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The maximum magnetic field available for acquisition of quality magnetization data has risen significantly
in recent times, the current limit being just short of a megaoersted. This opens possibilities for determining
model parameters of various magnets by way of expressions containing directly observable quantities. Here
such expressions are derived for anisotropic two-sublattice ferrimagnets.
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I. INTRODUCTION

Phenomenological description of ferrimagnets involves
several model parameters that are to be determined from ex-
periment. As a data source one normally uses low-
temperature magnetization curves measured in a strong
pulsed field capable of breaking the initial antiparallel orien-
tation of the sublattice moments. The low temperature is im-
portant in two ways. First, it ensures the saturated state of the
sublattices, effectively eliminating the intrasublattice ex-
change from the problem. Second, it renders harmless the
inevitable magnetocaloric effect since sublattice magnetiza-
tions and anisotropy constants are independent of tempera-
ture at T�10 K. �Ferrimagnets with very low Curie points
are not considered herein, the more typical objects of our
interest being iron-rich or cobalt-rich intermetallic com-
pounds with heavy rare earths.�

In the absence of magnetic anisotropy the two-sublattice
ferrimagnet at T=0 is readily tractable analytically. This was
first done by Tyablikov,1 soon followed by Schlömann’s
clearer exposition using the notation that was to become
standard.2 Schlömann himself admitted that the applicability
of his simple approach to real ferrimagnets was impaired by
their non-negligible anisotropy. Allowing for the anisotropy
is in principle straightforward but results in a loss of the
analytical tractability, whereas the number of adjustable pa-
rameters becomes unmanageably large. The latter applies
particularly to rare-earth materials, which generally require
more than a single anisotropy constant at low temperatures.3

During the half-century that has elapsed since Schlö-
mann’s work a few ingenious experimental techniques have
been developed,4 allowing in many cases to circumvent the
unknown rare-earth anisotropy, which is still awaiting a
proper theoretical treatment. In its absence the situation with
quantitative interpretation of high-field magnetization data
remains unsatisfactory because blind numerical fitting pro-
duces insufficiently reliable results. A well-documented ex-
ample is Er2Co17, where several authors obtained for the first
anisotropy constant of the Er sublattice values differing by as
much as a factor of 2 �for a recent discussion see Ref. 9�.

Meanwhile, in the wake of the steady progress in gener-
ating high magnetic fields, ever more experimental data are
obtained in ever stronger fields. Trying to bring the lagging
theory abreast with todays demands, we decided to re-
examine the old model with a view to finding explicit ex-
pressions for the model parameters in terms of quantities

directly deducible from experimental magnetization curves.

II. MODEL

We consider a two-sublattice ferrimagnet at a temperature
sufficiently low to ensure that both sublattices are saturated.
We exclude systems that do not saturate as T→0, e.g., rare
earths with an even number of 4f electrons in a strong crystal
field and a relatively weak exchange field. It is convenient to
label the sublattices with subscripts T and R, where T refers
to the sublattice with a larger magnetization, MT�MR. T
may, but does not have to mean transition metal, nor does R
necessarily stand for “rare earth.” Let the magnetic field be
applied along a high-symmetry crystallographic direction

and denote �T=HM̂

T, �R=HM̂

R �see Fig. 1�b��. The energy
of the system is presented as follows:

E = �MTMR cos��T + �R� − MTH cos �T − MRH cos �R

+ KT sin2 �T + EaR�sin �R� . �1�

Terms in this expression describe the intersublattice ex-
change interaction �the exchange constant � being positive�,
the Zeeman interactions of the two sublattices as well as their
respective anisotropy energies. It has been assumed that the
anisotropy of the sublattice T can be with sufficient accuracy
described by a single anisotropy constant, which is justified
if T stands for Fe or Co. As against that, no specific assump-
tion has been made about the form of the function
EaR�sin �R�. From general principles it should be expansible
in even powers of sin �R,
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FIG. 1. �a� Schematic magnetization curves of an anisotropic
ferrimagnet �KT=0�. The field is applied either in the direction of
easy magnetization �solid curve� or in the hard direction �dashed
curve�. The thin sloping line corresponds to M =�−1H. �b� Mutual
orientation of the sublattice magnetizations and applied magnetic
field.
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EaR = KR sin2 �R + ¯ , �2�

but we place no restriction whatsoever on how rapidly, if at
all, this expansion might converge. Such precautions are not
out of place if R is to mean rare earth.3

The parameters entering in Eq. �1� can be divided in two
groups. The first group includes the parameters that we shall
regard as known: MT, MR, and KT. These are obtainable, at
least in the case of rare-earth transition-metal intermetallics,
from low-field magnetization data and some general consid-
erations �e.g., taking a free-ion value for MR, taking for KT
the anisotropy constant of an isomorphous auxiliary com-
pound with R=Y, La, or Lu, etc.�. The parameters of the
second group, �, KR, and any higher-order coefficients in Eq.
�2� are essentially unknown. The goal of this work is to find
� and KR.

Regarding the symmetry of the crystal we make only a
broad assumption that it is higher than triclinic so that at
least one high-symmetry direction can be found. This is then
taken to be the direction of the applied field. Caution should
be exercized when relating KT and KR to any conventional
notation. E.g., for hexagonal crystals KT is equivalent to the
standard K1 if H � �001�, however, KT equals −K1 if H � �100�
and the sublattice moments rotate in the ac plane, finally, KT
is nil if the moments prefer to rotate in the basal plane.

The remaining steps include setting the necessary condi-
tions of equilibrium, �E /��T=�E /��R=0 or

�MTMR sin��T + �R� = MTH sin �T + KT sin 2�T, �3�

�MTMR sin��T + �R� = MRH sin �R + EaR� �sin �R�cos �R,

�4�

and solving these simultaneous equations for �T and �R. The
obtained values are then used to compute the magnetization
in the direction of the applied field,

M = MT cos �T + MR cos �R. �5�

III. DETERMINATION OF �

It appears generally impossible to obtain from Eqs. �3�
and �4� closed expressions for �T and �R. We shall therefore
examine special cases. A particularly useful one is that of
�R=� /2, i.e., when the smaller sublattice magnetization
makes a right angle with the applied field. At this point the
anisotropy of the sublattice R effectively cancels out, as the
last term in Eq. �4� vanishes due to the factor cos �R. So we
find from Eq. �4�

sin��T + �R� = cos �T =
H

�MT
. �6�

Setting this expression in Eq. �3�, we obtain thence

sin �T =
MR

MT +
2KT

�MT

. �7�

By Eqs. �5� and �7� with �R=� /2, the magnetization at the
orthogonality point is given by

M� = MT cos �T =�MT
2 − � MR

1 + 2KT/�MT
2�2

. �8�

Denote H� the corresponding �orthogonality� field. By Eq.
�6� one has

H� = �MT cos �T = �M�, �9�

whence

� =
H�

M�

. �10�

Thus, finding the intersublattice exchange constant of an an-
isotropic ferrimagnet is as simple as locating the orthogonal-
ity point in the magnetization curve. At that point the system
is momentarily released from the clutches of the unknown
but presumably strong anisotropy of the sublattice R. The
anisotropy of the other sublattice, T, which we regard as
known, is readily allowed for. The only precondition is that
KT should be much less in magnitude than the exchange
energy, �MT

2. This seems to be fulfilled in most cases, at least
for T=Fe or Co. Then Eq. �8� can be recast in an approxi-
mate form, corrected for KT to first order,

M� 	 �MT
2 − MR

2 + 2�MR

MT
�2 KT

��MT
2 − MR

2
. �11�

In the same approximation the orthogonality field is given by

H� 	 ��MT
2 − MR

2 + 2�MR

MT
�2 KT

�MT
2 − MR

2
. �12�

We are now ready to give a prescription for finding �. Sup-
pose we have available an experimental magnetization curve
M�H� of a certain ferrimagnet, measured to a sufficiently
high field, and we know the parameters MT, MR, and KT.
Then these are the steps to follow:

�1� Compute a starting ordinate of the orthogonality point,

M�
�0� = �MT

2 − MR
2 . �13�

�2� Find the corresponding abscissa in the magnetization
curve, H�

�0�.
�3� Correct the ordinate for KT,

M�
�1� = M�

�0� + 2�MR

MT
�2 KT

H�
�0� . �14�

At this stage it should become clear if the correction is
worthwhile.

�4� Find a new abscissa H�
�1� that corresponds to the cor-

rected ordinate M�
�1�.

�5� Evaluate �=H�
�1� /M�

�1�.
As the fields available in experiment grow ever stronger,

it becomes increasingly likely that the spin-flip transition
point might be reached, beyond which the magnetization is
fully aligned with the field, MT↑ ↑MR↑ ↑H, and therefore
saturated. In this case one can directly measure the full �final
or flip� magnetization,

Mf = MT + MR �15�

along with the routine spontaneous magnetization,
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Ms = MT − MR. �16�

For such an eventuality it appears advantageous to rewrite
Eqs. �13� and �14� directly in terms of Ms and Mf,

M�
�0� = �MsMf , �13��

M�
�1� = M�

�0� + 2�Mf − Ms

Mf + Ms
�2 KT

H�
�0� . �14��

Theoretically, it is indifferent for the success of the above
algorithm whether the field is applied along an easy or a hard
magnetization direction. The former has, however, two prac-
tical advantages: �i� the spontaneous magnetization Ms can
be determined from the same curve and �ii� the spin-flip tran-
sition is reached in a lower field �see Fig. 1�a��. Any discon-
tinuities that may be present in the magnetization curve
�which are associated with field-induced first-order phase
transitions� do not hinder the determination of � by the de-
scribed method.

It follows from Eqs. �8�–�11� that in a special case of
KT=0 the orthogonality point is a crossing point of magne-
tization curves taken along different high-symmetry crystal
directions.

IV. DETERMINATION OF KR

Let the system be close to the spin-flip transition point,
H	Hflip. Then both orientation angles in Fig. 1�b�, �T and
�R, are small and the equilibrium conditions Eqs. �3� and �4�
can be linearized by replacing the sines therein with their
arguments

��MTMR − MTH − 2KT��T + ��MTMR��R = 0, �17�

��MTMR��T + ��MTMR − MRH − 2KR��R = 0. �18�

Note that the expansion Eq. �2� has been truncated after the
first term; this is now justified by the smallness of �R. At
H=Hflip the determinant of the system of homogeneous lin-
ear Eqs. �17� and �18� must vanish,

��MTMR − MTHflip − 2KT���MTMR − MRHflip − 2KR�

− ��MTMR�2 = 0. �19�

Hence it follows that

KR =

�

2
�MT + MR� −

Hflip

2
− KT� 1

MT
−

�

Hflip
�

1

MR
−

�

Hflip
+

2KT

MTMRHflip

. �20�

One thus determines KR from a measured critical field Hflip
and the intersublattice exchange constant � found in the pre-
vious section. Equation �20� is particularly useful for
uniaxial �i.e., hexagonal, tetragonal, or trigonal� crystals,
provided the field is applied along the symmetry axis �001�
�which need not be direction of easy magnetization�. In this
case KR is the conventional first anisotropy constant. Other
field directions are less convenient because then KR is

equivalent to a combination of anisotropy constants and to
tell which combination it is, one requires prior knowledge of
the preferred azimuthal orientation of the sublattice moments
in Fig. 1�b�. Still such measurements may provide useful
additional information on higher-order anisotropy constants
of the sublattice R.

V. DISCUSSION

As an application of the formulas obtained in the previous
sections, let us consider a well-researched binary intermetal-
lic compound Er2Co17. A number of thourough studies were
carried out on single crystals and the intersublattice ex-
change constant � was variously reported to be either
16.7 kOe f.u. /�B �Ref. 10� or 19.1 kOe f.u. /�B �Ref. 11�. A
more recent paper9 adopts an intermediate value,
�=18.3 kOe f.u. /�B obtained by judicious averaging of sev-
eral independent results. We shall now demonstrate how the
same value can be deduced directly from the experimental
magnetization curve of Ref. 9 reproduced in Fig. 2. Taking
the sublattice moments of Ref. 9, MT
MCo=28.5�B / f.u.
and MR
MEr=18�B / f.u., we find from Eq. �13�
M�

�0�=22.1�B / f.u. The corresponding abscissa in the magne-
tization curve is H�

�0�=405 kOe as marked with a cross in
Fig. 2. The presence of a slight hysteresis in the experimental
curve does not interfere with our analysis—we simply take
the average of the two branches. We further borrow from
Ref. 9 a value of KT
K1

Co=−9 K / f.u., inferred from the
literature on Y2Co17, and attempt to correct M�

�0� by means of
Eq. �14�. The correction turns out to be −0.26�B / f.u., which
we deem insignificant and choose to neglect. Our final result
thus is �=405 /22.1=18.3 kOe f.u. /�B. This agrees in all
three digits with the educated guess of Ref. 9.

We are now in a position to demonstrate a posteriori the
applicability of the two-sublattice model of Sec. II to
Er2Co17. One of the concerns might be that the Er atoms
occupy two nonequivalent sites in the hexagonal
Th2Ni17-type structure of Er2Co17. Experimental evidence
suggests, however, that the molecular fields on the two rare-
earth sites in this structure are close to each other: Thus, the
161Dy Mössbauer spectra of the isomorphous Dy2Fe17 are

FIG. 2. Experimental easy-direction magnetization curve of
Er2Co17 taken from Ref. 9. The cross marks the position of the
orthogonality point at H�=405 kOe, M�=22.1�B / f.u.
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well represented by a single set of hyperfine parameters even
at room temperature.12 Furthermore, the molecular field on
Er is so strong that it prevails over the crystal field on either
of the Er sites. �The total exchange splitting of the ground
multiplet of Er, 18�B��MCo�	630 K, is much greater than
the respective crystal-field splitting, 	10 K, as estimated
using the leading crystal field parameter of Tm2Fe17 from
Ref. 13.� Consequently, the low-temperature moment of Er is
close to the free-ion saturation moment, 9�B. This is cor-
roborated by the comparison of the saturation magnetizations
of Er2Co17 and Y2Co17 in Ref. 9. The energy gap to the first
excited level of Er is 1.2�B��MCo�	42 K. At T�10 K it is
justified to regard all Er atoms in Er2Co17 as one saturated
magnetic sublattice. Likewise, the Co atoms, distributed
over four different sites, can be viewed as a single Co
sublattice because the parallel orientation of the Co
moments is ensured by the very strong Co-Co exchange
�as manifest in the exceptionally high Curie temperatures
of R2Co17, �1200 K�. Finally, we confirm that the
exchange energy, �MCo

2 	1000 K, is indeed much greater
than �KT�	9 K.

Proceeding now to KR
K1
Er, we note that the discrepancy

between Refs. 9 and 10 is no less than a factor of 2, that is
K1

Er=110 K / f.u. versus 225 K/f.u., respectively. Our contri-
bution to the dispute will be to check if the calculations of
Ref. 9 are consistent. We note that those calculations yielded
Hflip=755 kOe for the critical field of spin-flip �cf. Fig. 5 of
Ref. 9�. Setting this value as well as �=18.3 kOe f.u. /�B
into Eq. �20�, we get K1

Er=108 K / f.u. Within the limits of
error this coincides with the input value K1

Er=110 K / f.u.
used by Yoshii et al.9 and thus confirms the correctness of
their numerical calculations. Of course, Hflip=755 kOe is at
this stage a mere extrapolated value since the magnetization
in Ref. 9 was measured only up to 550 kOe. Technically,
conditions for an experimental observation of the spin flip in
Er2Co17 are ripe, as long-pulsed fields in excess of 850 kOe
are now available both at Los Alamos14 and at Dresden.15

Returning to the calculations of Yoshii et al.,9 we note that
their allowance for K1

Co was unnecessary. To demonstrate this

point, Eq. �19� needs to be solved for Hflip. In principle, this
can be done exactly �the larger of the two solutions of the
quadratic equation should be taken�, but it is more conve-
nient to use an approximate expression corrected for aniso-
tropy to first order,

Hflip = ��MT + MR� + 2� KT + KR

MT + MR
−

KT

MT
−

KR

MR
� .

The first term in this expression is the well-known isotropic
result of Schlömann.2 Now in the case of Er2Co17 the con-
tribution to Hflip due to KT
K1

Co=−9 K / f.u. equals

2K1
Co� 1

MCo + MEr
−

1

MCo
� = 3.6 kOe

that is about 0.2 mm on the scale of Fig. 5 of Ref. 9.
The value of the last remaining parameter in the calcula-

tion of Yoshii et al.9 K2
Er=−30 K / f.u. does not appear physi-

cally meaningful on account of the rather arbitrary neglect of
the sixth-order anisotropy constant K3

Er. One could have
equally well set K2

Er=0 and adjusted K3
Er to fit the data. Ac-

cording to the linear theory of magnetic anisotropy,3,16 there
is no reason to believe that the low-temperature value of K3

Er

should be any smaller in magnitude than that of K2
Er. It would

be interesting to probe these quantities by observing a spin
flip with H � �100�.

In Summary, we have derived expressions for the key
model parameters of anisotropic ferrimagnets, � and KR, in
terms of quantities directly deducible from low-temperature
magnetization curves. KR need not be small and higher-order
anisotropy constants of the sublattice R may be nonzero. The
method also allows for KT, regarded as known. Whether such
an allowance is really necessary can be readily assessed
within the same approach.
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