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The single-crystal and polycrystalline elastic constants and the elastic anisotropy in face-centered cubic and
hexagonal close-packed FeNi alloys have been investigated at ultrahigh pressures by means of first-principles
calculations using the exact muffin-tin orbitals method and the coherent-potential approximation. Comparisons
with earlier calculations for pure Fe and experimental results are presented and discussed. We show that Ni
alloying into Fe increases slightly the density and has very little effect on bulk moduli. Moreover, the relative
decrease in c44 elastic constant is much stronger in the hcp phase than in the fcc one. It is found that the elastic
anisotropy is higher for face-centered cubic than for the hexagonal close-packed structure of FeNi, even though
the face-centered cubic phase has a higher degree of symmetry. The anisotropy in face-centered cubic structure
decreases with increasing nickel concentration while a very weak increase is observed for the hexagonal
close-packed structure.
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I. INTRODUCTION

The influence of pressure on materials properties is an
important field of condensed-matter physics, which currently
attracts much attention. In particular, the elastic properties of
materials at high pressure change substantially and knowl-
edge of their behavior provide information on the stability of
a system, on the propagation of sound waves, and on the
elastic anisotropy. But the available information on materials
properties at such ultrahigh-pressure conditions is limited.
Indeed, the pressure that currently can be reached experi-
mentally in studies of, for instance, FeNi alloys using the
diamond-anvil cells is on the order of 250 GPa.1 At higher
compressions the lack of experimental data should be com-
pensated by theoretical simulations based on accurate first-
principles theories. Note that iron and iron-based alloys are
thought to be the main constituents of the earth’s core.
Therefore a study of such systems at conditions resembling
those of the core is of great importance for several branches
of science, including physics, geophysics, and geochemistry.

In recent years there have been numerous works pub-
lished on the lattice stability of pure Fe and Fe-based alloys
at ultrahigh-pressure conditions1–9 which have discussed the
possible structure and composition of the core. Moreover, the
elastic properties of Fe and ordered Fe-based compounds at
the earth’s core conditions have been investigated theoreti-
cally in several recent publications.4,7,10–12 While important,
we feel that there is a need to include more complex systems,
e.g., disordered Fe-based alloys since this is likely to influ-
ence the picture.13

In this work we present first-principles theoretical results
for the elastic properties of Fe and FeNi systems at high

pressures. The calculations have been done at zero tempera-
ture, neglecting the effect of lattice vibrations. We employ
the exact muffin-tin orbitals Method �EMTO� with the
coherent-potential approximation �CPA�, that has been
proven to be a reliable tool for the calculation of the elastic
properties of alloys, predicting their values with accuracy
within 10%,14–16 which is typical for state-of-the-art first-
principles calculations17 and giving very accurate description
of the concentration dependencies. There has been many dif-
ferent studies of Fe and Ni using the CPA method18–26 and
the method is therefore known to be reliable for our setup.
We emphasize the accurate description of disorder effects
and view this study as the first step toward the development
of a reliable model that includes the effects of disorder, com-
pression, and high temperature at the same footing. We have
studied the elastic properties of fcc and hcp FeNi alloys since
they both are suggested as possible candidates for the earth’s
core structure.6,8 Though, while at high pressure and high
temperatures the bcc structure of Fe is competitive to the fcc
and hcp, it is dynamically unstable at low temperatures and
high pressures1,2,4,9 and therefore is not included in this
study. From the single-crystal elastic constants, we compute
the polycrystalline elastic moduli and the anisotropy as func-
tion of pressure and Ni concentration.

The paper is organized in the following way: in Sec. II we
briefly present the theory used for the calculation of elastic
properties of FeNi alloys and later in Sec. III we outline the
method used for the first-principles calculations along with
practical details of the calculations. In Secs. IV A–IV C the
results for the equation of state �EOS�, the single-crystal
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elastic properties, and anisotropy is presented, respectively.
We summarize the results in Sec. V.

II. THEORY

A. Equation of state

For both fcc and hcp phases, the first step in calculating
the elastic properties has been to find the EOS. In the case of
fcc alloys, it can be done by calculating the total energy for
a set of volumes. From this the ground-state volume can
readily be found and also the pressure �P� and bulk modulus
�B� as functions of the volume �V�. In hcp alloys, the c /a
ratio must first be determined for each volume, V by mini-
mizing the energy E�V ,c /a� versus c /a, and then the EOS is
computed using the energy minima E�V ,c /a�.

In this work the third order Birch-Murnaghan EOS �Ref.
27� has been used for fitting the theoretical data since it is
most often used in experimental studies of solids at high
pressure.

B. Elastic constants

The elastic constants have been calculated using volume-
conserving distortions. Using volume-conserving deforma-
tions allows us to identify the calculated elastic constants
with the stress-strain coefficients used for wave-propagation
velocity.28–30 Also, it is important for maintaining high accu-
racy in the calculations since the total energy depends stron-
ger on volume than on the distortions.28

1. Face-centered cubic alloys

For the fcc structure, there are three independent elastic
constants: c11, c12, and c44.

31 Two of these can be derived
from the bulk modulus

B =
c11 + 2c12

3
, �1�

and the so-called Zener’s elastic constant c�,

c� =
c11 − c12

2
. �2�

The c11 and c12 elastic constants are derived from Eqs. �1�
and �2�. The c� elastic constant was obtained using the ortho-
rhombic deformation,16

I + DO = �1 + � 0 0

0 1 − � 0

0 0 1
1−�2

� �3�

yielding the following change in the total energy:

�E/V = 2c� · �2 + O��4� . �4�

The c44 elastic constant can be calculated from the mono-
clinic distortion,16

I + DM = �1 � 0

� 1 0

0 0 1
1−�2

� �5�

corresponding to the energy change in

�E/V = 2c44 · �2 + O��4� . �6�

2. Hexagonal close-packed alloys

In hcp crystals there are five independent elastic con-
stants, c11, c12, c13, c33, and c44. From the calculation of the
EOS �see above�, the c /a ratio as function of volume is
known as ��c /a�= �c /a��V�� and also the bulk modulus can
be evaluated. From E�V ,c /a� two auxiliary elastic constants,
cS and R can be obtained as

cs =
9�c/a�2

V
� �2E�V,c/a�

��c/a�2 �
c/a=�c/a��V�

, �7�

R = −
d ln�c/a��V�

d ln V
. �8�

The c44 elastic constant can be obtained from the volume-
conserving monoclinic distortion,

I + DM = �1 0 �

0 1
1−�2 0

� 0 1
� �9�

and the corresponding change in energy is

�E/V = 2c44 · �2 + O��4� . �10�

c66= �c11−c12� /2 can be obtained from the following
volume-conserving distortion:

I + DO = �1 + � 0 0

0 1 − � 0

0 0 1
1−�2

� �11�

and the energy change is

�E/V = 2c66 · �2 + O��4� . �12�

Now, since

cs = c11 + c12 + 2c33 − 4c13,

R =
c33 − c11 − c12 + c13

cs
, �13�

all elastic constants for an hcp crystal can be obtained from
c44, c66, cs, R, and Bmod using the above relations.16

3. Polycrystalline elastic constants and elastic anisotropy

For the fcc structure, the Voigt and Reuss bulk moduli are
equivalent with the single-crystal bulk modulus from Eq. �1�.
The Voigt and Reuss shear moduli are given by31

GV =
c11 − c12 + 3c44

5
=

2c� + 3c44

5
, �14�

GR =
5�c11 − c12� · c44

4c44 + 3�c11 − c12�
=

5c�c44

2c44 + 3c�
. �15�
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For the hcp structure, the Voigt and Reuss bulk moduli are
different �how much depends on how strongly c /a depends
on volume� and defined as

BV =
2�c11 + c12� + 4c13 + c33

9
, �16�

BR =
c2

cs
, �17�

where c2=c33�c11+c12�−2c13
2 . BR is obtained from the EOS

calculations.
For the hcp crystal, the Voigt and Reuss shear moduli are

defined as follows:31

GV =
12c44 + 12c66 + cs

30
, �18�

GR =
5

2

c44c66c
2

�c44 + c66�c2 + 3BVc44c66
. �19�

The Voigt and Reuss shear moduli can be used to calculate
the Voigt-Reuss-Hill �VRH� anisotropy, defined as31

AVRH =
GV − GR

GV + GR
. �20�

With this definition AVRH is zero for isotropic crystals and its
deviation from zero gives a measure of the anisotropy.16 We
would like to point out that unlike the single-crystal aniso-
tropy ratios �e.g., the Zener of every ratios� The VRH aniso-
tropy ratio is suitable to compare the anisotropies of different
crystal structures.

III. DETAILS OF THE CALCULATIONS

A. Electronic structure calculations

The present calculations are based on density-functional
theory,32,33 in combination with the local-density approxima-
tion �LDA� as parametrized by Perdew, Burke, and
Ernzerhof.34 The total energy is calculated using the full-
charge-density technique.16,35 In addition to the LDA, the
total energy is calculated within the generalized gradient ap-
proximation �GGA� �Ref. 34� using the electron density ob-
tained from the LDA self-consistent calculation. For non-
magnetic systems this procedure provides essentially the
same materials properties as those of a self-consistent GGA
scheme.

Furthermore, the electronic structure problem is solved
using the EMTO.36–38 The treatment of a random substitu-
tional alloy is done through the CPA.39,40 The EMTO-CPA
�Ref. 14� method has proven to be accurate enough for cal-
culation of elastict properties of alloys13,14 while demanding
reasonable computational resources.

B. Computational setup

Since this work deals with FeNi at high pressure, the cal-
culations were all nonmagnetic. From a study of magnetism
in FeNi alloys26 we know that at pressures above about 50

GPa fcc FeNi is nonmagnetic, at least in the concentration
range presented in this paper. Also, calculations by Steinle-
Neumann et al.41 show that hcp Fe is nonmagnetic above
about 75–80 GPa.

The EMTO calculations were performed using 16 com-
plex energy points for the Green’s function integration and
the basis set contained s, p, d, and f orbitals. The k-space
sampling of the irreducible part of the Brillouin zone was
done by 25�25�25 points for the fcc crystals and by 17
�17�13 �EOS and c66� and 16�16�10 �c44� points for
hcp, respectively. These figures roughly correspond to the
same density of points in k space for all structures. The
k-point convergence was verified against the elastic constants
since they are numerically more sensitive compared to the
total energies and the EOS.

For the EOS part, the total energy was calculated for the
Wigner-Seitz radii Rws= �2.10,2.15, . . . ,2.55,2.60	 Bohr
corresponding to the atomic volumes V
�38.8,41.6,44.6,
47.7,51.0,54.4,57.9,61.6,65.4,69.5,73.6	 Bohr3. The
energy-volume curve was then fitted to a Birch-Murnaghan27

EOS, as mentioned above. For consistency, this equation of
state was also checked against the modified Morse42 EOS.
The above Wigner-Seitz radii were also used for the calcu-
lation of elastic constants.

When calculating the elastic constants, the distortions in
Eqs. �3�, �5�, �9�, and �11� were �= �0.00,0.01, . . . ,0.05	.
Then the elastic constants were obtained by linear fit of the
energy as function of the square of the distortions ��2�, Eqs.
�4�, �6�, �10�, and �12�. Figure 1 shows an example which
illustrates this procedure. Fitting of the square of the distor-
tion is more stable numerically than fitting the distortion.

IV. RESULTS

A. Equation of state

Figure 2 shows the calculated EOS for fcc Fe80Ni20 alloy
and pure Fe. The lack of experimental data for the fcc phase
at high pressure does not allow us to make any comparison
with experiment. At a fixed volume �about �51 Bohr3 per
atom� the pressure increases when going from pure Fe to the
Fe75Ni25 alloy. Similar behavior is observed for the other
volume points in the high-pressure region, though the differ-
ence is volume dependent.

0 0.001 0.002
x=δ2

0

0.002

0.004

∆E
to

t(x
)

FIG. 1. Example of the difference in total energy as function of
the square of the lattice distortion.
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Figure 3 shows the EOS for hcp Fe80Ni20 alloy and pure
Fe. Also, results from other theoretical works are shown
�Ref. 41� together with experimental results �Refs. 43–45�.
The agreement with calculations of Ref. 41 is very good,
which is expected since both calculations are nonmagnetic.
Below about 75–80 GPa magnetism and/or correlation ef-
fects may influence the equation of state,26,41 which can be
seen from the increasing deviation between the calculations
and the experiment data. But at higher pressure the agree-
ment with experiment is very good and this is the pressure
region of interest for this work. The change in the EOS with
changing Ni concentration is rather small. This is expected
since Fe and Ni have a small size mismatch and also quite
similar electronic structure. The pressure for a certain vol-

ume ��51 Bohr3� increases only about 1.5% when going
from pure Fe to Fe75Ni25. Similar behavior is observed for
the other volume points in the high-pressure region.

From the EOS we also calculated the density as function
of Ni concentration, for the pressure 330 GPa. For both
fcc and hcp phases, the density increases with increasing Ni
concentration, though the dependence is rather weak. This
behavior is also confirmed by experimental data from Mao
et al.45 In the fcc phase, the density changes from
14013 kg /m3 for pure Fe to 14181 kg /m3 for Fe75Ni25
while the corresponding numbers for hcp goes from 14 022
to 14 193 kg /m3. Here it is worth to notice that for any Ni
concentration in this work, the hcp density lies slightly above
that of fcc.

In Fig. 4, the calculated bulk modulus as a function of
pressure is shown together with experimental results of Du-
brovinsky et al.43 The data in Ref. 43 was obtained at high
temperature and therefore our T=0 K calculations show
slightly higher bulk modulus. Since Fe and Ni have similar
bulk moduli and electronic structure and since we are in the
nonmagnetic pressure range, changing the Ni concentration
causes a very small change in bulk modulus. For both hcp
and fcc phases, increasing the Ni concentration from 0 to
25 at % results in a decrease in the bulk modulus. In the
high-pressure region, the change is very small �about 1%–
2%� for both fcc and hcp phases. These features can be seen
in Fig. 5 which shows the bulk modulus for fcc and hcp FeNi
relative to that of pure Fe.

Next, Fig. 6 shows the calculated c /a ratio as a function
of pressure in hcp FeNi, together with experimental results
by Ma et al.46 and Dewaele et al.44 The agreement between
our calculations and experiment is reasonable, though it
should be pointed out that the two different sets of experi-
mental data show opposite trends with increasing pressure.
Experimental data by Mao et al.45 is not shown in the figure
since its spread is too large compared to the variation in c /a
as function of pressure on the figure scale. In the pressure
interval from 77 to 270 GPa, c /a for pure Fe varies between
1.620 and 1.575 in Ref. 45. Variations in c /a for the Fe80Ni20
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FIG. 2. Pressure as function of volume in fcc Fe80Ni20 �dashed
lines� and pure Fe �full lines�.
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FIG. 3. �Color online� Pressure as function of volume in hcp
Fe80Ni20 �dashed lines� and pure Fe �full lines�. Experimental data
for pure Fe by Dubrovinsky et al. �Ref. 43� are shown by �red�
squares, Dewaele et al.44 by black stars while data for Fe and
Fe80Ni20 by Mao et al. �Ref. 45� are shown by �green� diamonds
and �magenta� triangles, respectively. For reference, calculations for
pure Fe by Steinle-Neumann et al. �Ref. 41� are shown by a thick-
dashed �orange� line. The thin and horizontal dashed line shows the
limit below which hcp FeNi is likely to become magnetic.
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FIG. 4. �Color online� Bulk modulus as function of pressure in
fcc �circles� and hcp �squares� Fe80Ni20 �green and dashed lines�
and pure Fe �black and full lines�. Shown by a �red� line are calcu-
lations for T=5000 K from experimental data by Dubrovinsky et
al. �Ref. 43�.
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alloy are between 1.674 and 1.552. The weak dependence of
c /a ratio on pressure and the spread in experimental data-
makes more general conclusions about the theoretical accu-
racy hard to draw. The calculated results are also in good
agreement with the work of Sha et al.47 and Gannarelli et
al.48 The c /a ratio increases with increasing Ni concentration
and while this effect is small, it is still larger than the varia-
tion with pressure. We would like to point out that the minor
differences in c /a ratio between this work and that in Ref. 13
is due to different interpolation methods. The effect of these
differences upon the elastic constants and the anisotropy has
been found to be negligible.

B. Single-crystal elastic constants

The single-crystal elastic constants of fcc Fe and Fe90Ni10
as functions of pressure are shown in Fig. 7. For fcc, the
stability requirements for the elastic constants are31

c11 � �c12� ,

c12 + 2c12 � 0 ⇔ B � 0,

c44 � 0. �21�

So, from Figs. 7 and 4 we conclude that the fcc phase of
FeNi is elastically stable.

As expected, all elastic constants increase with increasing
pressure. For c11 and c12 the effect of adding Ni in Fe is very
small while it is slightly larger for c44. The effect of adding
Ni in Fe on c11 and c12 is very small, about 1 % when going
from pure Fe to Fe75Ni25, which is of similar magnitude as
the expected accuracy of the calculations of the elastic con-
stants. At V
44.6 Bohr3 �about 330 GPa� c11 and c12 in-
crease with increasing Ni content while the opposite situa-
tion is present for V
57.9 Bohr3 �about 80 GPa�, though
the shift is still of similar magnitude as the expected accu-
racy of the calculations and therefore it should be taken with
care. When going from pure Fe to Fe75Ni25, the c44 elastic
constant decreases about 3% at V
44.6 Bohr3 and about
6% at V
57.9 Bohr3. All these features can be found in Fig.
8. Unfortunately, there is a lack of experimental data for fcc
FeNi at high pressure.

FIG. 5. �Color online� Bulk modulus �in GPa� as function of
pressure in fcc �top� and hcp �bottom� FeNi relative to pure Fe.

100 200 300 400
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Fe: Exp [44]
Fe: Exp [46]
Fe95Ni05
Fe90Ni10
Fe85Ni15
Fe80Ni20
Fe78Ni22
Fe75Ni25

FIG. 6. �Color online� c /a ratio as function of pressure in hcp
FeNi for different concentrations. Full symbols with lines to guide
the eyes denote calculations while open circles and stars denote
experimental results by Ma et al. �Ref. 46� and Dewaele et al. �Ref.
44�, respectively. See text for more details.

FIG. 7. �Color online� Single-crystal elastic constants as func-
tions of pressure in fcc Fe �full lines� and Fe80Ni20 �dashed lines�.
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Turning to the hcp phase, the elastic constants of FeNi
alloys are shown as function of pressure in Fig. 9. Also here
all elastic constants increase with increasing pressure. The
stability criterion for the hcp structure are the following:31

c11 � �c12� ,

c33�c11 + c12� � 2c13
2 ⇒ BR � 0,

c11c33 � c13
2 ,

c44 � 0. �22�

All these requirements in Eq. �22� are fulfilled. A simple
calculation verifies this remaining requirement of stability.
So we may conclude that also hcp FeNi is elastically stable
at all pressures, at least within the concentration range con-
sidered in this work.

Included in Fig. 9 are experimental data from Mao et
al.,49 Antonangeli et al.,50 and Merkel et al.51 Also shown are
calculations at T=0 K by Steinle-Neumann et al.12 It should
be noted that we have put these calculations at a pressure
corresponding to the volume used in Ref. 12. However, the
pressure-volume relation in our work very closely match that
of Steinle-Neumann et al. in Ref. 41. The overall agreement
with experimental results is good, even though our calcula-
tions lie a bit above the experimental values for c11 and c12.
This could be because our calculations are done at 0 K but
for c44 our results lie below that of Mao et al. Below about
80 GPa pressure, magnetism could still influence the results
which may explain why c11 estimated by Antonangeli et al.50

is softer than the 0 K calculations. The agreement between
our calculations and those of Ref. 12 is excellent and this
verifies the reliability of our method.

A summary of the behavior of the elastic constants when
changing the Ni content from pure Fe to Fe75Ni25 is pre-
sented in Fig. 10, which shows the single-crystal elastic con-
stants for hcp FeNi relative to Fe. In this figure we can see
that when increasing the Ni concentration, the c11, c12, and
c44 elastic constants decrease while the other two �c13 and

c33� show a rather small increase. It is also worth to notice
that adding Ni has a larger effect on elastic constants in
general for the hcp phase than for the fcc.

C. Polycrystalline elastic constants and anisotropy

Figure 11 shows the Voigt and Reuss shear moduli as
functions of pressure in Fe80Ni20 and pure Fe. Here we note
that for fcc the difference between Voigt and Reuss is much
larger than for hcp. For fcc the difference between the
moduli increases more with pressure, than it does for hcp.
These findings can also be seen in Fig. 12 below. It is also
worth noting that for hcp the both moduli change with in-
creasing Ni content while for fcc the moduli change much
less.
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FIG. 8. Single-crystal elastic constants �in GPa� as functions of
pressure in fcc FeNi, relative to pure Fe.

FIG. 9. �Color online� Single-crystal elastic constants as func-
tions of pressure in hcp Fe80Ni20 �dashed lines� and pure Fe �full
lines�. Full symbols denote our calculations while open symbols
denote experimental results: magenta from Mao et al. �Ref. 49� red
from Antonangeli et al. �Ref. 50�, and green from Merkel et al.
�Ref. 51 Also shown many orange open symbols are calculations at
T=0 K by Steinle-Neumann et al. �Ref. 12� See text for more
details.
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The VRH anisotropy, defined in Eq. �20�, is shown for fcc
and hcp Fe and Fe80Ni20 alloy in Fig. 12. Also shown in this
figure are the anisotropy for pure Fe extracted from calcula-

FIG. 11. �Color online� Voigt �circles� and Reuss �squares� shear
moduli in pure Fe �full lines� and Fe80Ni20 �dashed lines� as func-
tions of pressure. Top panel shows fcc and the bottom shows hcp.

FIG. 10. �Color online� Single-
crystal elastic constants �in GPa�
as functions of pressure in hcp
FeNi, relative to pure Fe.
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FIG. 12. �Color online� Elastic anisotropy in Fe and Fe80Ni20 as
function of pressure. Experimental data for hcp Fe from Mao et al.
�Ref. 49� are shown by magenta upward triangles while calculations
for hcp by Steinle-Neumann et al. �Ref. 12� are shown by orange
left triangles.
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tions by Steinle-Neumann et al.12 and experimental results
from Mao et al.49

For the hcp anisotropy there is excellent agreement be-
tween our calculations and experiment. Our results also
agree with those calculated by Steinle-Neumann et al.12 The
excellent agreement for the hcp anisotropy suggests that our
calculations for the fcc phase are indeed reliable.

Several observations can be made from Fig. 12. First, and
most interesting, the fcc systems are more anisotropic than
hcp ones, which is unexpected since the fcc structure has a
higher degree of symmetry. Moreover, the anisotropy of fcc
FeNi increases with pressure and depends more strongly on
pressure than the anisotropy for the hcp structure. The latter
is almost constant in the pressure range studied in this work.

In Fig. 13 the calculated anisotropy for V=44.6 Bohr3,
corresponding to P
330 GPa is shown as function of Ni
concentration. Here it is interesting to notice that for the fcc
structure the anisotropy decreases slightly with increasing Ni
content while for hcp alloys the situation is the opposite.
Since the hcp anisotropy is fairly close to zero, it is hard to
measure the change in anisotropy with Ni content in percent.
However, for V=44.6 Bohr3 the hcp anisotropy is about
0.017 for pure Fe and increase to 0.036 for Fe75Ni25. This
should be compared with the fcc anisotropy, which changes
from about 0.185 for pure Fe to 0.176 for Fe75Ni25. Also, the
dependence on Ni concentration is stronger for hcp than for
fcc. However, adding Ni does not change the anisotropy ratio
between fcc and hcp alloys qualitatively, that is, the elastic
anisotropy is still much higher for the fcc crystals.

The numerical value of the VRH anisotropy is rather sen-
sitive to changes in the elastic constants. In order to investi-
gate the possible effects of temperature, especially together
with the inclusion of disorder effects, more theoretical stud-
ies as well as experimental data is needed. Further studies
should also include the bcc phase of FeNi. However, already
at this stage we can make an important conclusion. Though
the fcc results in this study differ from those extracted from
Ref. 7, both agree qualitatively on that the VRH anisotropy is
much higher for the fcc than for the hcp phase. Therefore we
believe that our observation is of direct relevance for the
studies of the elasticity of the earth’s core, which currently
attract substantial attention.

V. CONCLUSIONS

We have calculated the equation of state and elastic con-
stants in fcc and hcp Fe-rich FeNi at high pressure and zero
temperature from first principles. The disorder effects are
fully taken into account within the coherent-potential ap-
proximation. For pure hcp Fe we find good agreement of our
results with earlier calculations and with available experi-
ment. It is found that adding Ni to Fe increases the density in
both fcc and hcp phases. Also, adding Ni to Fe has a higher
influence on the elastic constants of hcp alloys, as compared
to fcc alloys. In particular, at highly compressed volumes,
corresponding to the earth’s core pressure, the c44 elastic
constant of the hcp Fe75Ni25 alloy decreases by more than
20% in comparison with pure Fe. Although the decrease in
c44 in the fcc phase is also found to be the largest among all
other fcc elastic constants, it remains below 3%. Contrary to
what is expected from intuition based on symmetry consid-
erations, we find that the Voigt-Reuss-Hill elastic anisotropy
is higher for the fcc phase than for the hcp. Though adding
Ni decreases the elastic anisotropy in the fcc phase some-
what while it increases for the hcp phase, the former is much
higher than the latter for any Ni concentrations considered in
this study. We argue that the effect may also be present at
high temperature.
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