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We study a model thin film containing diluted bilayer structure with the Ruderman-Kittel-Kasuya-Yosida
long-range interaction. The magnetic subsystem is composed of two magnetically doped layers, separated by
an undoped nonmagnetic spacer, and placed inside a wider film modeled by a quantum well of infinite depth.
We focus our study on the range of parameters for which the antiferromagnetic coupling between the magnetic
layers can be expected. The critical temperatures for such system are found and their dependence on magnetic
layer thickness and charge-carrier concentration is discussed. The magnetization distribution within each mag-
netic layer is calculated as a function of layer thickness. The external field required to switch the mutual
orientation of layer magnetizations from antiferromagnetic to ferromagnetic state is also discussed.

DOI: 10.1103/PhysRevB.79.214430 PACS number�s�: 75.70.�i, 75.50.�y, 75.30.�m

I. INTRODUCTION

The phenomenon of mutual coupling of magnetic layers
separated by a nonmagnetic medium has been of great inter-
est since its discovery in Fe/Cr structure,1 both due to its
immense application potential and the highly nontrivial
physical background.2–8 In parallel to studies of metallic
systems, the progress in the field of thin films made of di-
luted magnetic semiconductors �DMSs�, such as the most
representative �Ga,Mn�As, offers some new possibilities to
study the diluted magnetic systems with confined geometry.
Such materials are promising from the future spintronics
point of view9 since they can assure integrability of
novel spin-current devices with conventional structures of
semiconductor-based electronics.10 In DMS an indirect cou-
pling between localized spins mediated by charge carriers is
of paramount importance for the possibility of magnetic or-
dering. The Ruderman-Kittel-Kasuya-Yosida �RKKY� inter-
action mechanism was suggested to describe the properties
of quantum-well-based DMS systems a decade ago.11

The problem of interlayer coupling in multilayers and su-
perlattices of DMS has been subject to various theoretical
studies. However, let us notice that the theoretical ap-
proaches have been dedicated mainly to multilayers and su-
perlattices, while the structures based on bi- or trilayer ge-
ometry have attracted less attention. Giddings et al.12

performed some calculations within a single parabolic band
approximation for k ·p method and local density approxima-
tion to study the possibility of the appearance of antiferro-
magnetic �AF� interlayer coupling in the superlattices of
�Ga,Mn�As. They concluded that the minimization of spacer
thickness accompanied with relatively short superlattice pe-
riod is advantageous for a strong coupling. This problem has
also been investigated by Sankowski and Kacman,13 who
found in their tight-binding-based study a relative insensitiv-
ity of the coupling energy to the magnetic layer thickness. A
noticeable range of parameters favoring the AF interlayer
interaction has been identified. The self-consistent mean-
field calculations for multilayers were also performed by
Jungwirth et al.14 The study of Rodrigues et al.15 was de-
voted to the distribution of charge and spin polarization in
the multilayer. On the other hand, several works have been

focused on the quantum-well-based systems containing two
layers separated by a nonmagnetic spacer. These involve
mainly the Monte Carlo �MC�-based studies of Boselli et
al.16,17

Numerous experimental works evidenced the fact that two
magnetically doped layers can be indirectly coupled for
some interlayer distances. The effect has been studied both in
magnetic bilayers and in multilayer systems. For example,
the results of Sadowski et al.18 proved the possibility of mag-
netic ordering in �Ga,Mn�As layers thinner than 50 Å in
multilayer geometry, and such ferromagnetism had a ten-
dency to vanish if the nonmagnetic spacer was more than
10 ML thick. A distinct coupling has been observed in
�Ga,Mn�As/GaAs trilayers by means of magnetotransport
and magnetization process studies by Akiba et al.19 The
quantitative analysis was performed there yielding the ferro-
magnetic �F� interlayer couplings close to 0.1 mJ /m2 for the
nonmagnetic spacer up to 10 ML thick. On the other hand,
the ferromagnetic coupling observed by Chiba et al.20 was
one order of magnitude weaker. The ferromagnetic resonance
in �Ga,Mn�As heterostructures investigated by Dziatkowski
et al.21 indicated that the layers were uncoupled for nonmag-
netic spacers thicker than 32 ML, while for 10 ML a full
coupling took place. The superlattice structures of the same
DMS have been investigated by Mathieu et al.,22 where the
critical temperature was found to oscillate with the spacer
thickness �up to 9 ML�, and thus the presence of interlayer
coupling was deduced. Short-period superlattices formed the
basis of neutron reflectivity studies of Szuszkiewicz et al.,23

who confirmed the ferromagnetic-only interlayer coupling
�mainly for 6 ML spacer�. In the work of Kirby et al.24 neu-
tron reflectometry and magnetization curve studies of trilayer
structures were performed in which the magnetization of top
and bottom layer has been resolved. This indicated distinct
ferromagnetic coupling through a spacer of large thickness
�about 20 ML�. It was also excluded in the paper of Kirby et
al.24 that the spacer has been plagued by diffusion of the
magnetic impurities leading to direct coupling mechanism.
However, it should be mentioned that the diffusion of Mn
impurities into the spacer is possible, as it has been proven
experimentally by STM methods.25 On the other hand, the
results of Ge et al.26 show the difference of critical tempera-
tures for top and bottom layers in a trilayer system, a differ-
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ence which had a tendency to vanish when the nonmagnetic
spacer thickness was reduced �and a single common transi-
tion temperature has been observed for the spacer of about
10 ML thick�. Let us note that in that paper it has been stated
that the sign of coupling energy might be spatially
inhomogeneous—either F or AF for various areas on the
surface of the sample, which was deduced from the observa-
tion of planar Hall effect. However, it was not until last year
that the AF coupling between layers in �Ga,Mn�As/GaAs:Be
was clearly observed by means of dc magnetometry as well
as neutron reflectivity studies performed by Chung et al.27

The critical temperature of the system was about 50 K. All
the discussed interlayer coupling signatures have been as-
signed to the carrier-mediated interaction mechanism.

The above results encourage further search for the possi-
bility of obtaining AF interlayer carrier-mediated coupling.
Therefore, it seems purposeful to devote a theoretical study
to the trilayer structure, which can be formed by two mag-
netic layers immersed in the thin film and separated by a
nonmagnetic spacer, with the aim to discover some unique
properties of RKKY interaction in the ultrathin film. From
the practical point of view it is interesting to find a range of
carrier concentrations and geometric characteristics with AF
coupling. In particular, the influence of the magnetic layer
thickness on the coupling energy and the critical temperature
of the system poses an important question. In order to have a
deeper insight, also the spatial distribution of magnetization
within the magnetic layers appears worthwhile to examine.

For the above reasons, in this paper our purpose is to
study a model trilayer system with the RKKY interaction.
The theoretical model is based on the quantum-well ap-
proach to the thin film for which the RKKY exchange cou-
pling has been rederived. The numerical calculations have
been performed for some realistic material constants, typical
of DMS systems.

II. THEORETICAL MODEL

We consider a model thin film consisting of n monolayers,
where some of the planes can be doped with magnetic im-
purity ions. The doped planes form two magnetic layers,
separated by a nonmagnetic spacer �Fig. 1�. Each magnetic
plane consists of nL doped atomic planes, while the undoped
spacer has the thickness of nS monolayers. As a consequence,
the inequality 2nL+nS�n must hold. The film possesses fcc
structure and its surface orientation is �001�. The localized
spins situated in the lattice site �ri ,z�� can be shortly denoted
by Si,�, where � is one of the atomic planes whose position is
given by z�= ��−1 /2�d, and ri is the vector in the plane. d is
the thickness of a single monolayer, and the total thickness of
the film is D=nd. The choice of structure is motivated by the
fact that the ultrathin films of �Ga,Mn�As are most often
grown with this surface orientation, on �001�GaAs substrate.
Our film constitutes a quantum well of infinite depth in z
direction for the charge carriers. Confining electrons in such
a quantum-well results in discretization of the Fermi surface,
which for such a system is composed of a finite number of
circular “slices,” each of them corresponding to one two-
dimensional �2D� energy subband �indexed by an integer ��.

Therefore, the dispersion relation for charge carriers takes
the form of

Ek,� =
�2

2m
�k2 +

�2

D2�2� , �1�

where k is a 2D in-plane wave vector.
For the free-electron model, the perturbation Hamiltonian

describing the exchange interaction between the single local-
ized magnetic moment at �ri ,z�� and the free charge carrier
at �r ,z� is assumed to be in the following form:

H = − Ap�r,z�Si,�
z sz�r,z� , �2�

where A is the exchange constant,

p�r,z� =
1

�3�2��3/2e−��r − ri�
2+�z − z��2�/2�2

, �3�

and sz�r ,z� is the z component of the free-electron spin in the
�r ,z� point of the film.

We emphasize the fact that the selected “diffused” contact
potential p�r ,z� differs from the usual Dirac delta function
since it has a nonzero dispersion �2. The contact potential
frequently used in derivation of RKKY indirect exchange
integral is reproduced in the limit �→0. Such a form of
formula �3� is further substantiated by the fact that the local-
ized magnetic moments originate from the d-type electronic
orbitals which possess some spatial extension. Note that such
a potential has already been applied in studies of bulk
DMS.28–30

The influence of “diffusion” of the contact potential on
the resulting RKKY coupling integral in one-dimensional
�1D�, 2D, and three-dimensional �3D� systems has recently
been studied in Ref. 31. The studies resulted in obtaining a
finite value of RKKY integral for r=0 in 2D and 3D case.
The importance of this result has first been noticed for dis-
crete 3D systems since the presence of divergence at r→0
leads to some divergent self-energy corrections.28 However,
it must be emphasized that in studies of ultrathin films the
acceptance of a finite � value is necessary, even if we do not

FIG. 1. �Color online� Schematic cross section of an ultrathin
film containing two magnetically doped layers. In this figure the
total thickness of the film amounts to n=11, whereas the thickness
of each magnetic layer is nL=3 and the thickness of nonmagnetic
spacer is nS=3.
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require the self-energy to be finite. The reason is that the
RKKY exchange integral derived on the basis of the contact
potential with �=0 is divergent for arbitrary z when r=0,
i.e., in the direction perpendicular to the film plane, even
though the distance between the interacting spins is nonzero.
This fact precludes the further studies on the total energy of
the discrete system if �=0.

By applying the second-order perturbation calculus we
obtain the RKKY exchange integral between the localized
spins separated by the distance �r= �ri−r j� in the plane of the
film, and �z= �z�−z	� in the direction perpendicular to the
film surface. The integral has the form of

J��r,�z� = C�a

d
�4 �

4n2�
0

+


dy�yJ0�y
�r

d
�e−��/d�2y2

� �
l=−


+

�l,y

�0
cos�2�

n

�z

d
l�2�l�	 . �4�

In the above formula, �l� is the Fourier transform of the
z-dependent part in the interaction potential p�r ,z�, and it
can be presented as �l�=exp�i 2�

D l�� for � /d�1.32 The
symbol �l,y denotes the paramagnetic susceptibility of the
electrons in the ultrathin film, which has been derived
elsewhere,33,34 while �0 is the Pauli susceptibility of 2D sys-
tem. The energy constant C in Eq. �3� is given by C
=2mA2 /�h2a4, where a is the lattice constant.

The Hamiltonian for the system under consideration is
assumed to be of Ising type with the long-range exchange
interaction J��r ,�z�,

H = − �

i,	;j,��

J��r,�z��i,	� j,�Si,	
z Sj,�

z + geff	BB�
i,	

�i,	Si,	
z .

�5�

The above Hamiltonian includes the Zeeman term for the
system embedded in an uniform external field B. The local-
ized spins reveal the effective gyromagnetic factor geff=gS
+ge��Am�F /h2D�,35 where gS and ge are the gyromagnetic
factors of localized spins �without RKKY interaction� and
the free electrons, respectively. �F is the number of subbands,
splitted due to the discretization of Fermi surface in thin
film.36

In order to describe a site dilution in the system we make
use of the Edwards operators �i,	,37 which possess two ei-
genvalues: 1 when the site �i ,	� is occupied by a magnetic
impurity or 0 otherwise. In this paper, for simplicity, we will
neglect the correlations of �i,	 operators; i.e., the Warren-
Cowley short-range-order parameter38 is assumed here to be
0. It means that the occupation of lattice sites by the impurity
ions in doped planes is completely random. As a conse-
quence, the configurational averages read as 
�i,	�r=x and

�i,	� j,��r=x2 if sites �i ,	� and �j ,	� belong to the magneti-
cally doped atomic planes and vanish otherwise, whereas x is
the magnetic dopant concentration. In further considerations
it will be assumed that indices 	 and � run only over the
magnetically doped atomic planes.

By taking thermodynamic and configurational average of
Hamiltonian �5� for the temperature T→0, we obtain the
ground-state enthalpy H= 
H� of the magnetic system under
consideration. The enthalpy can be conveniently written as a
sum of contributions originating from the energy of spin in-
teractions within a single magnetic layer, the energy of inter-
actions between two layers, and the interaction with an ex-
ternal field. For the temperature T→0 the magnetization in
each atomic plane � constituting a specified magnetic layer is
the same, for instance, 
Si,	

z �=m1= �S for the first layer and

Si,	

z �=m2= �S for the second one; i.e., both layers are fully
polarized �ferro- or antiferromagnetically each to the other�.
As a consequence, the total enthalpy per one site in a doped
atomic plane reads as

H

N
=

Eintra

N
+

Einter

N
− xnLgeff	BB�m1 + m2� . �6�

Since each layer is ferromagnetically ordered inside, the en-
ergies of intralayer and interlayer interactions can be written
in the form of

Eintra

N
= − x2S2Eintra �7�

and

Einter

N
= − x2m1m2Einter. �8�

In the above equations we denoted the appropriate lattice
sums by

Eintra = nLE�0� + �
�=1

nL−1

�nL − ��E��� �9�

and

Einter = nLE�nL + nS� + �
�=1

nL−1

�nL − ���E�nL + nS + ��

+ E�nL + nS − �� , �10�

where

E��� = �
k

zk
P���J�rk

P���,�d� . �11�

The logic index P��� stands for the parity of �, which refers
to the fact that in �001�-oriented fcc-based thin film, the sub-
sequent atomic planes are mutually shifted parallel to the
surface. This requires two sets of coordination zones radii rk
and coordination numbers zk to be used: one if both spins are
situated in the same plane �or in the planes separated by an
even number of interplanar distances�, P���= “even” and
the other for the situation when both spins lie in the planes
separated by an odd number of interplanar distances, P���
= “odd”. Both sets of numbers have to be determined nu-
merically for the assumed crystallographic structure. P�0�
requires the point �r=0, z=0� to be excluded from summa-
tion.

In the system considered, the area per one site in the �001�
atomic plane is S=a2 /2 so that the interlayer coupling en-
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ergy per unit area of the film is 2x2S2Einter /a2. Let us note
that the interlayer coupling energy is often defined as the
difference in energies of the system for ferromagnetic �E↑↑�
and antiferromagnetic �E↑↓� alignment of magnetic moments
in these layers. In our notation such a difference is �E↑↑

−E↑↓� /N=−2x2S2Einter.
When we consider the magnetic monoatomic layers with

the thickness nL=1, expressions �9� and �10� reduce only to
the first terms, without summation over �.32 On this basis, as
a special case, we can study the interplanar coupling energy
for two magnetically doped planes as a function of their
separation for different total thicknesses of the film.

In general, for nonzero temperature, the magnetizations
m	 per one magnetic impurity in each magnetically doped
plane are not equal for all 	 so that some spatial magnetiza-
tion profile is present in the magnetic layers. In the
molecular-field approximation �MFA�, these magnetizations
can be obtained as the solutions to the set of 2nL coupled
self-consistent equations,

m	 = SBS�S
�	

kBT
� . �12�

It should be kept in mind that the index 	 here runs only
over the magnetically doped monolayers. BS�x� is the Bril-
louin function for spin S, and the molecular field acting on a
given spin in the layer 	 is

�	 = x�
�

E��	 − ���m�. �13�

The summation over � in Eq. �12� is restricted to the mag-
netically doped atomic planes.

From linearization of the above set of equations for mag-
netization, in vicinity of the critical point, we obtain the criti-
cal temperature of a second-order phase transition. It is given
by the largest real root of the equation,

det J = 0, �14�

where the matrix J is of size 2nL�2nL and its elements are

J	� = �	� −
S�S + 1�
3kBTc

E��	 − ��� . �15�

Due to the long-range summation occurring in E��	−��� �as
seen from Eq. �10�, the critical temperature can be calcu-
lated from Eq. �14� only numerically. The formula given
above can be approximated if we assume uniform magneti-
zation distributions within each of the magnetic layers, i.e.,
when we substitute m1 for the average magnetization in each
atomic plane inside magnetic layer 1 and m2 for layer 2,
respectively. Then the critical temperature can be calculated
from the approximate formula

kBTc =
S�S + 1�

3

2Eintra − nLE�0� � Einter

nL
, �16�

where the “+” sign corresponds to the Curie temperature and
is valid for ferromagnetic interlayer coupling �Einter�0�
while the “−” sign is for the Néel temperature and is valid
when the magnetic layers are coupled antiferromagnetically

�Einter�0�. The highest accuracy of uniform approximation
�15� is for small magnetic layer thicknesses nL.

When AF coupling exists between two magnetic layers,
the mutual orientation of their magnetizations can be
switched from antiparallel �antiferromagnetic� to parallel
�ferromagnetic� one by applying an external magnetic field
along the direction of their magnetizations. This kind of
field-induced phase transition �spin flop� can take place be-
low the Néel temperature.39 The critical field Hc required to
force the reversal of magnetization at T→0 can be deter-
mined by equating the total enthalpies of the system with FM
and AFM orientation of magnetizations in the presence of
that external field. The enthalpies are obtained from formula
�6�, which leads to the condition for Hc,

	0Hc =
�Einter�

geff	BSNxnL
. �17�

The above expression can be written in the form more con-
venient for numerical calculations,

	0Hc = B0
x

nL

�Einter�
C

, �18�

where

B0 =
CS

geff	B
�19�

is a material-dependent constant.

III. NUMERICAL RESULTS AND DISCUSSION

Since the existence and characteristic of RKKY interac-
tion essentially depend on the electronic structure of the sys-
tem under consideration, we make it a point of a brief dis-
cussion for the ultrathin film. The detailed description of the
electronic structure of an ultrathin film, based on dispersion
relation �1�, is presented in Ref. 36, where especially the
Fermi wave vector kF and �F as well as the Fermi energy EF
were determined as functions of film thickness and charge-
carrier concentration. In Fig. 2, the crucial quantity for stud-
ies of electronic properties, namely, the density of states
�DOS� at Fermi level is plotted against the number of mono-
layers which make up the whole film. The DOS at Fermi
level is, by definition, given by DOS�EF�=dNc /dEF, and the
method of its rather lengthy calculation for an ultrathin film
has been presented in detail in Ref. 36. In further studies we
make use of a normalized charge-carrier concentration �
=ncd

3. In the main plot, it is assumed that the number of
charge carriers in the film is fixed and their normalized con-
centration equals �=x /n; thus, carrier concentration de-
creases when the film is made thicker. This assumption cor-
responds to the situation in which only two out of n atomic
planes contain impurities which serve as charge donors, and
the concentration of impurities within each doped plane is
equal to x. Three impurity concentrations were selected,
namely, x=0.025, 0.050, and 0.075 all belonging to the
physically relevant range in DMS. For the inset we chose
constant �=x /2, which is valid when all the atomic planes
are doped with concentration x. For convenience, the values
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of DOS were normalized to the corresponding values for the
bulk case �for the appropriate value of ��.

It is visible that DOS undergoes discontinuous jumps at
some values of n. This is clear manifestation of quantum size
effects �QSEs� as each of the jumps occurs for the charge-
carrier concentration at which the next energy subband be-
comes occupied by the carriers, starting from a single 2D-
like subband for the lowest concentrations. Although � is
inversely proportional to the film thickness, the number of
occupied energy subbands increases while increasing n. The
distance between subsequent jumps becomes shorter by in-
creasing the concentration x of charge-carrier donors. Be-
tween the jumps, normalized DOS decreases as n−2/3. This
reflects the fact that for a thin film the total DOS is a sum of
�equal� contributions from each occupied 2D-like subband,
and its value per surface unit of the film is given by the
formula

DOS�E� =
m

��2�
�=1




��E −
�2

2m

�2

D2�2� , �20�

where ��x� denotes the Heaviside step function. The 2D-like
DOS per one charge carrier is energy independent so that
dividing it by the 3D DOS per one charge carrier �propor-
tional to �−2/3� yields this behavior. The dependence pre-
sented in the main plot in Fig. 2 is a result of interplay
between the changes caused solely by the change in
quantum-well width and by decrease in the carrier concen-
tration when the film becomes thicker. In the inset, for con-
stant carrier concentration, we observe that the magnitude of
QSE tends to vanish more rapidly for thicker films. For the
film thicknesses n for which QSE manifest, we can expect
similar discontinuous behavior of other physical properties
which depend crucially on the DOS at the Fermi level.

Having a special case of formula �10� for nL=1 �as in Ref.
32�, we can study the interplanar coupling energies E��z /d�.
In formula �11�, the summation of exchange integrals over
the in-plane coordination zones has to be performed. Some
cutoff radius must be assumed, large enough to assure satis-

factory convergence of E. It should also be emphasized that
calculating each value of exchange integral J�rk ,�d� consti-
tutes a remarkable numerical task itself. Therefore, a notice-
able computational effort is required to study the inter- and
intralayer interaction energies so that we performed our cal-
culations on the multi-CPU cluster. We performed the sum-
mation up to k=1000 coordination zones �which corresponds
to the cutoff radius r /d=82.0 for even interplanar distances
and r /d=86.8 for odd interplanar distances�. In addition, we
applied some averaging intended to remove the component
oscillatory in cutoff radius. Such a procedure provides suffi-
cient convergence of the resulting energies. Let us emphasize
that accepting a finite spatial extension of interaction poten-
tial �2� is necessary to obtain finite interplanar coupling since
the formulas contain the exchange integral J�0,z� which
would be divergent otherwise. In further calculations we as-
sumed � /d=0.35, which could correspond to 1 Å for
�Ga,Mn�As �which we assume to be a realistic estimate of
the spatial extension of d orbital carrying the localized spin�.

It is interesting to follow the evolution of the energy de-
pendence on interplanar distance when the film thickness n
increases. We make an assumption that the charge-carrier
concentration is �=x /n. In Fig. 3 we present E�� /d� as being
dependent on interplanar distance for various n and for x
=0.05. It is remarkable that all the curves are symmetric with
respect to the center of the film, i.e., E���=E�n−��. It is a
result of the similar symmetry of the RKKY coupling inte-
gral in ultrathin film �note that the symmetry properties of a
RKKY coupling for a thin film have been mentioned first in
the work of Wojtczak40�. Let us remember that the summa-
tion over coordination zones within the atomic plane can be
performed using the two sets of coordination radii and coor-
dination numbers different for odd and even values of �.
However, for low values of charge-carrier concentration the
inverse of the Fermi wave vector is quite large, and we are in
the quasicontinuous regime so that the detailed lattice struc-
ture in the atomic plane is not of great importance. Thus, the
symmetry E���=E�n−�� is exact for every value of � only
for n even, while it is approximate for low � for n odd.

In view of the experimental data, it might be instructive to
mention that the constant C /a2 approximately amounts to
1.6 mJ /m2 for �Ga,Mn�As. Therefore, for x=0.05 and S
=5 /2, the unit value in Figs. 3–6 presenting the coupling
energy would correspond to 50 	J /m2.

It is visible that for n=5–9, the interplanar couplings are
ferromagnetic �F� for the whole range of distances �with an
exclusion of very weak antiferromagnetic �AF� values for n
=9, near the center of the film�. When n increases from 5 to
9, the coupling values are reduced continuously but the
shape of the curve remains essentially unmodified. When n is
changed from 9 to 10, a QSE is visible �compare Fig. 2�.
Thus, the curve shape changes discontinuously with two
minimas, separated by a central maximum. The coupling val-
ues are at the same time shifted toward stronger ferromag-
netic values. Then, further increase in n causes the gradual
lowering of couplings, and for n=16 the two minima become
AF in character. They reach the maximum depth for n=20.
Switching to n=21, the next manifestation of QSE is visible
as the curve develops an additional central minimum be-
tween two maximas. Once more, the coupling values became

FIG. 2. Density of states at the Fermi level in an ultrathin film,
normalized to the bulk value, as a function of number of monolay-
ers. The charge-carrier concentration is assumed to be �=x /n for
three representative values of x. In the inset, a similar plot is shown
for the charge-carrier concentration �=x /2.
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shifted toward F, and the two AF minimas become shal-
lower. When increasing n up to n=32, we notice the same
tendency as before, namely, the couplings are lowered, the
central minimum becomes AF in character, and the AF cou-
plings near the two other minimas tend to rise.

It is instructive to compare the values of interplanar en-
ergy obtained by performing the summation in formula �10�
for the thin-film RKKY coupling integral �given by Eq. �4�
with the some summation for the ordinary 3D RKKY cou-
pling �with the same nonzero width of contact potential�.31

The results are presented in Fig. 4 for �=x /n, n=20, and x
=0.05. The full circles correspond to the results derived from
thin-film RKKY coupling, while the empty circles depict the
interplanar coupling for 3D RKKY integral. It is visible that
for the distances smaller than half of film thickness, the 3D
coupling values are shifted toward F coupling, and also some
phase shift is present. The curve for 3D RKKY does not
possess the symmetry with respect to the center of the film so
that it vanishes quite fast for z /d�0.5, unlike the proper
thin-film RKKY coupling. In the inset of Fig. 4, the values of
the exchange integral itself for r=0 for ultrathin film �solid
line� and bulk 3D �dashed line� are plotted as a function of
the distance z between the interacting spins. Here one can
easily observe the phase shift and the difference in magni-
tudes between the two curves.

The interlayer coupling energy for nL=1, calculated on
the basis of formulas �8� and �10� is a key point in our study.

FIG. 4. Interplanar coupling energy in an ultrathin film for n
=20, x=0.05, and the charge-carrier concentration �=x /n. Full
points denote the values obtained from summation of the RKKY
thin-film-modified exchange integral. The empty points represent
the values obtained from summation of the usual RKKY bulk for-
mula. In the inset, the very exchange integrals J�r=0,z� are plotted:
the solid line is for the RKKY interaction in thin film, while the
dashed line corresponds to the bulk 3D RKKY coupling.

FIG. 3. Interplanar coupling energy for an ultrathin film contain-
ing n monolayers, as a function of separation between the planes,
for the charge-carrier concentration �=x /n and x=0.05.

FIG. 5. Interplanar coupling energy for an ultrathin film charac-
terized by n=20 and x=0.05 and for three representative charge-
carrier concentrations.

FIG. 6. Interlayer coupling energy for the system characterized
by x=0.05, n=20, and nS=3 as a function of magnetic layer thick-
ness. The two charge-carrier concentrations: �=x /n �circles� and
�Lx /n �squares� are assumed.
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Knowing the interplanar coupling energies as a function of
concentration of carriers and geometry of the ultrathin film,
it is possible to search for the sets of parameters which result
in the most robust antiferromagnetic interlayer coupling. As
can be seen from formula �10�, the interlayer energy is cal-
culated by summing the interplanar coupling energies for
2nL−1 interplanar distances, ranging from �nS+1�d up to
�2nL+nS−1�d, with appropriate weights. Therefore, if the
maximum number of E�z� values, starting from z= �nS+1�d,
is antiferromagnetic, the strongest antiferromagnetism can be
expected. On the other hand, since the coupling for z= �nS

+1�d enters the sum in Eq. �10� with the largest weight nL, it
is also advisable to select nS in order to have this AF cou-
pling considerably strong. For example, from the analysis of
Fig. 3, prepared for x=0.05, we can expect to obtain the AF
interplanar coupling for the first minimum when we select
nS=3 for n=20. For thicker films, n=32, the optimum value
seems to be nS=4 �the first minimum� and nS=14 �minimum
in the middle, noticing that for nS=13 the most important
coupling E��nS+1�d� would be only slightly antiferromag-
netic. For the larger number of subsequent antiferromag-
netic values for E�z�, we expect the stability of AF interlayer
coupling for thicker magnetic layers. This thickness is of
importance for two reasons. For one thing, with a diluted
system in mind, the larger nL means larger value of total
magnetization; for another, maximizing the critical tempera-
ture is also advantageous. On the other hand, it appears that
the increase in the concentration of charge carriers in the
system would cause the antiferromagnetic behavior to dimin-
ish. This is due to the fact that the distance between the
subsequent zeros of the function E�z� decreases when � in-
creases so that the function oscillates more rapidly and the
chance of having AF couplings for a few subsequent inter-
planar distances z decreases. Let us note that the last obser-
vation seems to stand in apparent contradiction to the general
idea that for small concentration of charge carriers ferromag-
netism is favored �because the first zero of the exchange
integral is shifted toward larger distances and more coordi-
nation zones belong to this ferromagnetic range�.

This effect is illustrated in Fig. 5, where the interplanar
couplings are plotted for three charge-carrier concentrations:
�=x /n, �=4x /n, and �=8x /n for n=20 and x=0.05. It might
be useful to mention here that these values for �Ga,Mn�As
would correspond to the �physically relevant� hole concen-
trations of 1.1, 4.4, and 8.9�1020 cm−3, respectively. It is
clearly visible that for the lowest concentration of charge
carriers, the antiferromagnetic minima are quite remarkable.
When � is increased fourfold or eightfold, the oscillations of
coupling versus interplanar distance become much faster so
that only two or one coupling is of distinct AF character.

Figure 6 illustrates the magnetic layer thickness depen-
dence of the interlayer coupling energy for the already men-
tioned case of x=0.05, n=20, and nS=3. The coupling en-
ergy is plotted for two different carrier concentration
regimes. The circles correspond to the constant carrier con-
centration of �=x /n, independent of the thickness of the
magnetic layers nL. The second result, marked by squares,
is for the carrier concentration �Lx /n proportional to the

number of magnetically doped atomic planes. It can be seen
that for the second case, the initial antiferromagnetic inter-
layer coupling energy is lost soon when nL increases. Al-
though the changes are strongly nonmonotonic, the AF cou-
pling is never restored. The situation is very different for the
constant charge-carrier concentration. The AF coupling per-
sists up to nL=4 and reaches the maximum strength for nL
=3. Further increase in magnetic layer thickness also leads to
change to F interlayer coupling. The similar behavior can be
observed for another sets of parameters regarded as benefi-
cial in terms of assuring persistent AF interlayer coupling.

Figure 7 presents the critical external field Bc=	0Hc re-
quired to switch the direction of layer magnetizations from
antiferromagnetic to ferromagnetic with temperature T→0.
The values have been calculated from formula �18� for the
parameters predicting the strongest antiferromagnetic inter-
layer coupling. In order to provide some reference point, we
calculated the value of a normalization constant B0 �Eq.
�19�� for a representative DMS, �Ga,Mn�As, which equals
B0�67 T, so that the critical fields would lie in the range of
hundreds of milli-Teslas. It is visible that the critical field for
each case considered is largest for the magnetic layer thick-
ness of nL=2 or 3. If the lowest value of critical field is
needed, together with the highest Néel temperature, then the
best choice seems to be the maximum thickness of the mag-
netic layer which still provides AF interlayer coupling.

In connection with the predictions of Fig. 7, we would
like to mention that an attempt to switch the magnetization
direction in antiferromagnetically coupled multilayer of
GaAs/�Ga,Mn�As has been made by Chung et al.27 In their
experiment, the field necessary to reverse the magnetization
has been estimated at about 10 mT �judging from the mag-
netization curve and neutron reflectivity data�; however, the
full ferromagnetic alignment has not been achieved until 100
mT. It is worth noticing that in the experiment of Chung et
al.27 the spacer thickness was 12 ML, and each magnetic
layer was 25 ML thick.

In the studies of critical temperature of the system, it was
necessary to accept a specific spin value. Therefore, we se-
lected S=5 /2, which is relevant for DMS. The behavior of
critical temperature of the system for the parameters leading

FIG. 7. External magnetic field required to switch the magneti-
zations of the layers from AF to F state as a function of layer
thickness. The results are presented for T→0 and selected param-
eters, where AF interlayer coupling is predicted.
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to AF interlayer coupling is presented in Fig. 8�a�. There, we
plot the values of the critical temperatures for x=0.05, n
=32, and nS=14. Like in Fig. 5, the circles correspond to
constant charge-carrier density �=x /n, while the squares are
for �Lx /n. The empty symbols indicate the Néel tempera-
tures �what corresponds to AF interlayer coupling�, while the
full symbols are for Curie temperature �F coupling�. It is
visible that for fixed �, the critical temperature tends to satu-
rate when increasing nL and reaches approximately constant

value for the magnetic layer consisting of several ML. It is
seen that the Néel temperature for nL=4 is very close to that
saturated value. For �Lx /n, the critical temperatures are
mostly Curie temperatures and rise relatively fast when the
magnetic layer thickness increases.

In order to investigate more carefully the critical tempera-
tures for the regime of fixed charge-carrier concentration �
=x /n, we perform the calculations for some other sets of
parameters advantageous to AF coupling. The results are pre-
sented in Fig. 8�b�. The same tendency for the critical tem-
perature to saturate for thick magnetic layers is observed, and
the maximum values of Néel temperature lie close to that
limit of saturation.

Let us mention that a similar behavior of Curie tempera-
ture for thin films with RKKY interaction has been found in
the Monte-Carlo-based studies of Boselli et al.16 for fixed
charge-carrier concentration. However, they considered a
thin film with magnetic impurities distributed randomly in all
the atomic planes and their study was focused mainly on
noncollinear magnetic phases, resembling canted ferromag-
netism.

For �Ga,Mn�As, the value of energy constant C /kB would
be approximately 36 K. In Fig. 8�b�, two experimental values
were depicted, taken from the paper of Mathieu et al.,22 ob-
tained for �Ga,Mn�As with x=0.04 for nL=8 and two values
of nS=3 and 5. It must be strongly emphasized that these
values of Curie temperature were measured for a superlattice
geometry, not for a trilayer, and the charge-carrier concentra-
tion for the sample was not known. Therefore, they are
shown here merely to indicate that the order of magnitude of
estimated Curie temperatures for a trilayer is in reasonable
agreement with the available superlattice data.

Figure 8�c� compares the critical temperature calculated
from the “exact” MFA formula �Eq. �14� and from approxi-
mate formula �16� as being dependent on magnetic layer
thickness for the set of parameters x=0.025, n=28, and nS
=5. It can be concluded that the assumption of uniform mag-
netization distribution inside each magnetic layer does not
lead to a noticeable change in the critical temperature for the
layers up to 4 ML thick. However, for thicker layers, the
critical temperature is underestimated by an approximate for-
mula on the order of 5%, which holds also for other sets of
parameters.

It follows from the numerical calculations that the intra-
layer energy is much larger than the absolute value of the
interlayer coupling. As a consequence, it is clearly visible
from Eq. �16� that the main contribution to the critical tem-
perature originates from Eintra.

As mentioned previously, in the ordered state, each
atomic plane of the magnetic layer has its own magnetization
value and some nonuniform magnetization distribution exists
across the layer thickness. To illustrate this behavior, we cal-
culated such magnetization profiles for various thicknesses
of the magnetic layers nL for the cases of x=0.05, n=32, and
nS=14 �Fig. 9�a� as well as for x=0.025, n=28, and nS=5
�Fig. 9�b�. The plots present a magnetization distribution in
a single magnetic layer. Each profile is calculated for the
temperature of 2

3Tc for the given value of nL versus the num-
ber of the atomic plane counted starting from the plane situ-
ated closest to the undoped spacer. For the second magnetic

FIG. 8. Critical temperatures in MFA approximation for an ul-
trathin film with two magnetic layers. In �a� and �b� the filled sym-
bols denote the Curie temperatures, while the empty ones are for the
Néel temperatures. �a� Comparison of the results for charge-carrier
concentration �Lx /n �squares� and �=x /n �circles�. �b� Results for
�=x /n and various parameter ranges which are advantageous for
AF interlayer coupling. �c� Comparison of the results obtained from
the approximate �Eq. �15� �empty symbols� and without this ap-
proximation �filled symbols�.
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layer, the values of m are either the same �for F interlayer
coupling� or they are of opposite sign �for AF coupling� so
that the profile is either symmetric or antisymmetric with
respect to the center of the undoped spacer. It is noticeable
that for small thicknesses, nL=2, the distribution is almost
uniform, while the increasing thickness of the magnetic layer
causes the profile to reshape. The maximum of magnetiza-
tion occurs for the atomic plane in the middle of the mag-
netic layer, while the smallest values are reached for the
planes which are the most distant or the closest to the non-
magnetic spacer. For nL=8 in Fig. 9�a� or nL=10 in Fig. 9�b�,
the distribution is approximately symmetric with respect to
the middle atomic plane in the layer. It is noticeable that the
differences in magnetizations for various atomic planes are
strongly evident since the magnetization at the boundaries of
the magnetic layer is only a half of the maximum value
reached in its center. Interestingly, the profile loses its sym-
metry when we reach the maximum of possible magnetic
layer thickness, nL=9 for �a� and nL=11 for �b�. Then the
magnetization value in the atomic planes in the vicinity of
the spacer is enhanced in comparison with the layers at the
opposite side of the magnetic layer. Such an effect is more
striking for the set of parameters x=0.05, n=32, and nS
=14, where the distribution of magnetization switches from
almost symmetric shape with respect to the middle plane of
the layer �for nL=8� to almost flat one with some drop at
high distances from the spacer �for nL=9�. By approaching
the critical temperature the profiles flatten and their magni-
tude vanishes.

IV. FINAL REMARKS AND CONCLUSION

The analysis of a model magnetic bilayer with ultrathin-
film-modified RKKY interaction revealed an importance of
QSE for obtaining antiferromagnetic interlayer coupling.
Some ranges of parameters, advantageous for AF, were iden-
tified with the general remark that the carrier density should
not be as high as to make the oscillation period excessively
short. The coupling is possible even for relatively thick spac-
ers �14 ML, for example�; however, the maximum thickness
of each magnetic layer should not exceed a few ML. The
critical temperatures were found to saturate their values
when increasing magnetic layer thickness.

The general conclusion which can be drawn from the
study is that the occurrence of AF coupling presents a quite
unique situation in comparison with the most common F
ordering. It might be deduced from the theoretical works
concerning the multilayers12–14 that the AF interlayer cou-
pling might seem present in a relatively wider range of
charge-carrier concentrations �what has been noticed in a re-
cent review in Ref. 41, as contrasting with the experimental
confirmations of robust ferromagnetic behavior�. In trilayers,
the interlayer coupling sign results from a rather subtle inter-
play of quantum size effects and the tendency for exchange
integrals to shift toward ferromagnetic coupling, which is
dominant for ultrathin quantum-well systems. Thus, in order
to observe the AF configuration the special set of parameters
has to be chosen including the impurity concentration, its
distribution within the thin film, the thickness and the carri-
ers density. Some exemplary sets of the parameters, includ-
ing dopant and charge-carrier concentration, thicknesses of
the film, and magnetic layers, can be seen in Figs. 8�a� and
8�b�, denoted there by empty markers. Studies of sensitivity
of the obtained AF configuration to the external magnetic
field might be useful for practical realization of the switching
function between the AF and F states. Let us also mention
that Ref. 41 points out that for unambiguous experimental
detection of AF interlayer coupling, the ability of performing
single layer-resolved measurements is vital. Such experi-
ments appear especially accessible in trilayers �see, for ex-
ample, Ref. 24�. In general, the trilayer system appears as the
fundamental one from the point of view of understanding the
physics of interlayer coupling.

A comparison of our thin-film RKKY approach with other
theoretical models, for instance with the k ·p kinetic ex-
change model,12 or tight-binding approximation,13 is not a
straightforward task because those models were studied for
the superlattice systems. It is worthy to emphasize here the
fundamental difference between the geometries of trilayer
�or magnetic bilayer� used in our studies and superlattice. In
the case of a superlattice, the periodicity along the direction
perpendicular to the structure plane occurs, which is reflected
by the Bloch-like form of the carrier wave function in
quasi-1D potential. The electronic structure, consisting of
minibands �dependent on the localized spins orientation�, is
then a subject of calculations yielding the interlayer coupling
energy. If no band shift at the interfaces is assumed, the
superlattice system would appear equivalent to a single
quantum well with a very large width �what would result in
disappearance of noticeable quantum size effects�. On the

FIG. 9. Spatial distribution of magnetizations in subsequent
monolayers for various thicknesses nL and for two sets of param-
eters: �a� x=0.05, n=32, and nS=14; and �b� x=0.025, n=28, and
nS=5. The temperature is T= �2 /3�Tc.
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contrary, for a trilayer, the boundary conditions require the
wave function to vanish outside of the well, which gives rise
to the pronounced quantum size effects. Within the limit of
large total thickness of the multilayer, the ordinary 3D-like
form of the RKKY interaction would be restored. Therefore,
it is difficult to make direct comparison between the theoret-
ical predictions for both mentioned sample geometries. This
would require a separate calculation devoted to the
multilayer geometry and might be a subject of a future work.

However, some comments on the physics captured by the
models can be made. In the case of the k ·p kinetic exchange
model12 the Fermi wave vector has been assumed in the bulk
approximation, whereas in our model it is dependent on the
quantum-well structure.36 Also the RKKY exchange integral
is not assumed here in a quasi-1D form �as in the case of
superlattices� but is strictly characteristic for the thin film. As
a result, for the energy calculation in the thin film a numeri-
cal summation of the exchange integrals can be made, which
we believe in this case is the most proper method. It could
also be useful for other molecular-field-like approaches.14

More importantly, the periodicity of the interlayer energy
coupling resulting from summation is not the same as the
periodicity of the exchange integral itself.

Regarding the tight-binding method,13 the results obtained
for multilayers were very weakly sensitive to the magnetic
layer thickness, which is not the case in our quantum-well
model. The strong difference can also be predicted in the
limit of vanishing charge-carrier concentration. In such case
the RKKY exchange integral tends to zero, while the inter-
layer coupling mediated by valence-band electrons in the
tight-binding model can have finite value.

Several of our results are in agreement with MC simula-
tions by Boselli et al.16 made for the quantum well. This
concerns, for instance, the ferromagnetic state for the layers
which has been obtained from the intralayer energy. Also, the
observation that the intralayer energy is several times larger
than the interlayer coupling has been confirmed by present
findings. However, the antiferromagnetic coupling has not
been found there;16 instead, the canted phase has been re-
ported for individual samples. Unfortunately, the contact po-
tential assumed for this MC simulation, as well as in other
works,17 has been the Dirac’s � function. We think that the
Gaussian distribution, with some nonzero dispersion of the
order ��1 Å assumed in this work, reflects more properly
the spatial extension of the localized magnetic orbitals.

As mentioned before, our approach is based on the RKKY
perturbational formalism generalized to account for the band
structure discretization in a single quantum well so that it
shows clearly the importance of quantum size effects. We are
convinced that this makes the method particularly useful for
studying the trilayers. Especially, there exists a clear corre-
lation between the noncontinuous behavior of the density of
states at the Fermi level and the coupling energy. In particu-
lar, for the trilayers, the key to obtaining the antiferromag-
netic interlayer coupling is making use of the quantum size
effects as the strongest AF interactions correspond to the
situation where energy subbands are almost completely filled
by charge carriers. This behavior is characteristic of a
trilayer, constituting a narrow quantum well, and might not
be expected for multilayer samples.

However, it should be kept in mind that the model reflects
only partially the features of real thin-film DMS systems,
especially related to the exact band structure or shape of the
confining potentials as well as the strength of the coupling
between the carriers and localized spins. On the other hand,
the results we obtain seem to be realistic in light of the ex-
perimental results mentioned in the previous section �con-
cerning the interlayer coupling energy, the Curie temperature
or the critical external field�. It might be worth noticing that
the critical temperatures observed by Mathieu et al.22 for
superlattices consisting of 8 ML of �Ga,Mn�As and undoped
spacers of 3 , . . . ,9 ML were between 10 and 20 K �what
resembles the order of temperatures predicted for our ultra-
thin trilayer structures�. As a rule, the samples possessing a
trilayer geometry studied so far experimentally were charac-
terized by noticeably thicker magnetic layers than the struc-
tures we consider. On the other hand, let us mention that
recently the ferromagnetic transition at about 30 K has been
observed even in ultrathin films of �Ga,Mn�As just 2 nm
thick �i.e., consisting of 7 ML�.42 The critical temperature for
thicker annealed films, up to 5 nm, was approximated as high
as 100 K.43

Since our method is based on summation of the thin-film-
modified RKKY coupling between each pair of spins in the
system, it does not rely on the pseudo-1D RKKY approach.
Instead, it offers the possibility to separate the inter- and
intralayer components of interaction and enables the analysis
of various thermodynamic properties. Owing to that, it might
allow for straightforward handling of the subject of interface
roughness caused by diffusion of magnetic impurities into
the undoped region, a problem which is also interesting in
studies of multilayers. Thus, the sensitivity of the coupling to
the spacer thickness selection might be important from the
point of view of the interface roughness. Moreover, in the
present work it has been assumed that the �random� positions
of the magnetic impurity ions are uncorrelated. However, it
could be also possible to investigate the influence of corre-
lated positional disorder on the magnetic properties of the
thin-film systems by considering the nonzero Warren-
Cowley parameter within the formalism developed.

The magnetization profiles in thin films were already
studied for nearest-neighbor interactions a long time
ago;8,44,45 for the long-range RKKY interactions the analo-
gous profiles are presented here. The prediction of the pro-
files would need some experimental confirmation in the fu-
ture studies of DMS systems. Let us observe that the
presence of nonuniform magnetization profile causes a no-
ticeable decrease in the total magnetization of each magnetic
layer at finite temperatures �with respect to the prediction of
the usual, bulk Brillouin function�.

In an ultrathin film, the characteristic features of RKKY
exchange integral depend crucially on the standing-wave
form of the free-carrier wave functions. They originate from
the interference of waves propagating perpendicularly to the
thin-film plane. Thus, an adequate phase coherence length
for free charge carriers is required for this picture to be valid.
Taking �Ga,Mn�As as an example, the coherence lengths of
the order of 100 nm have been reported in quantum wires
and rings for milli-Kelvin temperatures �in the presence of

KAROL SZAŁOWSKI AND TADEUSZ BALCERZAK PHYSICAL REVIEW B 79, 214430 �2009�

214430-10



magnetic impurities�,46 even though a mean-free path for the
carriers is shorter, down to an order of a lattice constant in
the metalliclike regime.43 Such a value of phase coherence
length exceeds the thicknesses of the films presented in this
paper.
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