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Acoustic vibrations of nanoparticles made of materials with anisotropic elasticity and nanoparticles with
nonspherical shapes are theoretically investigated using a homogeneous continuum model. Cubic, hexagonal,
and tetragonal symmetries of the elasticity are discussed, as are spheroidal, cuboctahedral, and truncated
cuboctahedral shapes. Tools are described to classify the different vibrations and, for example, help identify the
modes having a significant low-frequency Raman-scattering cross section. Continuous evolutions of the modes
starting from those of an isotropic sphere coupled with the determination of the irreducible representation of
the branches permit some qualitative statements to be made about the nature of various modes. For spherical
nanoparticles, a more accurate picture is obtained through projections onto the vibrations of an isotropic
sphere.
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I. INTRODUCTION

The lowest-frequency vibrations of isolated nanoparticles
are in the THz range, on the order of the speed of sound
divided by the dimension. These are commonly referred to as
confined acoustic phonons and are unrelated to optical
phonons. There have been numerous experimental and theo-
retical studies on the acoustic vibrations of nanoparticles in
the last few decades. These vibrations have been observed by
a variety of experimental techniques including low-
frequency Raman scattering,1 time-resolved femtosecond
pump-probe experiments,2–4 infrared absorption,5,6 inelastic
neutron scattering,7 and persistent spectral hole burning.3

Reasonable estimates for the mode frequencies are ob-
tained using the 1882 Lamb solution of the continuum elastic
problem for an elastically isotropic homogeneous free
sphere.8 This provided sufficiently good agreement to con-
firm that confined acoustic phonon modes were really being
observed. However, this model was unable to deal with the
anisotropy of actual samples.

Recent advances have permitted the creation of high qual-
ity elastically anisotropic samples.9 The essential features are
�1� a narrow size distribution, �2� good crystallinity so that a
significant amount of nanoparticles in the sample are mon-
odomain, �3� controlled shape of nanoparticles, and �4� sepa-
ration of nanoparticles so that they vibrate as independent
units. As a result, the vibrational modes of elastically aniso-
tropic nanoparticles have been observed. This has created the
need for an alternative to the Lamb model capable of dealing
with nanoparticles with lower symmetry.

In this work, we use the method of Visscher et al.10 which
is a standard numerical approach suitable for the calculation
of the frequencies and the wave functions of the vibrations of
such nanoparticles. The symmetry of these modes, their vol-
ume variation, and their Lamb mode parentage are deter-
mined and applied to the prediction of their observation by
different experimental techniques such as inelastic light scat-
tering.

II. METHODS

The situation for an isotropic nanoparticle will now be
summarized. In this case, the system is spherically symmet-
ric. Thus, vibrational modes can be classified by their angu-
lar momentum number ��0 and its z component m. Modes
can also be classified either as torsional �T� or spheroidal �S�.
Finally, modes are also indexed in order of frequency by
n�1 �n=1 corresponds to the first harmonic �fundamental
mode�, n=2 to the second harmonic and so on�. In the fol-
lowing, we will indicate Lamb modes using the compact
notation X�m

n where X=S or X=T.
All modes can be observed by inelastic neutron scattering

in the typical situation where the wavelength of the neutrons
is much smaller than the nanoparticle size. For nanoparticles
whose dimension is small compared to the wavelength of
light �dipolar approximation�, Raman only detects S0 and S2,
infrared absorption only detects S1 �Ref. 11� and time-
resolved femtosecond pump-probe experiments typically
only detect S0. In the following, we will assume that the
nanoparticles are small enough so that the dipolar approxi-
mation holds.

Nanoparticles with either isotropic or anisotropic elastic-
ity will be considered in the following. Isotropic elasticity is
considered mainly for comparison with previous studies. An-
isotropic elasticity is used for perfect nanocrystals consisting
of a single domain. We will refer to such nanoparticles as
being “monodomain” in the following. In a small nanopar-
ticle, a monodomain structure is not necessarily energetically
favorable. For example, it is well known that multiply-
twinned silver nanoparticles are much more stable for certain
ranges of size.12

A. Calculation of frequencies and associated displacements

The frequencies and their associated displacements for an
anisotropic nanoparticle have been calculated using the ap-
proach introduced by Visscher et al.10 which also assumes
continuum elasticity. Other authors have already confirmed

PHYSICAL REVIEW B 79, 214101 �2009�

1098-0121/2009/79�21�/214101�11� ©2009 The American Physical Society214101-1

http://dx.doi.org/10.1103/PhysRevB.79.214101


that the convergence of this method is faster than the con-
vergence of finite element methods at least in some cases.13

The relevance of continuum elasticity for nanoparticles has
been confirmed using atomistic calculations14–17 for nanopar-
ticles larger than 2–3 nm and even for ZnO nanoparticles for
which surface relaxation and stress are significant.18 Most of
the results presented in this paper have been obtained for
nanospheres whose diameter is 10 nm which is well above
these limits. It is possible to extrapolate them to different
sizes since the frequencies vary as the inverse diameter.
However care should be taken not to consider very small
nanoparticles for which surface effects could significantly
alter the validity of the continuum approximation. The cal-
culational method for the modes gives each mode in terms of
power-series coefficients aijpqr so that

u� i�x,y,z� = �
pqr

�
j=x,y,z

aijpqrx
pyqzrj�. �1�

The power expansion covered 0� p+q+r�20 for good
convergence for all the modes we are interested in. The fre-
quencies for the isotropic spherical case were reproduced
with very good accuracy. The convergence for strongly an-
isotropic systems is harder to check. Despite checking that
the frequencies do not significantly change when adding
more terms to the power expansion, we also compared the
calculated frequencies with the finite element mesh sequence
�FEMS� method introduced in a previous work.19

In this work, all the displacements have been normalized
according to Eq. �2�, where V is the volume of the
nanoparticle,20

� � �
V

u� i · u� jd
3R� = V�ij . �2�

B. Group theory

1. Degeneracy lifting

In the absence of spherical symmetry, modes are classified
according to their remaining symmetry. For example, for a
spherical nanoparticle with cubic elasticity, such as Ag, Au,
and Si, the system is symmetric under the symmetry opera-
tions of a cube, which is the 48-element group Oh.

Our calculations return a large number of modes which
have to be considered to interpret inelastic light-scattering
spectra or other experimental results. It is important to use
not only the frequencies but also the wave functions in order
to do that. Group theory is a very valuable tool in this con-

text as it allows, for example, to identify the Raman-active
modes and therefore simplify the assignment process. In this
work, we will only consider nanoparticles whose dimensions
are small compared to the wavelength of light �dipolar ap-
proximation� in order to discuss the selection rules of Raman
scattering. Table I shows how the degeneracy of the Raman
and infrared-active modes of an isotropic sphere11 is lifted or
not when lowering the symmetry. Only point groups relevant
for the rest of this paper are considered.

2. Numerical determination of the irreducible representations

In order to take full advantage of group theory, it is im-
portant to label the different modes with the corresponding
irreducible representation. Sophisticated and specific ap-
proaches could be considered to restrict the calculations to
modes having a well-defined symmetry. However, we pre-
ferred to keep the numerical approach detailed previously
because it is more general. We added a few calculation steps
to determine the irreducible representation from the wave
functions. It turns out this can be achieved very reliably and
without much additional calculation time.

S being a symmetry operation of the point group of con-
cern and ui with i=1, . . . ,n a full set of eigenmodes having
the same frequency, the character of S for this irreducible
group of vibrations is

��S� = �
i=1

n � � �
V

S�u� i�R� �� · u� i�S�R� ��d3R� . �3�

Such integrals can be calculated accurately and quickly
when each Cartesian component of the displacement field is
a sum of terms of the form xpyqzr. By calculating a few
well-chosen characters, it is then straightforward to distin-
guish all the different irreducible representations using the
character table of the point group. The only restriction to
applying this procedure is that the degeneracy must be
known and therefore the convergence must be good. Of
course, a more general approach is required to handle acci-
dental degeneracies.

In the following we detail some additional ways to im-
prove our knowledge of these vibrations. These are needed
since regarding Raman scattering many modes are labeled as
Raman active due to the irreducible representation they be-
long to. However there is not necessarily an efficient cou-
pling mechanism enabling a significant Raman intensity. The
following tools are designed to somewhat address this prob-
lem.

TABLE I. Degeneracy lifting of spheroidal Lamb modes with ��4 for various symmetries. The degen-
eracy lifting for torsional modes �with ��0� is obtained by changing the parities �u↔g�.

Point group S0 S1 S2 S3 S4

Oh A1g T1u Eg+T2g A2u+T1u+T2u A1g+Eg+T1g+T2g

D4h A1g A2u+Eu A1g+B1g+B2g+Eg A2u+B1u+B2u+2Eu 2A1g+A2g+B1g+B2g+2Eg

D6h A1g A2u+E1u A1g+E1g+E2g A2u+B1u+B2u+E1u+E2u A1g+B1g+B2g+E1g+2E2g

D�h A1g A1u+E1u A1g+E1g+E2g A1u+E1u+E2u+E3u A1g+E1g+E2g+E3g+E4g
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C. Volume variation

The volume of the nanoparticle does not change for every
possible vibration. For isotropic spherical nanoparticles, the
volume changes only for the spheroidal �=0 vibration. This
volume change is also involved in the time-resolved femto-
second pump-probe measurements.2 As a result, it is interest-
ing to calculate it for all the vibrations.

The volume variation corresponds to the flux of the dis-
placement through the surface of the particle. The expression
for a dimensionless volume variation �V is given in Eq. �4�.
Using the divergence theorem, this two-dimensional �2D� in-
tegral can be turned into a volume integral involving deriva-
tives of xpyqzr functions which are already calculated in the
frame of Visscher’s method.10 Therefore this quantity can
also be accurately and efficiently calculated. It can be shown
that the volume variation is different from zero for fully sym-
metric vibrations only, i.e., for A1g vibrations for the symme-
tries considered here,

�ViV
2/3 = �� �

S

u� i�R� � · dS� = �� � �
V

div�u� i�R� ��d3R�� .

�4�

Of course, the value of �V depends on the normalization �see
Eq. �2��.

D. Smooth variation of parameters

In order to follow how the vibrations evolve when lower-
ing the symmetry, it is possible to follow the frequencies of
the different modes while slowly varying the parameters �for
example, the shape or the elastic constants of the material the
nanoparticle is made of�. The curve representing the varia-
tion in one frequency is called a branch in the following.
Group theory can help plotting such branches more reliably
because all the different points on a given branch share the
same irreducible representation. Moreover branches having
different irreducible representations can cross but not
branches having the same irreducible representation. This
originates from the coupling between the different branches
being due to the anisotropy itself whose irreducible represen-
tation is A1g for the point groups we focus on. As a result, all
nth modes having a given irreducible representation belong
to the same branch and can be safely connected.

In this work, branches due to varying elastic anisotropy
are calculated by changing the stiffness tensor using
C�x�= �1−x�Ciso+xCani, with 0�x�1, Ciso being the tensor
of the isotropic material �which can be obtained by averaging
the sound velocities19 or other methods21 or using measured
longitudinal and transverse sound velocities�, and Cani the
anisotropic tensor. The parameters used in this work are
given in Ref. 22. It should be noted that such branches are
made of fictive materials except for x=1 where the real elas-
tic parameters of the bulk material are used.

E. Projections

When the lowering of the symmetry is not due to a
change in the shape of the nanoparticle, it is possible to

compare the wave functions �omitting their time depen-
dences� of the two systems. As commonly done for atomistic
calculations,14–16 we calculated the projection of the dis-
placements of spherical nanoparticles onto Lamb modes. For

a given mode whose displacement is u� i�R� � the projection

onto the Lamb mode X� �m
n is defined as

P�ui,X�m
n � =

1

V
� � �

V

u� i�R� � · X� �m
n �R� �d3R� . �5�

The orthonormality and completeness of the Lamb modes
implies that for any i,

�
�

�
m

�
n

P�ui,X�m
n �2 = 1. �6�

Likewise, the orthonormality and completeness of the
modes of the anisotropic nanoparticle implies that for any �,
m, and n,

�
i

P�ui,X�m
n �2 = 1. �7�

However, a more relevant quantity is obtained by sum-
ming the squared projections over all the degenerate Lamb
modes, i.e., over m. As a result, the total squared projection
of ui onto the subspace spanned by the 2�+1 modes X�

n is

�
m=−�

�

P�ui,X�m
n �2. �8�

The Lamb projections given in the fourth columns of
Tables II–VII correspond to this last quantity. It represents
the ratio of the energy contained in the projection onto Lamb
mode X�

n to that of mode i assuming the same frequencies.

TABLE II. Characteristics of the modes of a monodomain Ag
sphere with R=5 nm are shown. i is the mode index. The two
largest projections onto Lamb modes are shown.

i
�

�GHz� ir Squared Lamb projections �V

7–8 103.3 Eg 0.995S2
1+0.002S4

1+¯ 0.0

9–11 106.8 T2u 0.936T2
1+0.054S3

1+¯ 0.0

12 151.1 A2g 0.996T3
1+0.002S6

1+¯ 0.0

13–15 153.0 T1u 0.499S3
1+0.480S1

1+¯ 0.0

16–17 161.0 Eu 0.974T2
1+0.018T4

1+¯ 0.0

18–20 169.4 T2g 0.821S2
1+0.160T3

1+¯ 0.0

21–23 196.4 T2g 0.758T3
1+0.178S2

1+¯ 0.0

24–26 196.9 T1g 0.411T3
1+0.369S4

1+¯ 0.0

27–28 211.2 Eg 0.838S2
2+0.113S4

1+¯ 0.0

29–31 221.8 T2u 0.748T4
1+0.199S3

1+¯ 0.0

32–34 232.1 T1u 0.466S3
1+0.466S1

1+¯ 0.0

35–37 234.5 T2u 0.665S3
1+0.127T4

1+¯ 0.0

38 248.9 A1g 0.959S4
1+0.028S0

1+¯ 0.4

¯ ¯ ¯ ¯ ¯

75 331.2 A1g 0.930S0
1+0.039S4

2+¯ 4.3

¯ ¯ ¯ ¯ ¯
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III. APPLICATIONS

A. Spherical nanocrystals with cubic crystallinity

1. Spherical monodomain silver and gold nanoparticles

Let us first consider the case of a spherical nanoparticle
made of silver. This nanoparticle is monodomain, and there-
fore the stiffness tensor is the same everywhere inside the
nanoparticle and identical to that of bulk silver.23 Table II
presents the calculated frequencies, irreducible representa-
tions, main projections onto the modes of an isotropic silver
sphere, and volume variations in the lowest-frequency
modes. The six modes i=1–6 have zero frequency and cor-
respond to the rigid rotations and translations of the nanopar-
ticle. The branches corresponding to the lowering of the
symmetry when going from the isotropic to the anisotropic
case are plotted in Fig. 1.

Figure 1 clearly shows that the introduction of elastic an-
isotropy significantly lifts the degeneracy of most modes.
One notable exception is the breathing mode which corre-
sponds to the second A1g branch. This mode is nondegener-
ate, and its frequency hardly changes with anisotropy. The
other important exceptions are the dipolar modes S1 which
are infrared active and transform into T1u with the same de-
generacy. The lowest Raman-active mode S2

1 which has de-

generacy 5 is split into the lowest Eg and T2g branches
�i=7, 8 and i=18–20 in Table II, respectively� as expected
from Table I. These anisotropic modes have a dominant pro-
jection onto S2

1 confirming their Lamb mode parentage.
Similar calculations have been performed for mon-

odomain gold nanoparticles using the elastic constants from
Ref. 24, and the results are presented in Table III and Fig. 2.
Compared to the previous case of silver, only the values of
the stiffness tensor were changed so most observations pre-
viously made still apply. We recently reported on the experi-
mental observation of the splitting of S2

1 for such
nanoparticles.9 There is an excellent agreement between
these measurements and the splitting calculated using the
present approach. This strongly supports the validity of our
approach and in particular the relevance of elastic anisotropy
even in such very small nanoparticles.

One notable difference between gold and silver concerns
the case of the breathing mode. The isotropic breathing mode
at 311.6 GHz belongs to the third A1g branch. Therefore it is

TABLE III. Characteristics of the modes of a monodomain
sphere of Au with R=5 nm. i is the mode index. The two largest
projections onto the Lamb modes are shown.

i
�

�GHz� ir Squared Lamb projections �V

7–8 74.6 Eg 0.996S2
1+0.002S4

1+¯ 0.0

9–11 76.9 T2u 0.939T2
1+0.053S3

1+¯ 0.0

12 109.0 A2g 0.996T3
1+0.002S6

1+¯ 0.0

13–15 111.2 T1u 0.516S3
1+0.466S1

1+¯ 0.0

16–17 114.1 Eu 0.977T2
1+0.016T4

1+¯ 0.0

18–20 120.5 T2g 0.837S2
1+0.146T3

1+¯ 0.0

21–23 140.2 T2g 0.773T3
1+0.162S2

1+¯ 0.0

24–26 141.8 T1g 0.433T3
1+0.356S4

1+¯ 0.0

27–28 154.0 Eg 0.824S2
2+0.126S4

1+¯ 0.0

29–31 158.9 T2u 0.698T4
1+0.259S3

1+¯ 0.0

32–34 168.2 T2u 0.617S3
1+0.186T4

1+¯ 0.0

35–37 169.7 T1u 0.484S1
1+0.456S3

1+¯ 0.0

¯ ¯ ¯ ¯ ¯

43 182.0 A1g 0.987S4
1+0.005S0

1+¯ 0.1

¯ ¯ ¯ ¯ ¯

118 285.8 A1g 0.594S4
2+0.218S8

1+¯ 1.2

¯ ¯ ¯ ¯ ¯

133 301.9 A1g 0.866S6
1+0.049S8

1+¯ 0.3

¯ ¯ . . . ¯ ¯

141 310.1 A1g 0.806S0
1+0.133S8

1+¯ 3.9

¯ ¯ ¯ ¯ ¯

183 341.5 A1g 0.378S8
1+0.319S4

2+¯ 1.4

¯ ¯ ¯ ¯ ¯

TABLE IV. Characteristics of the modes of a monodomain ana-
tase TiO2 sphere with R=5 nm are shown. i is the mode index. The
two largest projections onto Lamb modes are shown.

i
�

�GHz� ir Squared Lamb projections �V

7 283.5 A1g 0.977S2
1+0.016S0

1+¯ 0.6

8–9 284.0 Eu 0.931T2
1+0.054S1

1+¯ 0.0

10 298.5 A1u 0.999T2
1+0.000T9

1+¯ 0.0

11 304.3 B1u 0.998T2
1+0.001S3

1+¯ 0.0

12–13 316.1 Eg 0.996S2
1+0.002T3

1+¯ 0.0

14 326.9 B2g 0.992S2
1+0.008T3

1+¯ 0.0

15 330.9 B2u 0.967T2
1+0.027S3

1+¯ 0.0

16 381.5 B1g 0.965S2
1+0.033T3

1+¯ 0.0

17 432.4 A2u 0.494S1
1+0.436S3

1+¯ 0.0

18 443.3 B2g 0.950T3
1+0.028S2

2+¯ 0.0

19–20 445.7 Eu 0.612S1
1+0.323S3

1+¯ 0.0

21 447.6 A2u 0.537S3
1+0.448S1

1+¯ 0.0

22–23 455.5 Eg 0.957T3
1+0.015S4

1+¯ 0.0

24–25 463.4 Eu 0.758S3
1+0.220S1

1+¯ 0.0

26 470.7 A2g 0.989T3
1+0.005T1

1+¯ 0.0

27 473.9 B1g 0.865T3
1+0.060S4

1+¯ 0.0

28 476.9 B1u 0.987S3
1+0.008T4

1+¯ 0.0

29–30 480.7 Eg 0.941T3
1+0.031S4

1+¯ 0.0

31 510.9 B2u 0.946S3
1+0.026T4

1+¯ 0.0

32–33 537.1 Eu 0.826S3
1+0.095S1

1+¯ 0.0

34 573.8 A1g 0.974S4
1+0.009S4

2+¯ 0.0

35 580.8 A1g 0.910S2
2+0.030S2

3+¯ 0.8

¯ ¯ ¯ ¯ ¯

55 678.4 A1g 0.885S4
1+0.082T5

1+¯ 0.2

¯ ¯ ¯ ¯ ¯

67 743.1 A1g 0.803S0
1+0.156T5

1+¯ 4.0

¯ ¯ ¯ ¯ ¯

69 751.6 A1g 0.675T5
1+0.162S0

1+¯ 1.8

¯ ¯ ¯ ¯ ¯
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tempting to assume that the anisotropic breathing mode lies
on the same branch and is therefore mode i=133 at 301.9
GHz. However, Table III reveals that mode i=141 is a much
better candidate for a breathing mode due to its larger vol-
ume variation and projection onto S0

1. It turns out this is due
to a strong mixing of the A1g branches as anisotropy is in-
creased. Indeed, the isotropic modes S4, S6, and S8 are split
into various irreducible representations, one of them being
A1g. Unlike the previous case of silver, the elastic constants
of gold result in four A1g branches coming from S0

1, S4
2, S6

1,
and S8

1 being in the same frequency range. As a result, mode
i=141 which is the mode having the strongest projection
onto S0

1 and also has a large volume variation does not lie on
the same branch as S0

1. Figure 3 shows the variation in the
squared projections onto S0

1 of three of these A1g branches as
the elastic anisotropy is varied and confirms the mixing dis-
cussed above.

Similar but less pronounced mixings are observed in all
cases. The density of modes �i.e., the number of modes per
unit frequency� increases with frequency. As a result, the
probability of mixings increases with frequency or i. This
explains why the lowest-frequency modes such as the lowest

Eg ones are almost pure isotropic modes �S2
1�. However, the

lowest T2g branches which are issued from the same S2
1 and

from T3
1 are already significantly mixed by anisotropy for

both gold and silver nanoparticles. This is clearly evidenced
in Fig. 3 too.

TABLE V. Characteristics of the modes of a monodomain rutile
TiO2 sphere with R=5 nm are shown. i is the mode index. The two
largest projections onto Lamb modes are shown.

i
�

�GHz� ir Squared Lamb projections �V

7 288.1 B1g 0.978S2
1+0.013T3

1+¯ 0.0

8 296.9 B2u 0.943T2
1+0.045S3

1+¯ 0.0

9–10 355.8 Eu 0.693T2
1+0.150S3

1+¯ 0.0

11 419.8 A1u 0.981T2
1+0.013T4

1+¯ 0.0

12–13 444.1 Eg 0.927S2
1+0.062T3

1+¯ 0.0

14 453.1 A1g 0.955S2
1+0.035S0

1+¯ 0.8

15 481.0 B1u 0.965T2
1+0.033S3

1+¯ 0.0

16 499.4 B1g 0.715T3
1+0.210S2

2+¯ 0.0

17–18 531.7 Eu 0.402S1
1+0.288T2

1+¯ 0.0

19–20 537.1 Eg 0.813T3
1+0.071S2

1+¯ 0.0

21 539.4 A2g 0.465T3
1+0.327S4

1+¯ 0.0

22 555.0 B2g 0.997S2
1+0.001S4

1+¯ 0.0

23 558.9 A2u 0.969S1
1+0.016S3

1+¯ 0.0

24 600.0 B2u 0.845S3
1+0.095T4

1+¯ 0.0

25–26 622.3 Eu 0.575S3
1+0.247S1

1+¯ 0.0

¯ ¯ ¯ ¯ ¯

38 744.0 A1g 0.739S4
1+0.157S0

1+¯ 1.4

39–40 744.2 Eu 0.725S3
1+0.178S1

1+¯ 0.0

41 775.8 A1g 0.631S0
1+0.269S2

2+¯ 4.1

¯ ¯ ¯ ¯ ¯

50 836.1 A1g 0.439S2
2+0.351S4

1+¯ 1.6

¯ ¯ ¯ ¯ ¯

62 911.0 A1g 0.739S4
1+0.169S2

2+¯ 0.9

¯ ¯ ¯ ¯ ¯

81 1019.1 A1g 0.649T5
1+0.110S6

1+¯ 0.5

¯ ¯ ¯ ¯ ¯

TABLE VI. Characteristics of the modes of a monodomain
wurtzite CdSe sphere with R=5 nm are shown. i is the mode index.
The two largest projections onto Lamb modes are shown.

i
�

�GHz� ir Squared Lamb projections �V

7 119.4 A1u 1.000T2
1+0.000T8

1+¯ 0.0

8–9 123.2 E2u 0.998T2
1+0.001S3

1+¯ 0.0

10–11 126.8 E1g 0.999S2
1+0.001T3

1+¯ 0.0

12–13 132.6 E2g 0.998S2
1+0.002T3

1+¯ 0.0

14–15 132.8 E1u 0.971T2
1+0.023S3

1+¯ 0.0

16 158.6 A1g 0.999S2
1+0.001S4

1+¯ 0.0

17–18 181.3 E1u 0.894S1
1+0.103S3

1+¯ 0.0

19 181.9 A2u 0.789S1
1+0.206S3

1+¯ 0.0

20 186.1 A2g 0.999T3
1+0.001T1

1+¯ 0.0

21–22 189.2 B1g+B2g 0.994T3
1+0.004S4

1+¯ 0.0

23–24 192.1 E2u 0.998S3
1+0.001T2

1+¯ 0.0

25–26 193.5 E1g 0.980T3
1+0.014S4

1+¯ 0.0

27–28 198.1 B1u+B2u 0.996S3
1+0.004T4

1+¯ 0.0

29–30 208.0 E2g 0.947T3
1+0.042S4

1+¯ 0.0

31–32 214.7 E1u 0.870S3
1+0.099S1

1+¯ 0.0

33 226.7 A2u 0.789S3
1+0.206S1

1+¯ 0.0

¯ ¯ ¯ ¯ ¯

55 273.8 A1g 0.926S4
1+0.060S2

2+¯ 0.3

56 284.9 A2g 0.999T1
1+0.001T3

1+¯ 0.0

57 296.0 A1g 0.925S2
2+0.059S4

1+¯ 0.2

¯ ¯ ¯ ¯ ¯

77 320.4 A1g 0.985S0
1+0.011S4

1+¯ 4.5

¯ ¯ ¯ ¯ ¯

TABLE VII. Characteristics of the modes of a monodomain Co
sphere with R=5 nm are shown. i is the mode index. The two
largest projections onto Lamb modes are shown.

i
�

�GHz� ir Squared Lamb projections �V

7–8 229.8 E2u 0.998T2
1+0.001T4

1+¯ 0.0

9 232.2 A1u 1.000T2
1+0.000T8

1+¯ 0.0

10–11 240.7 E2g 0.997S2
1+0.003T3

1+¯ 0.0

12–13 246.6 E1g 1.000S2
1+0.000T8

1+¯ 0.0

14–15 251.4 E1u 0.942T2
1+0.029S1

1+¯ 0.0

16 316.1 A1g 0.996S2
1+0.003S2

2+¯ 0.0

17–18 334.7 E1u 0.919S1
1+0.063S3

1+¯ 0.0

19 346.4 A2u 0.828S1
1+0.167S3

1+¯ 0.0

¯ ¯ ¯ ¯ ¯

49 497.8 A1g 0.958S0
1+0.042S4

1+¯ 4.5

¯ ¯ ¯ ¯ ¯
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2. Raman-scattering efficiency for metallic cubic materials

Low-frequency Raman scattering from silver and gold
nanoparticles has attracted a lot of attention during the last
few decades. The scattering mechanisms have been
identified25 and one might wonder how the anisotropic con-
siderations detailed in this work fit into this picture. The
inelastic light-scattering process for such nanoparticles is
mediated by the dipolar plasmon. As a result only scattering
by S0 and S2 modes is allowed11 and has a significant

Raman-scattering cross section25 in the isotropic case. Aniso-
tropic nanoparticles obey the same rules and one might
qualitatively estimate their Raman intensity by using the pro-
jections onto the same isotropic modes. As a result a signifi-
cant scattering intensity is expected for the lowest Eg and T2g
modes of both silver and gold, while the second T2g mode
should have a small Raman cross section due to its small
projection onto S2

1. The volume mechanism enables a mea-
surable Raman intensity for the A1g modes having a signifi-
cant projection onto S0, i.e., for modes i=75 and i=141 for
silver and gold, respectively. The Raman intensity for other
A1g modes should be very weak and probably not measurable
in practice.

3. Other cubic materials

For cubic materials, the degree of elastic anisotropy
is quantified by the Zener anisotropy ratio,
A=2C44 / �C11−C12�. A=1 for an isotropic material. Silver
and gold both have A�3 and also had the largest mode
splittings that we found. For comparison, we mention results
for some less anisotropic materials. For a silicon nanosphere
with radius 5 nm, the Lamb mode S2

1 splits into two frequen-
cies at 386.6 GHz �Eg� and 485.9 GHz �T2g�. For a germa-
nium nanosphere, the same mode is split into 235.1 GHz
�Eg� and 295.3 GHz �T2g�. Using the standard deviation as a
simple measure of the frequency splitting � �and therefore
neglecting the effect of mixings�, we obtain �=23%, 22%,
10%, and 11% for Ag, Au, Si, and Ge, respectively. For all
these commonly studied materials, this splitting cannot be
neglected.
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FIG. 1. �Color online� Evolution of the frequency of Raman-
active modes of a monodomain silver sphere �radius 5 nm� with
varying elastic anisotropy up to the frequency range of the breath-
ing mode. Raman-inactive modes are plotted with black lines, Eg

branches with lines and crosses �red online�, T2g branches with lines
and triangles �red online�, and A1g branches with lines and full
circles �blue online�.
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FIG. 2. �Color online� Evolution of the frequency of Raman-
active modes of a monodomain gold sphere �radius 5 nm� with
varying elastic anisotropy up to the frequency range of the breath-
ing mode. Raman-inactive modes are plotted with black lines, Eg

branches with lines and crosses �red online�, T2g branches with lines
and triangles �red online�, and A1g branches with lines and full
circles �blue online�.
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FIG. 3. �Color online� Evolution of the squared projection of
several modes of a monodomain gold sphere �radius 5 nm� with
varying elastic anisotropy. The bottom plot shows the squared pro-
jections onto S2

1 of the Eg branch coming from S2
1 �line with circles,

blue online� and the T2g branches coming from S2
1 �line with tri-

angles, red online� and T3
1 �black line�. The upper plot shows the

squared projections onto S0
1 of the A1g branches coming from S6

1

�line and triangles, red online�, S0
1 �black line�, and S4

2 �line and
circles, blue online�.
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B. Spherical nanocrystals with tetragonal crystallinity

Nanospheres with tetragonal crystallinity have a lower
symmetry than the previous nanospheres with cubic crystal-
linity. The corresponding point group is D4h. As a result,
more degeneracy lifting occurs. This results in a splitting of
the infrared-active S1 mode into A2u and Eu and four
branches starting from the S2

1 mode �A1g, B1g, B2g, and Eg�.
The relative order of these branches depends on the stiffness
tensor. Two nanospheres made of TiO2 with radius 5 nm will
be considered using the parameters from Ref. 26. One of
them has the anatase crystal structure �Table IV� and the
other the rutile structure �Table V and Fig. 4�. We used these
calculations for the anatase crystal structure in a recent work7

to model the inelastic scattering of neutrons. Both have te-
tragonal symmetry but different elastic parameters. This re-
sults in different relative positions of the frequencies of the
modes coming from a given isotropic mode.

Using the same measure as before, the frequency splitting
for the S2

1 modes is �=10% and 20% for the anatase and
rutile structure, respectively.

Due to the lowering of the symmetry compared to the
cubic case, the breathing mode is also susceptible to more
mixings. For anatase TiO2, the S0

1 mode mixes mainly with
T5

1 �mode i=67�, while for rutile TiO2 it mixes mainly with
S2

2 �mode i=41�.

C. Spherical nanocrystals with hexagonal crystallinity

As a last example of the influence of elastic anisotropy,
we focus on nanospheres made of crystals having hexagonal
symmetry, namely, CdSe �Table VI and Fig. 5 using the elas-
tic constants from Ref. 27�, Co �Table VII using the elastic
constants from Ref. 28�, and ZnO �elastic constants from

Ref. 18�. The associated point group is D6h. The most no-
table difference compared to previous symmetries is that
some “accidental” degeneracy exists for such systems: for
each B1g�B1u� vibration there is a B2g�B2u� vibration having
the same frequency.

Using the same measure as before, the frequency splitting
for the S2

1 modes is �=9%, 11%, and 5% for the CdSe, Co,
and ZnO, respectively. ZnO is therefore the most elastically
isotropic among the materials studied in this work.

Regarding the breathing mode, for CdSe it is hardly
mixed with other modes due to anisotropy and results in
mode i=77 which has a strong projection onto S0

1 and a large
volume variation. For the nanosphere made of cobalt, there is
a strong mixing with the S2

2 and S4
1 modes and the anisotropic

mode with the largest projection onto S0
1 and the largest vol-

ume variation is mode i=49 which is on the branch coming
from S4

1 at 466.7 GHz and not on the branch starting from S0
1

at 536.8 GHz.
The infrared-active S1

1 mode which was recently
observed6 for CdSe nanoparticles is split by the lowering of
symmetry into A2u and E1u modes at 181.9 and 181.3 GHz,
respectively. This frequency splitting is very small but these
modes mix with the branches having identical irreducible
representations coming from S3

1. Neglecting this mixing, the
isotropic S1

1 is in excellent agreement with the anisotropic
description.

D. Nonspherical nanocrystals

In order to illustrate the usefulness of the same numerical
tools for a different source of anisotropy, we consider in the
following the lowering of the symmetry due to the shape of
the nanoparticles. We start with a minor change of the shape
as the nanosphere is transformed into a spheroid having an
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FIG. 4. �Color online� Evolution of the frequency of Raman-
active modes of a monodomain rutile TiO2 sphere �radius 5 nm�
with varying elastic anisotropy up to the frequency range of the
breathing mode. Raman-inactive modes are plotted with black lines,
Eg branches with lines and crosses �red online�, B1g branches with
lines and asterisks �red online�, B2g branches with lines and tri-
angles �red online�, and A1g branches with lines and full circles
�blue online�.
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FIG. 5. �Color online� Evolution of the frequency of Raman-
active modes of a monodomain wurtzite CdSe sphere �radius 5 nm�
with varying elastic anisotropy up to the frequency range of the
breathing mode. Raman-inactive modes are plotted with black lines,
E1g branches with lines and crosses �red online�, E2g branches with
lines and triangles �red online�, and A1g branches with lines and full
circles �blue online�.
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isotropic elasticity. Then we consider faceted nanoparticles
with elastic anisotropy.

1. Spheroids with isotropic elasticity

Let us consider a spheroid made of silver with a degener-
ate semiaxis R=5 nm and a varying nondegenerate semiaxis
Rz. We assume the elasticity to be isotropic. The point group
associated with such a spheroid is therefore D�h. The fre-
quencies, irreducible representations, and volume variations

for a spheroid with Rz=10 nm are presented in Table VIII.
The branches obtained for varying Rz are presented in Fig. 6.

Let us now focus on the effect of the spheroidal deforma-
tion on the S2

1 modes. Looking at the displacements corre-
sponding to these modes for small deviations from the
sphere, it is possible to understand the frequency variations.
The lowest A1g mode corresponds to a stretching along the z
direction accompanied by a shrinking in the xy plane. There-
fore it can be seen as a vibration confined along the z direc-
tion and its frequency varies roughly as 1 /Rz. The E2g vibra-
tions correspond to a stretching in the xy plane without
changes along the z axis and therefore their frequencies
hardly change with Rz. The E1g vibrations correspond to a
stretching in the xz and yz plane without changes along the z
axis and therefore their frequencies vary with a slower ec-
centricity dependence than the previous mode. These rough
approximations are in agreement with the dependence ob-
served in Fig. 6.

Using perturbation theory,29 it is possible to obtain
more accurate expressions for the frequencies of these
three branches. The exact variations for 	Rz−R		R are

�1+4� /21�, 
�1−2� /21�, and 
�1−4� /21� for
the E1g, E2g, and A1g modes, respectively, where
�=2�Rz−R� / �Rz+R� and 
 is the frequency of modes S2

1 for
a spherical particle having the same volume. Note that the
length of the degenerate semiaxis is constant in this work
and therefore the volume varies linearly with Rz. Using

=�S2

1
3R /Rz results in expressions which are in very good
agreement with Fig. 6 close to Rz=R.

Regarding the “breathing” mode, the picture gets very
complicated when Rz /R differs significantly from 1. S0

1 is on
the fourth A1g branch. Therefore the mode of the spheroid
with Rz /R=2 on the same branch is mode i=64. However,
due to the mixing with neighboring A1g branches, the mode
with i=90 is a better candidate since its volume variation is
much larger. Thanks to this additional property of the sym-
metric modes, it is therefore possible to follow the breathing
mode. However, because it is not possible to project onto the
Lamb modes of an isotropic sphere due to the different
shapes, only the branches and the anticrossing patterns be-
tween branches having the same irreducible representation
can help tracking qualitatively the other S and T modes.

These calculations are targeted at interpreting experimen-
tal results on silver nanoparticles such as nanocolumns.30

Compared to previous calculations using the FEMS method
presented before,31 the current approach enables a more
complete description of the different vibrations besides being
faster and more accurate. In particular, the variation in vol-
ume is very efficient in showing which modes should be
observed by time-resolved pump-probe experiments.4 It is
interesting to note that some works4,30 concern aligned nano-
columns which results in interesting depolarization rules for
the Raman peaks. For nonaligned nanoparticles, these rules
are the same as those used routinely for an ensemble of mol-
ecules, i.e., all the Raman-active modes produce completely
depolarized Raman peaks except for the A1g vibrations which
have a “polarized” scattering for which the Raman peak is
more intense when the polarizations of the incident and scat-
tered photons are parallel. For oriented nanoparticles, this
rule does not hold and the angles of the incident and scat-

TABLE VIII. Characteristics of modes of a spheroid of dimen-
sions R=5 nm, Rz=10 nm made from elastically isotropic �i.e., not
monodomain� Ag. i is the mode index.

i
�

�GHz� ir �V

7–8 62.4 E1u 0.0

9 71.1 A2u 0.0

10 90.8 A1g 0.4

11–12 103.8 E1g 0.0

13 116.6 A2g 0.0

14–15 127.0 E1g 0.0

16–17 136.3 E2g 0.0

¯ ¯ ¯ ¯

34 185.2 A1g 0.2

¯ ¯ ¯ ¯

57 244.6 A1g 1.0

¯ ¯ ¯ ¯

64 253.3 A1g 0.0

¯ ¯ ¯ ¯

90 294.8 A1g 4.5

¯ ¯ ¯ ¯

110 318.8 A1g 0.5

¯ ¯ ¯ ¯
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FIG. 6. �Color online� Reduced frequency of the vibrations of an
elastically isotropic silver spheroid as a function of its aspect ratio.
R is the length of the degenerate semiaxis and Rz is the length of the
nondegenerate one. �S2

1 is the frequency of the S2
1 mode of the

sphere of radius R. Raman-inactive modes are plotted with black
lines, E1g branches with lines and crosses �red online�, E2g branches
with lines and triangles �red online�, and A1g branches with lines
and full circles �blue online�.
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tered photons with respect to the axis of symmetry of the
nanoparticles have to be taken into account.

Recent time-resolved pump-probe femtosecond experi-
ments for single gold nanoparticles32 also demonstrate the
need for such a model. In particular, the observation of a
peak close to the S2

1 frequency is reported for spheroids but
not for spheres. This is in agreement with the features re-
ported here for silver, namely, that the A1g mode coming
from the S2

1 mode has a nonzero volume variation enabling it
to be observed in such an experiment unlike the S2

1 mode of
a sphere. It is also worth noting that the shape of the peak
attributed to “the breathing mode” in this work for dumbbells
looks quite complicated. Such nano-objects have the same
symmetry as spheroids. As a result, in most cases there is no
such thing as a breathing mode but rather a set of A1g vibra-
tions in a relatively narrow frequency range having a signifi-
cant volume variation. This is due to the fact that the A1g
branch coming from the S0

1 vibration mixes with all the other
A1g branches which come from all the S� vibrations with
even �. Modeling such gold dumbbells is beyond the scope
of this paper but doing so would enable a more detailed
understanding of the experimental results, especially for such
single-particle measurements for which the external shape of
the nanoparticles can be obtained from scanning electron mi-
croscopy �SEM� images. The relatively large size of these
nanoparticles prevents them from being single domain and
justifies the use of the isotropic elastic approximation.

2. Anisotropic gold polyhedra

Observation of faceted nanoparticles using electron mi-
croscopy is quite common. Such facets can be thought of as
a signature of the inner crystal structure and therefore as an
indication of the elastic anisotropy.33 To quantify the impor-
tance of the shape on the vibrations, we calculated the fre-
quencies and irreducible representations for some polyhedra
and the results are presented in Table IX. The crystal lattice
is oriented with respect to the shape so that the �100� planes
correspond to the square faces for the cuboctahedron and to
the octagonal faces for the truncated cuboctahedron. There is

no lowering of symmetry associated with these shapes com-
pared to the case of a monodomain spherical gold nanopar-
ticle. The relevant point group is then D4h. While Table IX
clearly shows that the lowest frequencies change with the
shape, the frequencies of the lowest Eg and T2g modes are
hardly affected. Since the degeneracies of the S0 and S1
modes are not lifted, all the modes which are observable
by Raman scattering, infrared absorption or time-resolved
pump-probe experiments are not sensitive to these changes
in shape.

IV. MULTIPLE-DOMAIN NANOPARTICLES

Several attempts have been made in the past either to fit
low-frequency Raman spectra or to determine the size distri-
bution of the nanoparticles inside a sample using the shape
of the low-frequency Raman peak. Both approaches always
rely on the validity of the isotropic model by Lamb and on
the predominance of the size distribution, the coupling with a
surrounding matrix and the electron-vibration coupling to fit
the broadening of the peaks. However the distribution of
internal structures of multiple-domain nanoparticles also re-
sults in inhomogeneous broadening.

It is in principle possible to model the vibrations of a
multiple-domain nanoparticle using the numerical method of
Visscher et al. However this requires a complete description
of the position of the domain boundaries and the orientations
of the crystal lattice. For ensemble measurements with the
nanoparticles having a variety of different internal structure,
a lot of calculations would be required. Otherwise, using
such an approach for a single internal structure is justified
only if all the studied nanoparticles are identical for en-
semble measurements or if the inner structure of a nanopar-
ticle studied in a single-particle measurement is perfectly
known. Due to these latter two conditions having never been
met until now and also to the additional complexity of mod-
eling a multiple-domain nanoparticle, we suggest using the
isotropic approximation to describe an ensemble of multiple-
domain nanoparticles. What this means is that no nanopar-
ticle behaves exactly as an isotropic nanoparticle, but the
isotropic approximation gives an average value due to the
nanoparticles having essentially random domain structures.
Ensemble measurements should therefore show features as-
sociated with these average frequencies with some inhomo-
geneous width due to the inhomogeneous distribution of do-
mains inside the population of nanoparticles.

We calculated the vibrations of an icosahedron made of
gold and silver assuming the isotropic approximation to be
valid in that case. The corresponding point group for such a
nanoparticle is Ih. It is interesting to note that in this case
there is no degeneracy lifting for the modes S0, S1, and S2
whose irreducible representation in the new system is Ag,
T1u, and Hg, respectively. As a result, there is hardly any
frequency difference compared to the case of a sphere having
the same volume. A real icosahedron made of an anisotropic
material but having the same symmetry due to the presence
of twins would have no degeneracy lifting either for the
same modes and we expect almost the same frequencies too.

TABLE IX. Frequencies and irreducible representations of the
lowest frequency vibrations of elastically anisotropic gold nano-
crystals having different shapes. The volume of the different nano-
crystals is the same as that of a sphere of radius 5 nm. The frequen-
cies of the Raman-active modes �Eg and T2g� are almost unaffected
by the shape. See the text for the orientation of the crystal lattice
with respect to the polyedra.

ir Sphere Cuboctahedron Truncated cuboctahedron

Eg 74.6 74.5 74.5

T2u 76.9 73.4 75.5

A2g 109.0 81.6 91.7

T1u 111.2 108.7 110.7

Eu 114.1 102.3 107.9

T2g 120.5 121.3 121.7

T2g 140.2 128.0 133.8

¯ ¯ ¯ ¯
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V. CONCLUSION

We have presented mode frequencies and irreducible
representations for homogeneous continuum nanoparticles
using a standard numerical method which can handle arbi-
trary shape and anisotropic elasticity. The classification by
irreducible representation makes it possible to label many
modes as either Raman or infrared inactive. We have been
able to go beyond this to provide some tools to make
qualitative estimates of the Raman intensity of potentially
Raman-active modes. These tools are well suited for the in-
terpretation of experimental results obtained with vibrational
spectroscopies.7,9

This approach fills a large gap in current works since up
to now it was necessary to choose between a simplified
spherical isotropic model where the underlying physics was
simple enough but where the accuracy was challenged by
recent experimental results or a numerical approach which
provides accurate frequencies but which is inefficient in
practice due to the lack of tools to distinguish the relevant

vibrations without complex simulations of spectra.
It is clear that additional theoretical work is required in

order to quantitatively predict Raman intensities for elasti-
cally anisotropic modes of spheres. However, the labeling of
modes via their Lamb mode parentage by continuous varia-
tion of the elastic isotropy and projections for spherical
nanoparticles is a powerful descriptive and semiquantitative
tool for understanding what is going on with elastic aniso-
tropy. The significant frequency splittings obtained in this
work call into question the validity of the isotropic approxi-
mation for the case of multiple-domain nanoparticles. Such
systems are very relevant experimentally but their vibrations
remain largely unaddressed.
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