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A pseudospin model of a multiferroic system which exhibits both relaxor ferroelectric and relaxor ferro-
magnetic behavior is presented. The electric and magnetic degrees of freedom associated with the simultaneous
presence of polar nanoregions and magnetic nanoregions are described by two sets of pseudospin variables,
which satisfy separate spherical conditions. The spin-glass-like random interactions within each subset are
assumed to be infinitely ranged. In addition, the polar nanoregions are subject to random electric fields. By
introducing strain modulation of the corresponding random interaction parameters, a fourth-order interaction
between polar and magnetic degrees of freedom is derived whose strength can be estimated from the phenom-
enological electrostriction and magnetostriction coefficients. Dynamic dielectric susceptibility in the presence
of a static magnetic field H is calculated from the Langevin equations of motion. The value of the critical
magnetic field at which long-range ferroelectric order appears is determined. By considering the corresponding
free-energy density functional, the local electric field inside the polar nanoregions is derived and it is shown
that the mechanism of growth and percolation of polar nanoregions is also affected by the magnetic field. Thus
the Vogel-Fulcher relaxation time is predicted to diverge on a line of percolation critical points in the H ,T
plane, in agreement with recent experiments.
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I. INTRODUCTION

In recent years, there has been a resurging interest in mul-
tiferroic and magnetoelectric �ME� materials1–4 mainly be-
cause of their potential applicability in memory devices.
Much of the work has focused on ferromagnetic-ferroelectric
multiferroics, especially the ones known or expected to ex-
hibit the ME effect. Symmetry requirements severely limit
the occurrence of the linear ME effect.5 However, composite
systems with ME properties can be prepared as solid solu-
tions of ferroelectric and �anti�ferromagnetic materials. Ac-
tually, the ME effect in composites is often stronger than in
single-phase systems.6

The multiferroic concept should, in principle, also be ap-
plicable to compositionally disordered systems, such as di-
polar glasses and relaxor ferroelectrics on one hand and spin
glasses or relaxor ferromagnets on the other. Several ex-
amples of disordered systems of the above type have so far
been described, for example, ME relaxors,7,8 multiferroic
relaxors,9 and ME multiglasses.10 In the present work we
will introduce a theoretical model of a system, which pos-
sesses both relaxor ferroelectric and relaxor ferromagnetic
properties, to be referred to as birelaxor. In analogy to re-
laxor ferroelectrics,11 a relaxor ferromagnet12,13 is expected
to have no long-range magnetic order but exhibit a high
value of the quasistatic magnetic response in a broad tem-
perature range, strong frequency dispersion, as well as a
Vogel-Fulcher �VF�-type freezing of the dynamic magnetic
response. Therefore, in birelaxors these magnetic properties
should coexist with the corresponding dielectric features.
From a mesosopic point of view, birelaxors are characterized
by the existence of polar nanoregions �PNRs� and magnetic

nanoregions �MNRs�, which appear as a result of strong
compositional fluctuations. In principle, the above descrip-
tion applies to both single phase and composite systems.

The possibility of direct magnetoelectric coupling be-
tween the PNRs and MNRs in birelaxors will not be dis-
cussed here. Since long-range order �LRO� is absent in a
normal relaxor state by definition, the average spatial-
inversion and time-reversal symmetries are not broken and
the occurrence of a linear ME effect is not allowed. Strain
modulation of the PNR-PNR and MNR-MNR interactions
may, however, give rise to indirect higher-order coupling be-
tween electric and magnetic degrees of freedom.4 In the ab-
sence of piezoelectric and piezomagnetic coupling, the
strain-mediated PNR-MNR interactions will be dominated
by the electrostriction and magnetostriction coefficients,
which are related to the strain �stress� derivatives of the
PNR-PNR and MNR-MNR interaction parameters. The re-
sulting PNR-MNR interaction term in the Hamiltonian is bi-
linear in the pseudospin coordinates of both the PNRs and
MNRs, and its sign depends on the relative signs of the elec-
trostriction and magnetostriction coefficients. A positive sign
will result in positive fourth-order ME effect, i.e., the dielec-
tric constant will increase upon application of a static mag-
netic field. This then opens the possibility of a magnetic-
field-induced phase transition from a relaxor state to a LRO
ferroelectric state. The value of the critical magnetic field Hc
can be estimated from the values of the striction coefficients.
On the other hand, a negative sign means that the value of
the dielectric constant should decrease with the magnetic
field. This implies, for example, that if the system is origi-
nally in a long-range-ordered ferroelectric state, the field H
�Hc will tend to destroy this order, leading to a normal
birelaxor state.
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A similar reasoning can be applied to the free-energy den-
sity of birelaxors. The local electric field inside a PNR,
which determines its correlation radius rc and volume vc,

14 in
a birelaxor acquires an extra contribution due to the magnetic
field H, which either enhances or reduces vc, depending on
the coupling sign. The percolation temperature Tp, at which
an infinite cluster of PNRs is formed, is also shifted by the
field H. Thus the VF temperature T0�H�=Tp becomes a func-
tion of the field, and the VF relaxation time diverges on a
line of percolation critical points T=T0�H� in the H ,T plane.
This effect agrees quantitatively with a recent observation
of magnetic-field-controlled relaxation of dielectric polariza-
tion in the solid solution of PbFe2/3W1/3O3 �PFW� and
PbZr0.54Ti0.46O3 �PZT� thin films.15

II. SPHERICAL MODEL OF BIRELAXORS

Following the spherical random bond–random field �SR-
BRF� model of relaxor ferroelectrics,16,17 we assume that the
PNRs are coupled through infinitely ranged Gaussian ran-
dom interactions in the presence of random local electric
fields, and an analogous assumption is made for the MNRs.
As a straightforward generalization of the SRBRF model we
introduce two sets of pseudospins, Sri, r=1,2 , . . . ,Ne and i
=x ,y ,z for PNRs, and �sj, s=1,2 , . . . ,Nm for the MNRs. The
spherical conditions for the pseudospins are chosen as

�
r=1

Ne

�S�r�2 = Ne, �
s=1

Nm

��� s�2 = Nm. �1�

The Hamiltonian can be symbolically written as the sum

H0 = He + Hm, �2�

where He and Hm are the electric and the magnetic terms

He = − 1
2 �

r�r�

Jrr�S
�

r · S�r� − �
r

f�r · S�r − ge�
r

E� · S�r, �3a�

Hm = − 1
2 �

s�s�

Kss��� s · �� s� − �
s

h�s · �� s − gm�
s

B� · �� s,

�3b�

respectively. In these expressions, Jrr� and Kss� are the PNR-
PNR and MNR-MNR coupling parameters, respectively, and
f�r and h�s are the corresponding random fields, while E� and
B� =�0H� are the external fields. Finally, ge and gm represent
the average dipole moments of the PNRs and MNRs, respec-
tively.

The random variables Jrr� and Kss� obey two independent
Gaussian distributions with mean values �Jrr��av=J0 /Ne and
�Kss��av=K0 /Nm, and with variances �Jrr�

2 �av
c =J2 /Ne and

�Kss�
2 �av

c =K2 /Nm, respectively. The random fields have zero
mean and respective variances �frif r�j�av=�rr��ij�e and
�hsihs�j�av=�ss��ij�m. We choose �m=0 and write �e��.

Next we assume that the PNR-PNR and MNR-MNR in-
teractions depend on the components of the lattice strain �or
stress� tensor uij �or Xij�. Expanding Jrr��X� to linear order in
stresses we obtain

Jrr��X� = Jrr��0� + �
ij

Jrr�,ij
�1� Xij + ¯ , �4�

with Jrr�,ij
�1� =�Jrr��X� /�Xij, and similarly for Kss��X�. Since by

assumption Jrr� in Eq. �3� is isotropic, we will limit ourselves
to the isotropic part of the second term in Eq. �4�. The ran-
dom average of Jrr�,ii

�1� is parametrized by first introducing the
stress derivatives of the average coupling parameter J0,
namely, J0,ii

�1� =�J0 /�Xii. Thus, the derivative of J0 is simply
related to the derivative of the field-cooled static dielectric
susceptibility, which according to the SRBRF model is given
by

��e
−1�ij =

1

k�e
� kT

1 − qe
− J0��ij . �5�

This result has been derived earlier by use of the replica
formalism16,17 and contains the spherical glass order param-
eter qe of the PNR subsystem, which depends on the param-
eters J, J0, and �. The parameter �e=ge

2 / �vek	0� plays the
role of an effective Curie constant; however, it should be
noted that in relaxors a Curie-Weiss-type behavior holds only
approximately in the asymptotic regime T
J /k. An analo-
gous expression is obtained for the magnetic case.

We can then apply the thermodynamic Maxwell relations
between the electro�magneto�striction constants Qe,ijkl and
Qm,ijkl, and the stress derivatives of �e

−1 �Refs. 17–19� and
�m

−1, respectively,

Qe,ijkl = −
1

2	0
� ���e

−1�kl

�Xij
�

T

, Qm,ijkl = −
�0

2
� ���m

−1�kl

�Xij
�

T

,

�6�

where the limit P� →0, M� →0 is understood. The average of
Jrr�,ij

�1� in Eq. �4� and similarly of Krr�,ij
�1� then leads to the

relations

J0,k 	 2	0k�eQe,ki, K0,k 	 2�0
−1k�mQm,ki, �7�

with k , i=1,2 ,3 using the Voigt notation. In view of the pre-
sumed isotropy of J0 the above expressions must be i inde-
pendent. Thus, we can perform the averages over i and in-
troduce hydrostatic electro�magneto�striction coefficients
Qe,h and Qm,h defined by Qh=Qk1+Qk2+Qk3, which are k
independent. It follows that J0,k and K0,k are both k indepen-
dent.

In deriving relations �7� we have ignored the effects of
stress deformations on the random distribution widths J and
K since they are O�1 /Ne

2� and O�1 /Nm
2 �, respectively, and the

stress derivatives of �e ,�m have been neglected assuming
rigid PNRs and MNRs. Also, it should be noted that qe ,qm

do not depend on J0 ,K0 and hence on X for P� =0, M� =0.16

After adding the elastic energy Helastic
= �V /2��ij=1

3 Cij
−1XiXj, where Cij

−1 is the elastic compliance
tensor, the total Hamiltonian is minimized, thus eliminating
terms linear in X. This generates a fourth-order PNR-MNR
coupling term of the following structure:
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Hme = −
�h

2VNeNm
�

r�r�
�

s�s�

�S�r · S�r����� s · �� s�� . �8�

The coupling parameter �h is given by

�h = 2	0�0
−1k�ek�mChQe,hQm,h, �9�

where Ch= �1 /9��ij=1
3 Cij is the bulk modulus.

The prefactor �VNeNm�−1 in Eq. �8� ensures proper scaling
of Hme with the system size, �h �Ref. 20� being intensive.
Stress-mediated fourth-order PNR-PNR and MNR-MNR
coupling terms are not given here since they represent a cor-
rection of the anharmonic part of H0, which has been ig-
nored from the outset.

III. STATIC DIELECTRIC PROPERTIES UNDER
CONSTANT MAGNETIC FIELD

In the following we consider a system where the relaxor
ferroelectric peak is well separated from the magnetic one
and lies at a higher temperature and no LRO is present. This
corresponds to the case J�K and J0�K0, as well as K0
�K and J0�J. Furthermore, we assume that a constant mag-
netic field B� =�0H� has been applied to the system. In dis-
cussing the effects of Hme on the time evolution of PNR
pseudospins S� i, we can effectively replace the magnetic part
of the coupling by its average value �s�s��
�� s ·�� s���av. In the
spirit of perturbation theory, the averages can be evaluated
with respect to the initial Hamiltonian H0. This can be done
exactly using the eigenstates and eigenvalues of the random
matrix Kss�.

21 The result to order O�1 /V� is

1

VNm
�

s�s�

�
�� s · �� s���av = �vm/gm
2 ��

i

�m,ii
2 Bi

2. �10�

The dimensionless magnetic susceptibility �m,ij is defined
through the phenomenological relation Mi=� j�m,ijHj and
can be explicitly obtained from the magnetic version of Eq.
�5�. Since all averages have the same value, namely,
�
�s,i��av�
��, we can write Mi= �gm /vm�
��, where vm
�V /Nm represents the effective average MNR volume,
which is essentially a measure of the MNR concentration
cm=1 /vm. The corresponding quantities for the PNRs are
ve�V /Ne and ce=1 /ve.

In the isotropic case the magnetic susceptibility tensor is
isotropic, i.e., �m,ij =�ij�m, where �m=�−1. Similarly the di-
electric susceptibility is �e,ij =�ij�e with �e=	−1.

Finally, the coupling term �8� can be rewritten as

Hme�H� = − J1�H�
1

2Ne
�

r�r�

S�r · S�r�, �11�

where J1�H� represents the shift of the mean PNR interaction
J0, i.e.,

J0�H� = J0 + J1�H� , �12�

for which we obtain, with the use of Eq. �9�,

J1�H� =
�0�� − 1�2

k�m
�hH2. �13�

The sign of J1�H� depends on the signs of Qe,h and Qem,h
and can be either positive or negative. Thus if both signs are
equal, J1�H� will be positive, implying that the magnetic
field enhances the average PNR interaction. In this case there
is a possibility of a magnetic-field-induced phase transition
from a relaxor state into a long-range-ordered ferroelectric
state. In general LRO exists if J0�H�J0c��J2+� and T
�Tc�H�, where

Tc�H� = J0�H�
J0�H�2 − J0c

2

J0�H�2 − J2 . �14�

For J0�J0c, a critical value of the magnetic field Hc exists
such that for H�Hc LRO is possible. Introducing �J0�J0c
−J0 and assuming �J0�0 �i.e., no LRO in zero field�, we
find

Hc
2 =

�J0
2	0�� − 1�2k�eChQe,hQm,h

. �15�

If, however, the system in zero magnetic field is in a
ferroelectric state corresponding to the case �J0�0 and the
sign of J1�H� is negative then J0�H� will decrease with H
until the critical field Hc is reached. At that point a phase
transition from a long-range-ordered ferroelectric into a re-
laxor ferroelectric state occurs, and LRO is not possible for
all H�Hc.

To estimate the possible value of Hc from Eq. �15� we use
the following representative parameter values: �=5, Ch
=1011 J m−3, �e=105 K, and �J0 /k=33 K. Then, for Qe,h in
the range 10−3–10−2 m4 A−2 s−2 and Qm,h between 10−15 and
10−14 m2 A−2, we find

0.43 � �0Hc � 4.3 T. �16�

Thus Hc lies in the experimentally accessible regime. In
Fig. 1 the static zero-field-cooled dielectric susceptibility
�e,s, Eq. �5� is plotted as a function of temperature for several
values of magnetic field H. The parameter values are J0
=0.9J or �J0 /J=0.1, � /J2=0.001, k�e /J=12.5, and
J1�H� /J=0.1�H /h�2, where h2=0.9Hc

2. As expected, for H
�Hc, i.e., �H /h�2�10 /9, the system develops LRO and �e,s
shows a Curie-Weiss-type divergence at Tc�H�. The inset
shows the magnetic field-cooled susceptibility �m,s, which
monotonically decreases with H at fixed temperature. The
cusp for H=0 is due to the absence of magnetic random
fields ��m=0�. The remaining parameters are K /J=K0 /J0
=0.5 and �m=�e /4.

IV. DYNAMIC DIELECTRIC RESPONSE

We focus on the dynamic dielectric response of the bire-
laxor in the presence of a static magnetic field under the
conditions specified in Sec. III. The Langevin equations of
motion for the PNR pseudospins are21

�e
�Sri

�t
= −

���HS�
�Sri

− ze�t�Sri�t� + �ri�t� , �17�

where HS=He+Hme�H� and ze�t� is a Lagrange multiplier
enforcing the spherical condition �1� for PNRs. The Lange-
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vin forces �ri�t� formally obey the Einstein relations

�ri�t��r�j�t���av=2�e�rr��ij��t− t��. To solve Eq. �17� we in-
troduce as usual the eigenvalues J� and eigenstates �� of the
random matrix Jrr�, and replace the original set Sri by the
normal modes S�i, which decouple the above equations.
Assuming an oscillating external electric field Ei�t�
=E0 exp�−i�t� and solving for S�i�t� in the asymptotic re- gime t
�e,

21 we obtain the following result for the complex
linear dynamic dielectric susceptibility:

�e��� = k�e
z��� − r��� − �J0�H�

��J2 + J0�H�2� − 2z���J0�H�
, �18�

where �e���ij =�e����ij and we use the notation z�ze, etc.,
with z���=z− i�� /2 and r���=�z���2−�2J2.

In principle the parameter z can be calculated from the
static spherical condition �1�.21 Alternatively one can deter-
mine z from the static susceptibility �e,s=�e�0�, which is
known from the replica theory,16,17 by inverting Eq. �18�.

The relaxation time ���e is not determined by the model
and is regarded as a phenomenological parameter. A major
simplification in Eq. �17� is the assumption that all modes S�i
decay with the same relaxation time �. However one may
introduce a statistical distribution of ln � by writing


�e����av = �
0

�

d�ln ��f�ln ���e��� . �19�

Empirically the response of relaxors and dipolar glasses is
characterized by a broad probability distribution of relax-
ation times. An approximate numerical scheme has been
developed22 to extract f�ln �� from the experimentally known
response 
�e����av. The longest relaxation time appearing in
f�ln �� has been found to diverge according to the VF law
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FIG. 1. �Color� Temperature dependence of the static field-
cooled dielectric susceptibility of a birelaxor for several values of
magnetic field H /h, as indicated, where h2=0.9Hc

2. Inset: field-
cooled static magnetic susceptibility for the same values of H /h.
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FIG. 2. �Color� Frequency dependence of the real �lower� and
imaginary �upper� parts of dynamic dielectric susceptibility for sev-
eral values of magnetic field H /h, as indicated, calculated at a fixed
temperature T /J=1.025.
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FIG. 3. �Color� Real �lower� and imaginary �upper� parts of the
quasistatic zero-field-cooled dielectric susceptibility for the same
values of H /h as in Fig. 1, evaluated at a low frequency ��0

=10−8.
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� = �0 exp�U/�T − T0�� for T � T0, �20�

and �=� for T�T0, where T0 is the VF or freezing tempera-
ture. The function f�ln �� can be expressed in terms of two
probability distributions, i.e., g�U� and w�Tf� describing the
distributions of barrier heights and freezing temperatures Tf,
respectively. The result is

f�ln �� = �
0

�

dTfw�Tf��T − Tf�g��T − Tf�ln �� . �21�

For the purpose of illustration we choose g�U� as a
Fröhlich box, g�x�=1 /Umax for 0�U�Umax, and a triangu-
lar distribution w�Tf�= �2 /T0��1−Tf /T0� for 0�Tf �T0 with
parameter values Umax /J=11.0, and T0 /J=1.0. The calcu-
lated frequency dependence of the real and imaginary parts
of 
�e����av is plotted in Fig. 2 at a fixed temperature kT /J
=1.025 for the same set of parameter values as in Fig. 1;
however, the magnetic field H is now varied in a broader
range. For �J0�0 the maxima of the imaginary part of per-
mittivity move toward higher frequencies on increasing H
but this effect seems rather weak.

We can also calculate the temperature dependence of the
quasistatic zero-field-cooled susceptibility by choosing a
very small value for the frequency. This is shown in Fig. 3
for ��0=10−8 and the same set of parameters and fields as in
Fig. 1. At high temperatures the real part of the response
agrees with the field-cooled response in Fig. 1 but for T
→0 the zero-field-cooled response tends to zero, as required.

V. RELAXATION OF DIELECTRIC POLARIZATION
IN MAGNETIC FIELD

We now discuss the effects of magnetic field on the relax-
ation of PNRs due to the presence of fourth-order magneto-
electric coupling between the PNRs and MNRs in a bire-
laxor. Our aim is to find a general expression for the internal
electric field inside a PNR, which is modified by the pres-
ence of a magnetic field. We can then apply the mechanism
of growth and percolation of PNRs �Ref. 14� to derive a
modified Vogel-Fulcher relaxation time.

Rather than follow the Hamiltonian approach used in the
preceding sections, we start by writing down the phenom-
enological Landau-type free-energy density functional of a
birelaxor in the absence of stress coupling,

F0 =
1

2	0
��e

−1�ijPiPj +
�0

2
��m

−1�ijMiMj +
1

4
beP

4

+
1

4
bmM4 + ¯ − EiPi − BjMj . �22�

The inverse susceptibility tensors are explicitly given by
Eq. �5�. The anharmonic P4 and M4 terms have been added
to formally ensure thermodynamic stability. Note that there
are no direct ME terms in the above free energy.

Following the approach used in Sec. III, we assume that
�e

−1 and �m
−1 are functions of the stress field X and expand

them both to linear order in X. We can again apply the Max-
well relations �6� and after including the elastic energy den-

sity �1 /2��ij=1
3 �C−1�ijXiXj and minimizing F0 with respect to

X, we generate a new �P2M2 term, namely,

F1 = −
1

2
�ijPi

2Mj
2, �23�

where the indirect fourth-order ME coupling constant is

�ij = 2CklQe,kiQm,lj . �24�

By averaging �ij over all i , j we obtain its average value
�h=2ChQe,hQm,h, and by comparing with Eq. �9� we see that
�h=�h�0 / �	0k�ek�m�. This establishes a connection between
the fourth-order coupling in the Hamiltonian and the corre-
sponding coefficient in the free-energy density. The value of
�h can be estimated by using the same parameter values as in
Eq. �16�, yielding �h roughly between 2�10−7 and 2
�10−5 m3 s−1 V A−3.

The macroscopic electric field is obtained from the equi-
librium condition ��F0+F1� /�Pi=0 and is given by

Ei =
1

	0
�e

−1Pi�1 − 	0�e�ijMj
2� . �25�

Since PNRs are mesoscopic objects, we expect that this re-
lation is also valid inside the polarization cloud of a PNR.
Following the example of relaxor ferroelectrics,14 we assume
that the polarization inside an isolated PNR falls off with
distance as P� �r�= P� 0�r0 /r�3 and that the local field E� �r� is
proportional to P� �r�. In the present case, P� �r� acquires an
additional contribution due to ME coupling and E� �r� be-
comes

Eloc,i =
�

3	0
Pi�1 − 	0�e�ijMj

2� , �26�

where � is the local field correction factor. The extra term in
parentheses can be interpreted as the contribution due to
stress field fluctuations, which are induced by the magnetic
field via magnetostriction. Since magnetic LRO is absent and
the temperature is far above the magnetic relaxor peak, the
system is effectively in a �super�paramagnetic regime. Thus
we can write Mj

2=�m
2 Hj

2 and for an isotropic case we also
have �ij =�h�ij.

From this point on we can follow the reasoning used in
Ref. 14 and consider the electrostatic energy Udip=−�� ·E� loc
of a virtual electric dipole �� at distance r from the PNR
center. The correlation radius rc is determined by the condi-
tion that Udip should be balanced against the thermal fluc-
tuation energy �kT. Thus the correlation volume behaves as
vc=v0Td

��H� /T, where v0 is the “core” volume of PNR at
some reference temperature Td

��H�. In the present case, we
can write Td

��H�=Td
��0��1−	0�e�h��m�2H2�. As the tempera-

ture is lowered, vc increases and so does the volume fraction
� occupied by PNRs. As � reaches the percolation threshold
�p an infinite cluster of PNRs is formed. This occurs at the
percolation temperature Tp=4�nTd

��H� /3�p, where n is the
volume concentration of PNRs and �p is around �0.3 in d
=3 dimensions and �p�0.6 for d=2.23 The dielectric relax-
ation time � then behaves as
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� = �0 exp� U

T − Tp�H�� , �27�

which has the same general form as the VF Eq. �20� with
T0=Tp�H�. It follows that the relaxation time diverges on a
line of percolation critical points T=Tp�H� in the H ,T plane,
where

Tp�H� = T0�1 − sgn��h��H/H0�2� , �28�

with H0
2=1 / ��h��m�2�, or explicitly,

H0
2 =

1

2	0�e�m
2 ChQe,hQm,h

. �29�

The sign of �h in Eq. �28� depends on the signs of Qe,h and
Qm,h, i.e., sgn��h�=+1 if the two signs are equal, and −1 if
they are opposite. The two cases are illustrated schematically
in Fig. 4.

Equation �29� is consistent with the approximate relation
�15� since in view of Eq. �5� one can write �e�k�e / J−J0. It
should be noted, however, that Eq. �29� is based on the phe-
nomenological relations �6� and �22� and is thus model inde-
pendent.

Let us consider the case sgn��h�=−1. The percolation
temperature then increases with magnetic field, and at fixed
temperature the relaxation time diverges according to

� = �0 exp� U1

Hp
2 − H2� , �30�

where U1=UH0
2 /T0 and the critical field Hp is given by

Hp�T�2 =
T − T0

T0
H0

2. �31�

We can estimate the value of H0 by assuming �e�3�103

near T�J /k and �m�4, and by using the same values of Ch,

Qe,h, and Qm,h as in Eq. �16�. We find 0.43��0H0�4.3 T,
in agreement with Eq. �16�. The value of the critical field Hp
at any temperature can then be obtained from Eq. �31� if the
zero field value of the VF temperature T0 is known.

The effects of magnetic field on the dielectric relaxation
spectra at room temperature have been observed recently by
Kumar et al.15 in thin films �PZT�0.8�PFW�0.2, where PZT
and PFW mean PbZr0.54Ti0.46O3 and PbFe2/3W1/3O3, respec-
tively. The relaxation rate f =1 /� corresponding to the tem-
perature peaks in the spectra was found to obey the Vogel-
Fulcher law and was extrapolated to zero at a critical field Hc
according to the empirical relation

f = f0 exp�−
U1

Hc
2 − H2� . �32�

This expression is equivalent to the above Eq. �30� with
Hc=Hp. The experimental value of the critical field at room
temperature is �0Hc=0.92 T, which lies within the range of
H0 estimated above. Smaller values of Hc could be obtained
by either going to temperatures closer to T0 as implied by Eq.
�31� or shifting T0 by changing the iron concentration. The
experimental temperature dependence of Hc is not available
at present, and similarly the values of the parameters Qe,ij,
Qm,ij, and Cij are not yet known.

VI. DISCUSSION AND CONCLUSIONS

We have formulated a mesoscopic spherical random
bond–random field model of a birelaxor which shows both
relaxor ferroelectric and relaxor ferromagnetic properties.
The underlying physical scenario is based on the simulta-
neous presence of polar nanoregions �PNRs� and magnetic
nanoregions �MNRs�. The PNR-PNR and MNR-MNR ran-
dom interactions are modulated by the lattice stress tensor,
thus giving rise to fourth-order PNR-MNR coupling terms.
Using thermodynamic Maxwell relations the strength of the
PNR-MNR interaction can be expressed in terms of the elec-
trostriction and magnetostriction coefficients and elastic con-
stants. Depending on the relative signs of these coefficients,
a long-range-ordered ferroelectric state can be induced by the
magnetic field larger than a critical field Hc. Estimates for the
possible range of values of Hc are given.

The probability distribution of the dipole moments of
PNRs and MNRs for real systems is at present unknown. As
shown earlier for a relaxor ferroelectric,17 the choice of an
asymmetric Gaussian distribution leads to the spherical con-
dition for the associated pseudospin variables. The same ap-
proach can be applied to the corresponding magnetic degrees
of freedom. In fact, the spherical condition has been origi-
nally introduced for uniaxial spin glasses, mainly because it
leads to an exactly solvable model. The infinite range inter-
actions of the Sherrington-Kirckpatrick-type are a reminder
of the long-range nature of the PNR-PNR and MNR-MNR
interactions. Their principal advantage is that the number of
physical parameters is kept at a minimum of two for each
subsystem, to which one only adds the strength of the ran-
dom electric fields. One should, of course, be aware of the
possible limitations of this approach and more realistic inter-
action models will have to be considered in a future work,

0 0.5 1 1.5
H/H0

0

1

2

3

T
/T

0

λh < 0

λh > 0

FIG. 4. Lines of percolation critical points in the H ,T plane
corresponding to positive and negative values of coupling param-
eter �h. The Vogel-Fulcher relaxation time diverges on approaching
the corresponding line from above.
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however, at the expense of introducing new sets of param-
eters.

The dynamics of the PNR subsystem has been studied by
means of the Langevin equations of motion, which had been
used earlier both for Ising and spherical spin glasses, as well
as for relaxor ferroelectrics. Quenched randomness is taken
into account on two levels, namely, first by performing ran-
dom averages over the eigenvalues of the random interaction
matrix and over random fields, and second by assuming a
broad probability distribution of relaxation times in the spirit
of dynamic heterogeneity which is assumed to be applicable
to relaxors and birelaxors alike.

An alternative approach to relaxor ferroelectrics based on
the slow glassy dynamics near the ferroelectric threshold was
introduced by Vugmeister and Rabitz.24 As discussed in de-
tail by Vugmeister,25 the dynamic behavior of PNRs can be
understood within the model of short-range polar clusters
inside the PNR induced by off-center ions in highly polariz-
able materials. An extension of this model to relaxor ferro-
magnets and hence to birelaxors has not yet been attempted.
This is an interesting but nontrivial problem in view of the
lack of quenched random magnetic fields in spin glasses and
relaxor ferromagnets.

Using a standard phenomenological Landau-type free-
energy density functional of a birelaxor the polarization mag-

netization or magnetoelectric �ME� coupling term of �P2M2

type has been derived. It has been shown that the local inter-
nal electric field in a PNR acquires an extra component due
to the ME coupling. According to the model of growth and
percolation of PNRs in relaxors, the correlation radius rc and
volume vc of PNRs is reduced �enhanced� by the magnetic
field, again depending on the sign of the ME coupling. As the
volume fraction of PNRs reaches the percolation threshold
�p, an infinite cluster of PNRs appears and its reorientation
time diverges asymptotically according to the Vogel-Fulcher
�VF� relation. The VF freezing occurs on a line of percola-
tion critical points T=Tp�H� in the H ,T plane, where Tp�H�
corresponds to the VF temperature in a magnetic field. The
result for T=Tp�H� does not depend on the parameters of the
SRBRF model. The predicted H-field effect on the dielectric
relaxation time agrees quantitatively with the observed
magnetic-field-controlled dielectric relaxation in solid solu-
tion PFW/PZT thin films.
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