. First, we shall omit spacetime indices that are inter-
nally contracted. Hence we shall write �a�b instead of
����a���b� and ���a�� instead of ������a�. In a similar
spirit, we shall write �a�a instead of ���a�−��a�����a�

−��a�� for the Maxwell term. Second, we shall write vectors
and matrices in block form whenever appropriate, which we
abbreviate by using In to denote an n-by-n identity matrix,
Om,n to denote an m-by-n zero matrix, and Em,n to denote an
m-by-n matrix with all entries equal to 1 �such that cEm,n
denotes an m-by-n matrix with all entries equal to c�. In this
notation, the q vector becomes q= �0;O1,4 ,O1,2 ;E1,4�T and
the K matrix in Eq. �17� becomes

K =�
0 − E1,4 − E1,2 − E1,4

− E4,1 − I4 O4,2 O4,4

− E2,1 O2,4 I2 O2,4

− E4,1 O4,4 O4,2 2I4

� . �22�

III. SUPERCONDUCTING MODE AND PHYSICAL
VORTICES

Usually, the formation of LLs will imply that all excita-
tions are gapped. However, this is true only if the gauge field
is external �i.e., fixed�. Since the � field is internal, smooth
density fluctuations can occur while keeping the local con-
straint Eq. (5) and the LL structure intact. Intuitively, if the
� field varies across space at a sufficiently long wavelength,
then the spinons and holons in each local spatial region can
still be described by the LL picture, but the LLs will have a
larger �smaller� spacing in regions where the � field is stron-
ger �weaker�. Since the LL structure is intact and the wave-

length of this variation can be made arbitrarily long, the en-
ergy cost of such “breathing mode” can be made arbitrarily
small. This breathing mode is thus a gapless charge-density
mode of the system. See Fig. 3 for illustration. Note that all
species of holons and spinons cofluctuate with the � field in
this density mode. A similar binding mechanism in the con-
text of cuprates is proposed in Ref. 16.

The other excitations of the system can be grouped into
two general types. The first type consists of smooth density
fluctuations in which the fluctuations of holons, spinons, and
� field are mismatched. The second type consists of quasi-
particle excitations that involve holons or spinons excited
from one LL to another. Both types of excitations are
gapped. Since the breathing mode is the only gapless mode,
it is nondissipative, and hence the system is a superfluid
when the coupling to EM fields is absent. Moreover, since the
breathing mode includes the fluctuations of holons, it is
charged under the EM field. Hence, the system will be a
superconductor when the coupling to EM field are
included.17 Note that this superconductor breaks the time-
reversal symmetry, since the sign of the additional amount of
� flux is flipped under time reversal. Furthermore, since all
four species of holons are binded together in the breathing
mode, each carrying charge +e, a minimal vortex in this
superconductor is expected to carry a flux of hc /4e. We shall
now show these claims more vigorously from the Chern-
Simons theory Lagrangian we derived in Eq. �16�.

It is easy to check that the K-matrix K in Eq. �17� contains
exactly one zero eigenvalue, with eigenvector p0= �2;
−2E1,4 ,2E1,2 ;E1,4�T. Let �i be the eigenvalues of K, with pi
the corresponding eigenvectors, let P= �p0 ,p1 , . . . ,p10 be
the orthogonal matrix form by the eigenvectors of K, and let
c�= �c0� , . . . ,c10� �T= P†c. Then, Eq. �16� can be rewritten in
terms of c� as

L = −
1

4�
�
j�0

� j�cj� � cj� +
e

2�
��q · Pc�� � A + �� · Pc���jV

�

+ g � c0� � c0� + ¯

=
e

2�
�q · p0��c0� � A + �� · p0�c0�� jV

� + g � c0� � c0� + ¯

+ �terms without c0�� . �23�

α field

spinon

holon

sector

sector

FIG. 3. �Color online� The physical picture of the breathing
mode. The filled LL states are indicated by thick �red� horizontal
lines while the unfilled LL states are indicated by the thin �black�
horizontal lines. The original band structure for spinon and holon
when no additional � flux is also indicated in the background
�gray�.
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The Maxwell term g�c0��c0� for c0� in Eq. �23� originates
from the terms in ¯ of Eq. �16�, which is ordinarily sup-
pressed by the Chern-Simons terms. However, since the
Chern-Simons term �c�c vanishes for c0�, the Maxwell term
becomes the dominant term for c0� at low energy and in the
absence of external EM fields. Note that although the � field
itself does not have a Maxwell term �since it arises from an
occupation constraint�, the zero-mode c0� does have a Max-
well term originated from the matter-field components.

Since the Maxwell term has a gapless spectrum, we see
that the zero-mode c0� indeed corresponds to a gapless exci-
tation. Moreover, since all other gauge-field components
have nonzero Chern-Simons terms, excitations in these
gauge-field components are gapped �these excitations corre-
sponds to the “mismatched” density fluctuation mentioned
earlier�, verifying the earlier assertion that there is only one
gapless density mode. Moreover, since q ·p0�0, we see that
the zero mode is indeed charged under the external EM field.
Hence, as argued above, the doped system is a
superconductor.18

The eigenvector pi can be interpreted as the ratio of den-
sity fluctuations between the different field components in
the mode ci�. Thus the zero mode indeed involves the fluc-
tuations of all species of spinons and holons, tied together by
the internal � field.

Since the system is a superconductor, when a sufficiently
large external B field is applied, physical vortices, with the
amount of flux through each vortex quantized, are expected
to form. In the Chern-Simons formulation, these physical
vortices manifest in the topological term �i.e., the �� ·c��jV

�

term in Eq. �16�. Taking an isolated topological excitation
with �jV

0 , jV
1 , jV

2�= ���x−x0� ,0 ,0, considering the EOM asso-
ciated with c0� as resulted from Eq. �23�, and remembering
that ���A�0=�0����A�=B is the physical magnetic field, we
obtain �in units which �=c=1�,

B = −
2�

e

� · p0

q · p0
��x − x0� + ¯ . �24�

This is the Meissner effect, which again confirms that the
system is a superconductor. Moreover, it is easy to check that
nonzero 
�� ·p0� / �q ·p0�
 has a minimum of 1/4 �attained by,
e.g., an � vector having a single +1 in one of its bJ compo-
nents and 0 in all its other components�. From this we con-
clude that the magnetic flux through a minimal vortex is
hc /4e, justifying the intuitive claim given above.

IV. QUASIPARTICLES—STATISTICS

It is important to note that not all topological excitations
are EM charged. The structure of these EM-neutral topologi-
cal excitations highlights the differences between this system
and a conventional superconductor, and hence qualify the
adjective “exotic.” We shall call these EM-neutral topologi-
cal excitations “quasiparticles,” to distinguish them from the
EM-charged “physical vortices” considered in the previous
section.

From Eq. �24�, a topological excitation carries a nonzero
magnetic flux if and only if � ·p0�0. In other words, a to-

pological excitation is EM neutral if and only if it does not
couple to the zero mode. Note that the quantity � ·p0 can be
regarded as the zero-mode charge carried by the topological
excitation. A topological excitation with � ·p0�0 couples to
the zero-mode and carries its charge, which induces an 1 /r
“electric” field of the zero mode and gives rise to a diverging
energy gap 	� ln L, where L is the system size. In compari-
son, a topological excitation that satisfies � ·p0=0 is decou-
pled from the zero mode and hence has a finite-energy gap
and short-ranged interactions. These EM-neutral topological
excitations are thus analogous to the �possibly fractionalized�
quasiparticles in quantum Hall systems, and it is sensible to
consider the �mutual� statistics between them.

Recall that the set of � vectors �which may have nonzero
� component� form an 11-dimensional vector space. The set
of � vectors satisfying � ·p0=0 forms a ten-dimensional sub-
space of this 11-dimensional space. The K matrix restricted
to this subspace, Kr, is invertible. Hence we can integrate out
the gauge fields associated with this subspace �i.e., the gauge
fields c1� , . . . ,c10� in Eq. �23�. This will convert the terms we
omitted in Eq. �23� under the texts “terms without c0�” into a
Hopf term. Explicitly, upon integrating out c1� , . . . ,c10� the
Lagrangian takes the form,

L� =
e

2�
�q · p0��c0� � A + �� · p0�c0�� jV

� + g � c0� � c0� + ¯

+ ��j̃T��Kr
−1� ������

�2 �j̃� + ¯

= �terms with c0�� + ��j̃T��Kr
−1� ������

�2 �j̃� + ¯ �25�

�cf. Eq. �14�, where j̃�= jV
��+ �e /2�����A��q.

As in the quantum Hall case, from Eq. �25� the statistical
phase � when one quasiparticle described by jV

�� winds
around another described by jV�

��� can be read off as �
=2��TKr

−1��. For identical quasiparticles, � /2 gives the sta-
tistical phase when two such quasiparticles are exchanged.

For explicit computation a basis for � vectors for this
ten-dimensional subspace must be specified. Naively one
may simply choose this basis to be the set of eigenvectors of
K having nonzero eigenvalues. This choice turns out to be
inconvenient as some of the eigenvectors of K are noninteger
while the quantization condition requires all � to be integer
vectors. Hence, instead we shall use the following basis:

�1 = �0;− 1,1,0,0,O1,2;O1,4�T,

�2 = �0;− 1,0,1,0,O1,2;O1,4�T,

�3 = �0;− 1,0,0,1,O1,2;O1,4�T,

�4 = �0;O1,4,O1,2;0,0,1,− 1�T,

�5 = �0;O1,4,O1,2;0,1,0,− 1�T,

�6 = �0;O1,4,O1,2;1,0,0,− 1�T,

�7 = �0;0,1,0,0,O1,2;0,1,1,0�T,
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�8 = �0;1,0,0,0,1,0;O1,4�T,

�9 = �0;E1,4,E1,2;E1,4�T,

�10 = �− 1;O1,4,0,1;O1,4�T. �26�

It can be shown that all integer � vectors satisfying � ·p0
=0 can be written as integer combinations of the above basis
vectors. It should be remarked that �1 through �6 are indeed
eigenvectors of K, with �1 through �3 having eigenvalue −1
and �4 through �6 having eigenvalue 2. However, �7 through
�10 are not eigenvectors of K.

In this basis, Kr
−1 takes the form

Kr
−1 =�

− 2 − 1 − 1 − 1 1

− 1 − 2 − 1 O3,3 0 1 O3,2

− 1 − 1 − 2 0 1

1 1/2 1/2 1/2 0

O3,3 1/2 1 1/2 1/2 0 O3,2

1/2 1/2 1 0 0

− 1 0 0 1/2 1/2 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0

0 0 0 1

O2,3 O2,3 0 0 1 1

� .

�27�

Note that �10 contains a nonzero � component and is thus
unphysical. Moreover, from our interpretation of a5 and a6 as
arising from the physics of band bottoms, we expect a topo-
logical excitation in these two components to be much more
energetically costly than those of the other matter fields.
Hence we can also neglect �8 and �9. Thus only the top-left
block of Kr

−1 is relevant for the statistics of low-lying physi-
cal quasiparticle excitations. Henceforth we shall restrict the
meaning “quasiparticle” to those whose � vector is an integer
combination of �1 through �7.

From Kr
−1 it can be seen that the system contains quasi-

particles with nontrivial mutual statistics. In particular, there
are fermions having semionic mutual statistics �i.e., a phase
factor of � when one quasiparticle winds around another�,
manifesting in, e.g., quasiparticles described by �4 and �5.

The self-statistics and mutual statistics of different quasi-
particles can be understood intuitively. Recall that our sys-
tem is constructed by coupling integer and fractional quan-
tum Hall states via a common constraint gauge field �. If we
assume that the different quantum Hall states are indepen-
dent of each other, i.e., a charge in one matter-field compo-
nent has trivial bosonic statistics with a charge in a different
matter-field component, then the statistics of these quasipar-
ticles can be read off by considering their underlying con-
stituents. For example, since �4 and �5 overlaps in one �
=1 /2 component, their mutual statistics is semionic. Simi-
larly, since �4 overlaps with itself in two �=1 /2 components,
its self-statistics is fermionic.19 From this intuitive picture, it
is evident that a single +1 in a spinon component in the �

vector should be identified with a spinon excitation on top of
the integer quantum Hall state that formed near the corre-
sponding Dirac node, while a single +1 in a holon compo-
nent in the � vector should be identified with a half-holon
excitation on top of the �=1 /2 quantum Hall state that
formed near the corresponding band bottom. Similarly, a
single −1 in a spinon �holon� component in the � vector
should be identified as an antispinon �anti-half-holon�. See
Fig. 4 for illustration.

To discuss these quasiparticles further, it is useful to di-
vide them into three classes. The first class consists of qua-
siparticles with spinon components only and will be referred
to as “spinon quasiparticles” �SQP�. The second class con-
sists of quasiparticles with holon components only and will
be referred to as “holon quasiparticles” �HQP�. The remain-
ing class consists of quasiparticles that have both spinon and
holon components, and will be referred to as “mixed quasi-
particles” �MQP�. The first two classes can be constructed by
compounding “elementary” quasiparticles of the same type.
For SQP, the elementary quasiparticles are described by �
vectors having exactly one +1 component and one −1 com-
ponent in the spinon sector �e.g., the �1, �2, and �3 in Eq.
�26�. For HQP, the elementary quasiparticles are described
by � vectors having exactly one +1 component and one −1
component in the holon sector �e.g., the �4, �5, and �6 in Eq.
�26�. As for the MQP, one can start with “minimal” quasi-
particles with exactly one +1 component in the spinon sector
and one +2 component in the holon sector, and build all
MQP by compounding at least one such minimal quasiparti-
cles together with zero or more elementary SQP and HQP.
Alternatively, one may start with a second type of minimal
quasiparticle in the MQP sector, which has exactly one +1
component in the spinon sector and two +1 components in
the holon sector, and build all MQP by compounding at least
one such minimal quasiparticles together with zero or more
elementary SQP and HQP �note that the second-type of mini-
mal MQP is simply a minimal MQP of the first type com-
pounded with an elementary HQP. The introduction of two
different types of minimal MQP will be clear in the follow-
ing�.

These elementary and minimal quasiparticle excitations
can be visualized in the following way: the elementary SQP
can be visualized as a particle-hole excitation in the spinon

antispinon

half-holon

holon

half-anti-holon

antiholon

spinon

(b)(a) (c) (d)

FIG. 4. �Color online� Physical interpretation of � vector: �a� a
single +1 in a spinon component identified as a spinon; �b� a single
−1 in a spinon component identified as an antispinon; �c� a single
+1 �+2� in a holon component identified as a half-holon �holon�;
and �d� a single −1 �−2� in a holon component identified as an
anti-half-holon �antiholon�. The thick �red� horizontal lines indicate
filled LLs that forms the ground state of the system, while the thin
�black� horizontal lines indicate unfilled LLs.
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quantum Hall levels, in which a spinon is removed from one
Dirac node and added in another. The elementary HQP can
be visualized as a particle-hole excitation in the holon quan-
tum Hall levels, in which a half-holon is removed from one
band bottom and added in another. The minimal SQP can be
visualized as adding both spinon and �half� holons into the
original system. See Fig. 5 for illustrations.

With this classification, the information on the self- and
mutual statistics of the quasiparticles contained in Kr

−1 can be
summarized more transparently in terms of the self- and mu-
tual statistics of the elementary SQP, elementary HQP, and
minimal MQP. The result is presented in Table I.

V. QUASIPARTICLES—QUANTUM NUMBERS

Since the quasiparticles have finite energy gaps and short-
ranged interactions, they may carry well-defined quantum
numbers. In particular, it is sensible to consider the k quan-
tum numbers for these quasiparticles since they arise from
LLs that form near Dirac points or band bottoms with well-
defined crystal momentum k. Similarly, it is sensible to con-
sider the Sz quantum numbers for quasiparticles with spinon
components. We shall see that this program can be carried

out for elementary spinon quasiparticles and for the minimal
mixed quasiparticles of first type, but not easily for the el-
ementary holon quasiparticles and the minimal mixed quasi-
particles of the second type.

Recall that we constructed a tight-binding model with
doubled unit cell for the DSL ansatz. The unit cell is neces-
sarily doubled because the DSL ansatz enclose a flux of �
within the original unit cell spanned by r1 /2= x̂ and r2
= �1 /2�x̂+ ��3 /2�ŷ �cf. Fig. 1�a�, and hence the operators
that corresponds to translation by x̂, Tx, and the operator that
corresponds to translation by r2, Tr2, do not commute in
general �i.e., �Tx ,Tr2�0�, even though both commute with
the mean-field tight-binding Hamiltonian. Consequently,
single-spinon and single-holon states in the DSL ansatz gen-
erally form multidimensional irreducible representations un-
der the joint action of Tx and Tr2 �i.e., Tx and Tr2 manifest as
multidimensional matrices that cannot be simultaneously di-
agonalized when acting on these states�, and cannot be la-
beled simply by a pair of numbers �c1 ,c2� as in the ordinary
case.20 Furthermore, the matrices for Tx and Tr2 will in gen-
eral be � -gauge dependent. However, when an even number
of spinon and holon excitations are considered as a whole,
the total phase accumulated when the particles circle around
the original unit cell becomes a multiple of 2�, and thus
�Tx ,Tr2=0 in such subspace. Hence it is possible to recon-
struct the crystal momentum in the original Brillouin zone if
our attention is restricted to such states. The tool for recon-
structing the crystal momentum in the original Brillouin zone
is known as the projective symmetry group �PSG�.21 Physi-
cally, the gauge dependence of single-spinon and single-
holon states indicates that they cannot be created alone.

It can be checked that all SQPs are composed of an even
number of spinons and antispinons. The above discussion
then implies that they carry well-defined k quantum numbers
in the original Brillouin zone. To derive the transformation
properties of the quasiparticles under Tx and Tr2, we compute
the transformation properties of the original spinon matter
fields. The procedures for doing so have been described in
details in Ref. 7, here we shall just state the results.

Let �1 , . . . ,�4 denote the topological excitations near the
four �two k vectors and two spins� Dirac nodes as indicated
in Fig. 6�a�. Then, assuming that they have the same trans-

(b)(a)

(c) (d)

FIG. 5. �Color online� Visualization of the �a� elementary SQP;
�b� elementary HQP; �c� minimal MQP of the first type; and �d�
minimal MQP of the second type.

TABLE I. Self- and mutual statistics of the elementary or minimal quasiparticles in the doped kagome
system. The adjective elementary or minimal are omitted but assumed in the table entries. The subscript I and
II indicates the type of minimal MQP considered �see the main text for their definitions�. When an entry
contain multiple cases, both cases are possible but are realized by different quasiparticles in the respective
sectors.

Type Self-statisticsa

Mutual statistical phaseb

SPH HPH MQPI MQPII

SQP b 2� 2� 2� 2�

HQP f 2� � or 2� 2� � or 2�

MQPI f 2� 2� 2� 2�

MQPII b 2� � or 2� 2� � or 2�

ab=bosonic, f=fermionic, and s=semionic.
bPhase angle accumulated when one quasiparticle winds around another, modulo 2�.
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formation properties as the underlying spinon fields at the
same Dirac nodes,

Tx��1 = ei�/12�2, Tr2��1 = ei�/2�1,

Tx��2 = e11i�/12�1, Tr2��2 = e−i�/2�2,

Tx��3 = ei�/12�4, Tr2��3 = ei�/2�3,

Tx��4 = e11i�/12�3, Tr2��4 = e−i�/2�4. �28�

Furthermore, we assume that Tx and Tr2 satisfy the generic
conjugation and composition laws,

T��� = �T����, T�� · �� = T�� · T��� . �29�

where �, �� denotes generic quasiparticle states, �� denotes
an antiparticle of �, and � ·�� denotes a bound state com-
posed of � and ��.

A general basis for elementary SQP is spanned by �i� j
�

with i� j. There are 12 distinct elementary SQP, which form
six reducible representations under Tx and Tr2. Upon diago-
nalization, the resulting elementary SQP in the new basis
each carries distinct Sz and k �in the original Brillouin zone�
quantum numbers. These are summarized in Fig. 6�c�.

Notice that Fig. 6�c� is somewhat unsettling. First, even
though we have not performed a PSG study on rotation op-
erators, intuition on rotation symmetry suggests that there
should be four states �with Sz=1, −1, 0, and 0� located at k
= �� ,−� /�3�. Second, although our Chern-Simons theory is
formulated with a fixed quantization axis for spin, the SU�2�

spin-rotation symmetry should remain unbroken. Therefore,
the Sz eigenvalues should organize into SU�2� representa-
tions for each k value. While this is true for k= �� ,� /�3�
and k= �0,2� /�3�, where the elementary SQP form 1 � 0
representations, the same does not hold for k= �� ,−� /�3�
and k= �0,0�.

The two issues mentioned above indicate that some topo-
logical excitations are lost in our formulation. In other
words, there are topological excitations that have trivial Sz
quantum numbers but nontrivial S quantum numbers. Simi-
larly, there are topological excitations that have trivial k
quantum numbers in the reduced Brillouin zone but non-
trivial k quantum numbers in the original Brillouin zone.
Physically, the origin of these missing excitations can be
understood as follows: in the hydrodynamic approach, an �
vector with a single +1 in a spinon component represents a
spinon at a Dirac node, while � vector with a single −1 in a
spinon component represents an antispinon at a Dirac node.
The previously defined set of � vectors that characterized the
elementary SQP fail to capture an excitonic state in which a
spinon is excited from a filled LL to an empty LL at the same
Dirac node, thus leaving an antispinon behind �see Fig. 6�b�
for an illustration, which precisely carry trivial Sz quantum
numbers and transform trivially under Tr1 and Tr2. Note that
there are four possible excitonic states of this form, hence we
expect four states to be added. In our Chern-Simons formu-
lation, these excitations may be disguised as combinations of
density operators ���c�.

From Fig. 6�c� and the forgoing discussions, it is evident
that extra states should be added at k= �� ,� /�3� and k
= �0,0�, so that the states at k= �0,0� and k= �� ,� /�3� each
form a 1 � 0 representation of SU�2�. The final result after
making this reparation is shown in Fig. 6�d�. Formally, the
same result can be reached if we allow objects of the form
�i�i

� to be counted as elementary SQP, then apply Eq. �28�
and the procedure of diagonalization as before in this ex-
tended basis.

Observe that the elementary spinon SQP �and hence the
entire SQP sector� all carry integer spins. However, we also
know that a conventional superconductor contains spin-1/2
fermionic excitations �i.e., the Bogoliubov quasiparticles�.
From our assignment of Sz quantum number and from the
table of quasiparticle statistics Table I, it is evident that the
minimal MQP of the first type play the role the these Bogo-
liubov quasiparticles in the doped kagome system. In con-
trast, minimal MQP of the second type are spin-1/2 quasi-
particles that carry bosonic statistics and hence is another
distinctive signatures of this exotic superconductor.

Since a minimal MQP of the first type can be treated as a
bound state of a spinon and a holon �cf. Fig. 5�c�, the k
quantum number in the original Brillouin zone is again well
defined for them. To construct their quantum numbers, we
need to know how holons transform under Tx and Tr2. Let
�1 , . . . ,�4 denotes the half-holon excitations near the four
holon band bottom as indicated in Fig. 7�a�, such that
�1

2 , . . . ,�4
2 denotes the corresponding holon excitations �cf.

Fig. 4�c�. Following the same procedure that produces Eq.
�28�, we obtain the transformation laws,

Tx��1
2 = �4

2, Tr2��1
2 = ei�/6�1

2,

�

� ↑= η1↓= η3

↑= η2↓= η4

*

*

*

*

Sz = 1,−1, 0, 0

Sz = 1,−1, 0, 0

Sz = 1,−1

Sz = 1,−1

*

*

*

*

S = 1 ⊕ 0

S = 1 ⊕ 0

S = 1 ⊕ 0

S = 1(⊕0)

(b)(a)

(c) (d)

FIG. 6. �Color online� �a� The labels for the four spinon topo-
logical excitations. �b� Physical interpretation of the “missing
states” in the fixed Sz quantization and doubled unit-cell Chern-
Simons formulation. �c� Spectrum of elementary SQP, with k and Sz

quantum number indicated, before restoring full symmetry. �d�
Spectrum of elementary SQP after restoring the SU�2� symmetry by
adding extra quasiparticles. The dotted arrows indicate equivalent k
point upon translation by the original reciprocal-lattice vectors
�spanned by 2k1 and k2 in Fig. 1�b�. For dimension of the Brillouin
zone, cf. Fig. 1�b�.
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Tx��2
2 = �3

2, Tr2��2
2 = e−i�/6�2

2,

Tx��3
2 = e−i�/3�2

2, Tr2��3
2 = e5i�/6�3

2,

Tx��4
2 = ei�/3�1

2, Tr2��4
2 = e−5i�/6�4

2. �30�

A general basis for minimal MQP of the first type is spanned
by �i� j

2. There are 16 distinct first-type minimal MQP, which
form eight reducible representations under Tx and Tr2. Upon
diagonalization, the resulting first-type minimal MQP in the
new basis each carries distinct Sz and k �in the original Bril-
louin zone� quantum numbers, and the full SU�2� represen-
tation in spin can be recovered trivially by combining
spin-up and spin-down states. The final results are summa-
rized in Fig. 7�b�.

Having considered the SQP sector and the minimal MQP
of the first type, one may attempt to carry out similar analy-
sis for the HQP sector and for the minimal MQP of the
second type. However, in doing so, issues arise from the
fractionalization of holons into half-holons. Recall that in
deriving the transformation rules of the quasiparticles, we
identify the components of � as being spinon and holon ex-
citations, and assume that these excitations carry the same
quantum numbers as the underlying spinons and holons that
form the LLs in the first place. However, the HQP sector and
the minimal MQP of the second type are bound states that
involve half-holons, whose quantum numbers cannot be di-
rectly inferred from the underlying spinons and holons. More
concretely, we need to know the transformation laws T��i� j

�
for half-holon–anti-half-holon pairs �i� j

� in order to con-
struct their quantum numbers, but we only have information
about transformation laws T�� j

2 of holon excitation � j
2.

It is far from clear how T��i� j
� can be related to T�� j

2.
The answer for such question may even be nonunique. We
have already seen an analogous situation in the forgoing dis-
cussion: while the spinon-antispinon pairs �i� j

� have well-
defined gauge-invariant k quantum numbers in the original
Brillouin zone, the single spinons �i form gauge-dependent
two-dimensional representations under Tx.

The possible ambiguity in the transformation law T��i� j
�

of half-holon–anti-half-holon pairs �i� j
� signifies that it may

not be possible to produce these quasiparticles alone. Al-
though a half-holon–anti-half-holon pair can be thought of as
resulted from removing a half-holon from one band bottom

and adding one in another, it is not clear that the process can
be done in via single half-holon tunneling. This is analogous
to the case when two fractional quantum Hall system are
separated by a constriction, where it is only possible to tun-
nel physical electrons.22

Combining the results from Secs. IV and V, we see that
there are two very different class of quasiparticle excitations
in the doped kagome system—which can be termed as “con-
ventional” and “exotic,” respectively. The conventional class
consists of quasiparticles that can be created alone, which
carry well-defined crystal momentum k in the original Bril-
louin zone and possess conventional �fermionic or bosonic�
statistics. These include the spinon particle-holes, the holon
�but not half-holon� particle holes, the minimal mixed quasi-
particles of the first type �a.k.a. the “Bogoliubov quasiparti-
cles”�, and their composites. In contrast, the exotic class con-
sists of quasiparticle that cannot be created alone, whose
crystal momentum may not be well defined, and whose sta-
tistics may be fractional. These include the half-holon
particle-holes and the minimal mixed quasiparticles of the
second type �which are Bogoliubov quasiparticles dressed
with a half-holon particle-hole�. In terms of the underlying
electronic system, the former class are excitations that are
local in terms of the underlying electron operators c and c†,
while the latter class are excitations that are nonlocal in
terms of c and c†.

It should be warned that questions regarding the energet-
ics �and hence stability� of the quasiparticles have not been
touched in Secs. IV and V. In particular, it is not clear
whether the bosonic or the fermionic spin-1/2 excitation has
a lower energy. Though this information is in principle con-
tained in the Maxwell term Eq. �10�, to obtain it requires a
detailed consideration of the short-distance physics in the t-J
model, and is beyond the scope of this paper.

VI. ALTERNATIVE DERIVATION BY ELIMINATING THE
AUXILIARY FIELD

It is a curious result that in Eq. �27�, once the unphysical
�10 is removed from the spectrum, the quasiparticle repre-
sented by �9 becomes purely bosonic �i.e., having trivial
bosonic mutual statistics with all other quasiparticles and
trivial bosonic self-statistics�. This suggests that �9 corre-
sponds to some local-density excitation of the system and
thus should not be regarded as topological. Moreover, the
procedure of first treating �10 as part of the spectrum in com-
puting Kr

−1 and then removing this degree of freedom at the
very end of the calculation seems somewhat dubious. Recall
that the gauge field �� is introduced to enforce the occupa-
tion constraint Eq. �5�. This gauge field is thus an auxiliary
field that is void of self-dynamics �i.e., the term ���� van-
ishes� and topologically trivial �i.e., the � component of �
must be zero�. Therefore, one may attempt to rederive the
previous results by eliminating this � field right at the begin-
ning by enforcing the constraint directly. This can indeed be
done, as we shall show in the following.

Recall that the EOM with respect to �� leads to the con-
straint equation Eq. �21� in the Chern–Simons formulation.
From this, one may argue that the effect of introducing the �

× ×

×

×

ϕ1

ϕ2

ϕ3

ϕ4

*

**

*

* *

*

*(b)(a)

FIG. 7. �Color online� �a� The labels for the four holon excita-
tions. �b� Spectrum of elementary MQP, with k quantum number
indicated. Each point in k space forms a S=1 /2 representation in
spin. The dotted arrows indicate equivalent k point upon translation
by the original reciprocal-lattice vectors.
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field can alternatively be produced by setting �IaI
�+�JbJ

�

=0 directly. To do so, we perform a two-step transformation
on the Lagrangian Eq. �16�. First, we set

a6�
� = �

I

aI
� and aI�

� = aI
� for I � 6, �31�

b1�
� = �

J

aJ
� and bJ�

� = bJ
� for J � 1. �32�

Then the constraint becomes a6�
�+b1�

�=0, which we enforce
directly by setting,

�� = − a6�
� = b1�

�, �33�

thus eliminating one variable.
Note that since the � field appears in Eq. �16� only

through the term ���IaI+�JbJ���, it got dropped out of
the transformed Chern-Simons Lagrangian. Letting c̃
= �� ;a1� , . . . ,a5� ;b2� , . . . ,b4��, which is a column vector of only
nine �as opposed to eleven� gauge fields, Eq. �16� becomes

L =
1

4�
�c̃TK̃ � c̃ −

e

2�
��q̃ · c̃� � A + ��̃ · c̃��jV

� + ¯ ,

�34�

where q̃= �1;O1,5 ;O1,3�T is the transformed charge vector,

and K̃ is the transformed K matrix,

K̃ =�
3 1 1 1 1 1 − 2 − 2 − 2

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1 O5,3

1 1 1 1 0 1

1 1 1 1 1 2

− 2 4 2 2

− 2 O3,5 2 4 2

− 2 2 2 4

� . �35�

As for topological excitations, from the transformation be-
tween c and c̃, it can be seen that the correspondence be-

tween � and �̃ reads

� = �0;na1, . . . na6;nb1, . . . nb4�T,

�

�̃ = �nb1 − na6;na1 − na6, . . . ,na5 − na6;

nb2 − nb1, . . . ,nb4 − nb1�T. �36�

Hence, � is an integer vector if and only if �̃ is also an
integer vector. Moreover, from Eq. �36� it can be seen that �9

is mapped to �̃=0,23 which is consistent with our previous
argument that the quasiparticle corresponding to �9 is purely
bosonic and hence should be considered as nontopological.

Although K and K̃ look rather different superficially,24 all
the major conclusions from Secs. III–V can be reproduced

with K̃. In particular, we shall check that the existence of a

single gapless mode, the hc /4e flux through a minimal vor-
tex, and the semionic quasiparticle statistics can all be ob-

tained from K̃.

It is easy to check that K̃ has exactly one zero eigenvalue,
with p̃0= �4;−2E1,4 ,2 ;E1,3�T its eigenvector. Using the trans-
formation equations Eqs. �31�–�33�, we see that this eigen-
vector corresponds precisely to the eigenvector p0 we found
in Sec. III. Thus, again we conclude that the system contains
a gapless mode associated with superconductivity, and that
this gapless mode can be interpreted as fluctuations of all
spinons and holons species whose ratio is matched �through
their common coupling to the gauge field ���.

Moreover, the amount of magnetic flux that passes
through a physical vortex is still described by Eq. �24� upon
the obvious modifications. Since q̃ · p̃0=4, we recover the
conclusion that a minimal physical vortex carries a flux of

hc /4e. Furthermore, it can be checked that � ·p0= �̃ · p̃0 for �,

�̃ satisfying the correspondence Eq. �36�. Hence the flux car-

ried by a vortex calculated from K̃ agrees with the value
calculated from K.

As before, the quasiparticle excitations �which are EM-
neutral, short-ranged interacting, and have finite-energy

gaps� are characterized by the condition that �̃ · p̃0=0, which
defines an eight-dimensional subspace of the nine-
dimensional space in this case. The K matrix restricted to this

subspace, K̃r, is invertible. We may choose a basis for this
subspace that corresponds to the basis choice Eq. �26� in the
original representation. Explicitly,

�̃1 = �0;0,− 1,1,0,0;O1,3�T,

�̃2 = �0;0,− 1,0,1,0;O1,3�T,

�̃3 = �0;0,− 1,0,0,1;O1,3�T,

�̃4 = �0;0,O1,4;0,1,− 1�T,

�̃5 = �0;0,O1,4;1,0,− 1�T,

�̃6 = �1;0,O1,4;− 1,− 1,− 2�T,

�̃7 = �0;0,0,1,0,0;1,1,0�T,

�̃8 = �0;1,1,0,0,0;O1,3�T. �37�

Then, it can be checked that
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K̃r
−1 =�

− 2 − 1 − 1 − 1 1

− 1 − 2 − 1 O3,3 0 1

− 1 − 1 − 2 0 1

1 1/2 1/2 1/2 0

O3,3 1/2 1 1/2 1/2 0

1/2 1/2 1 0 0

− 1 0 0 1/2 1/2 0 0 0

1 1 1 0 0 0 0 0

� ,

�38�

in agreement with the results in Sec. IV.

VII. CONCLUSIONS

In this paper we have considered the theory of a doped
spin-1/2 kagome lattice described by the t-J model. We start
with the slave-boson theory and the assumption that the un-
doped system is described by the U�1� Dirac spin liquid,
from which we argued that the doped system is analogous to
a coupled quantum Hall system, with the role of the external
magnetic field in the usual case taken up by an emergent
gauge field �. The analogy with quantum Hall systems com-
pels us to introduce the Chern-Simons theory as an effective
description of the low-energy physics of the system. This
allows us to describe the superconductivity, the physical vor-
tices, and the electromagnetically neutral quasiparticles in a
unified mathematical framework. We show that there are two
alternative Chern-Simons theories that produce identical
results—one with the auxiliary field � kept until the end, and
the other with the auxiliary field and a redundant dual matter
field eliminated at the beginning.

In our scenario, the coupled quantum Hall system consists
of four species of spinons and four species of holons at low

energy. We show that such system exhibits superconductivity
and that the flux carried by a minimal vortex is hc /4e. The
system also contains fermionic quasiparticles with semionic
mutual statistics and bosonic spin-1/2 quasiparticle. As for
the quantum numbers carried by the quasiparticles, we ana-
lyzed the spinon sector in details and found that it is possible
to recover the full SU�2� and �unenlarged� lattice symmetry
of the elementary quasiparticles in this sector, upon the in-
clusion of quasiparticles that are not easily represented in the
original fixed-spin-quantization-axis, enlarged-unit-cell de-
scription. The same classification of quantum numbers are
also carried out for the spin-1/2 fermionic quasiparticles,
which are the analog of Bogoliubov quasiparticles in our
exotic superconductor.

In this paper we have argued that the doped spin-1/2
kagome system may exhibit exotic superconductivity that is
higher unconventional. However, it should be remarked that
we have presented only one possible scenario for the doped
kagome system. For example, it is possible that the ground
state of the undoped system is a valence bond solid5 and
hence invalidate our analysis. Furthermore, experimentally
realizing the idealized system considered in this paper may
involve considerable difficulties. For instance, in the case of
Herbertsmithite, it is known that the substitution between Cu
and Zn atoms can be as big as 5%.25 It is our hope that this
paper will generate further interests in the doped spin-1/2
kagome system, as well as other systems that may exhibit
analogous exotic superconducting mechanisms, both experi-
mentally and theoretically.
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