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We uncover the constitutive relation of graphene and probe the physics of its optical phonons by studying its
Raman spectrum as a function of uniaxial strain. We find that the doubly degenerate E2g optical mode splits in
two components: one polarized along the strain and the other perpendicular. This splits the G peak into two
bands, which we call G+ and G−, by analogy with the effect of curvature on the nanotube G peak. Both peaks
redshift with increasing strain and their splitting increases, in excellent agreement with first-principles calcu-
lations. Their relative intensities are found to depend on light polarization, which provides a useful tool to
probe the graphene crystallographic orientation with respect to the strain. The 2D and 2D� bands also redshift
but do not split for small strains. We study the Grüneisen parameters for the phonons responsible for the G, D,
and D� peaks. These can be used to measure the amount of uniaxial or biaxial strain, providing a fundamental
tool for nanoelectronics, where strain monitoring is of paramount importance
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I. INTRODUCTION

Graphene is the two dimensional building block for car-
bon allotropes of every other dimensionality. Since its ex-
perimental discovery, graphene continues to attract enormous
interest, in particular, as a new kind of matter, in which elec-
tron transport is governed by a Dirac-type wave equation,
and as a model system for studying electronic and phonon
properties of other more complex graphitic materials.1–4

Strain arises when a crystal is compressed or stretched out
of equilibrium, with the stiffness tensor providing the consti-
tutive relation between applied stress and final strain state.
Atomic relaxations often accompany the process, also result-
ing in an effective renormalization of the constitutive rela-
tions. The presence of strain can significantly affect the de-
vice performance. Sometimes, strain is intentionally applied
to improve mobility, as in the strained silicon technology,
which is used in modern microelectronics. Thus, the precise
determination and monitoring of stress and strain is a key
requirement.5 Strain modifies the crystal phonons, with ten-
sile strain usually resulting in mode softening, and the oppo-
site for compressive strain. The rate of these changes is sum-
marized in the Grüneisen parameters, which also determine
the thermomechanical properties.6 Thus, the magnitude of
the shift of phonon frequencies with strain is proportional to
the Grüneisen parameter. Then, monitoring phonons is often
the clearest and simplest way to detect strain and, if the
Grüneisen parameters are known, to quantify it.

Raman spectroscopy has emerged as the main technique
to probe graphene’s phonons.7,8 It can identify the number of
layers in a sample,7 determine the amount of doping and the
presence of disorder,9–11 study graphene’s edges,12–14 and
quantify anharmonic processes and thermal conductivity.15,16

Raman studies of graphene also revealed novel physical phe-

nomena, such as Kohn anomalies,17 and the breakdown of
the Born-Oppenheimer approximation.9,10,18 In all these
cases, experimental observations have successfully partnered
with first-principles calculations, the latter providing addi-
tional microscopic insights and understanding, while being
validated by the comparison with measurements. The Grü-
neisen parameters for the vibrational modes of graphite and
graphene under biaxial strain were calculated by first prin-
ciples, yielding excellent agreement with the thermome-
chanical properties of graphite.19 Recently, changes to the
Raman spectra were reported due to the presence of stress in
graphene,20–25 but the inferred strains disagreed by a factor
of 5 or more for similar Raman shifts.20,22–24 Furthermore, no
significant difference was seen between the cases of uniaxial
and biaxial strain,20,23,24 in contrast with theory, and the
opening of a band gap at the K point was suggested,20 again
in contrast with the theory for small strains.26 It is thus nec-
essary to conduct an accurate study in order to uncover the
physics of strain for the graphene phonons.

Here, we apply uniaxial strain up to �1.3% to a graphene
monolayer, in typical steps of 0.05% �minimum of 0.01%;
maximum of 0.25%� using two- and four-point bending set-
ups �see Fig. 1� and compare this with first-principles calcu-
lations. The Raman spectra measured at each step are fully
reproducible over multiple loading and unloading cycles
with no hysteresis. This allows us to clarify the physics of
phonons in strained graphene.

II. EXPERIMENTAL

In order to controllably and reproducibly induce strain,
graphene layers prepared by micromechanical cleavage of
graphite are deposited on two different flexible substrates.
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One is a 720-�m-thick and 23-mm-long polyethylene
terephthalate �PET� film. The other is a 3-mm-thick, 10-cm-
long, and 1-cm-wide clear acrylic �Perspex�. In both cases,
the large length-to-width ratio is chosen to allow uniform
bending and reversibility. Prior to graphene deposition, the
substrates are spin coated with SU8 2000.5 �MicroChem�
photoresist27 of carefully chosen thickness �400 nm�, which
is then cross linked. This ensures optimal visible contrast for
graphene identification.28,29 To achieve maximum strain, the
length of the substrate is altered in order to have the flake at
its center �Fig. 1�. Note that the size of the graphene layers is
orders of magnitude smaller than the substrate length ��103

and �104 times smaller, respectively�. This ensures a uni-
form strain in the section measured by Raman spectroscopy.
The first substrate is used in two-point bending experiments,
while the second in four-point bending �Fig. 1�. Raman spec-
tra are measured with a 100X objective at 514 nm excitation
with a Renishaw micro-Raman spectrometer, having 1800
grooves/mm grating and spectral resolution of �2 cm−1.
The polarization of the incident light can be controlled by a
Fresnel rhomb, while an analyzer can be placed before the
grating. The power on the samples is well below 2 mW so
that no shift nor change in width of the Raman peaks is
observed for a fixed strain, thus ensuring no damage nor
heating. A cycle of loading, unloading, and loading is fol-

lowed to ensure reproducibility for both experiments. A total
of 80 Raman spectra are measured for an average strain in-
crement of 0.05%. The maximum strain applied to the
sample is less than �1.2%. In the two-point measurements,
the spectra do not change until a nominal strain of �0.55%
is applied to the substrate. Afterward, they evolve linearly
with strain. Thus, we assume this point as the reference zero
strain for the sample. In the four-point measurement, the
spectra evolve linearly from zero strain. The two sets of data
are fully overlapping, further confirming the strain measure-
ments. The data are fully reproducible over three strain
cycles between maximum and minimum. Only when sud-
denly applying large strains or large strain increments we
observed sample slippage indicated by an upshift, or smaller
downshift, or no shift at all of the Raman parameters. Indeed,
for samples suddenly bent to large strain values of a few
percent, we often observed no change in the Raman peaks,
indicating a general loss of contact between graphene and the
substrate. It is thus extremely important to apply the strain in
the most controlled way in order to ensure reproducibility
and no slippage. A further set of 36 measurements is done for
a fixed value of strain by rotating the incident polarization in
10° steps with respect to the strain axis and analyzing the
scattered light in the plane parallel to the strain axis.

III. BACKGROUND

All carbons show common features in their Raman spec-
tra in the 800–2000 cm−1 region, the so-called G and D
peaks, which lie at around 1580 and 1350 cm−1, respec-
tively. The G peak corresponds to the doubly degenerate E2g
phonon at the Brillouin-zone center. The D peak is due to the
breathing modes of sp2 rings and requires a defect for its
activation.30,31 It comes from TO phonons around the K
point of the Brillouin zone30,31 is active by double resonance
�DR�32 and is strongly dispersive with excitation energy due
to a Kohn anomaly at K.17 The activation process for the D
peak is an intervalley process as follows: �i� a laser-induced
excitation of an electron/hole pair; �ii� electron-phonon scat-
tering with an exchanged momentum q�K; �iii� defect scat-
tering; and �iv� electron/hole recombination. The D peak in-
tensity is not related to the number of graphene layers but
only to the amount of disorder.30,31 DR can also happen as
intravalley process, i.e., connecting two points belonging to
the same cone around K �or K��. This gives rise to the so-
called D� peak, which can be seen around 1620 cm−1 in
defected graphite. The 2D peak is the second order of the D
peak. This is a single peak in monolayer graphene, whereas it
splits in four bands in bilayer graphene, reflecting the evolu-
tion of the band structure.7 The 2D� peak is the second order
of the D� peak. Since 2D and 2D� peaks originate from a
process where momentum conservation is obtained by the
participation of two phonons with opposite wave vectors �q
and −q�, they do not require the presence of defects for their
activation, and are thus always present. Indeed, high-quality
graphene shows the G, 2D, and 2D� peaks but not D and
D�.7

IV. RESULTS AND DISCUSSION

A. Experimental trends

Figure 2 plots some representative Raman spectra as a
function of strain. The strain is parallel to the longest side of

A

B

C

FIG. 1. �Color online� Experimental setup. �a� Scheme �not to
scale� of the substrate coated with SU8. A graphene monolayer is
placed in the middle; �b and c� scheme �not to scale� of �b� two
point and �c� four-point bending. Note that a typical sample is
103–104 smaller than the substrate length.
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the substrate �Fig. 1� and is given by the ratio of substrate
thickness to twice the radius of curvature. The spectra are
fitted with lorentzians and Fig. 3 plots the resulting trends for
the G and 2D peaks. Note that Figs. 3�a� and 3�b� are a
combination of over 80 measurements on two samples,
strained in two different experimental setups, and include a
loading, unloading, and final loading cycle. Within the spec-
trometer resolution, we find no difference on prehistory and,
for a single sample and cycle, the strain dependence is
smooth. Linear fits using all the data yield ��G+ /���
−10.8 cm−1 /%, ��G− /���−31.7 cm−1 /%, ��2D /���
−64 cm−1 /%, and ��2D� /���−35 cm−1 /%, where we call
G+ and G− the higher and lower G subbands, by analogy
with nanotubes.33,34

B. Secular equation and Grüneisen parameters

The observed behavior can be explained by considering
the effect of uniaxial strain on the optical modes responsible
for the G, D, and D� peaks, respectively. The Grüneisen
parameter for the doubly degenerate in-plane Raman-active
E2g phonon, �E2g

, is6

�E2g
= −

1

�E2g

0

��E2g

h

��h
, �1�

where �h=�ll+�tt is the hydrostatic component of the applied
uniaxial strain, l is the longitudinal direction, parallel to the
strain, and t is the direction transverse to it; �E2g

0 is the G
peak position at zero strain. The shear deformation potential
�E2g

is defined as35,36

�E2g
=

1

�E2g

0

��E2g

s

��s
, �2�

where �s=�ll−�tt is the shear component of the strain.
Under uniaxial strain, the solution of the secular equation

for the E2g mode is35–38

��E2g

� = ��E2g

h �
1

2
��E2g

s

= − �E2g

0 �E2g
��ll + �tt� �

1

2
�E2g

�E2g

0 ��ll − �tt� , �3�

where ��E2g

h is the shift resulting from the hydrostatic com-
ponent of the strain, and ��E2g

s is the mode splitting due to
the shear component of the strain. ��G+ =��E2g

+ and ��G−

=��E2g

− are the shifts of the G+ and G− peaks relative to zero
strain.

It is important to note that the resulting phonon eigenvec-
tors are orthogonal:35–38 the E2g

+ is perpendicular to the ap-
plied strain �and thus experiencing smaller softening� and the
E2g

− parallel to it. This is analogous to the effect of curvature
on the G peak of carbon nanotubes. The G peak splitting in
nanotubes is the combined result of electron confinement and

1560 1575 1590

G

G
+

0

0.66

0.77

0.61

0.11

0.8

0.74

0.5

0.37

0.29

In
te

n
s
it
y

(a
rb

.
u

n
it
s
)

Raman shift (cm
-1
)

G
-

A

2600 2625 2650 2675 2700

0

0.11

0.77

0.66

0.5

Raman shift (cm
-1
)

0.29

0.37

0.61

0.74

2D B

FIG. 2. �Color online� �a� G and �b� 2D peaks as a function of
uniaxial strain. The spectra are measured with incident light polar-
ized along the strain direction, collecting the scattered light with no
analyzer. Note that the doubly degenerate G peak splits in two
subbands G+ and G−, while this does not happen for the 2D peak.
The strains, ranging from 0 to �0.8%, are indicated on the right
side of the spectra.
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FIG. 3. �Color online� Positions of the �a� G+ and G− and �b� 2D
peaks, as a function of applied uniaxial strain. The lines are linear
fits to the data. The slopes of the fitting lines are also indicated.
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curvature.33 Pure curvature splits the graphene E2g mode in a
component parallel to the tube axis and one perpendicular.
When the sp2 bonds of graphene are deformed by rolling it
in a tube, they lengthen and soften in the direction perpen-
dicular to the axis, in order for the 	z electrons to be perpen-
dicular to it. This is proportional to curvature, so it is mini-
mum parallel to the axis and maximum along the
circumference, increasing with decreasing diameter.33,39

Thus, by curvature only, nanotubes will have a TO G− peak
and a LO G+, with the former softer than the latter, and more
sensitive to diameter changes. This simple picture is reason-
able for semiconducting nanotubes,33 while in metallic a fur-
ther significant softening of the LO mode takes place due to
the enhanced Kohn anomaly resulting from electron
confinement.33 However, this further effect must be absent in
“unrolled” tubes, i.e., graphene. Indeed, the full width at half
maximum �FWHM� of the G+ and G− peaks in graphene is
roughly constant as a function of strain at �12 cm−1,
whereas FWHM�G−� in metallic nanotubes becomes much
larger due to the increased electron-phonon coupling
contribution.33

By fitting the trends in Fig. 3 to Eqs. �1�–�3�, we can
experimentally determine the Grüneisen parameters for
graphene. Under uniaxial strain6 �ll=� and �tt=−
�, where 

is the Poisson’s ratio. If one could strain free-hanging
graphene samples, the Poisson’s ratio for graphene itself
should be used. This can be taken as the in-plane Poisson’s
ratio of graphite �0.13.40 However, the lack of loading-
unloading hysteresis for our results implies good adhesion
between graphene and our substrates for the whole range of
applied strains. SU8 is a transversely isotropic material with
a 0.33 in-plane Poisson’s ratio.27 PET and perspex have also
Poisson’s ratios between 0.3–0.35. We thus use 
=0.33. This
corresponds to the case of ideal contact between graphene
and substrate. Equation �3� is now rewritten as

��E2g

� = − �E2g

0 �E2g
�1 − 
�� �

1

2
�E2g

�E2g

0 �1 + 
�� , �4�

yielding

�E2g
= −

��G+ + ��G−

2�G0
�1 − 
��

, �5�

�E2g
=

��G+ − ��G−

�G0
�1 + 
��

. �6�

From the data in Fig. 3�a�, we get �E2g
=1.99 and �E2g

=0.99. These experimental parameters can now be used to
estimate the trends for free-hanging graphene under uniaxial
strain. Inserting �E2g

=1.99, �E2g
=0.99, and 
=0.13 in Eq.

�4�, we get ��G+ /���−18.6 cm−1 /% and ��G− /���
−36.4 cm−1 /%. Note that the effect of the substrate higher
Poisson’s ratio is to significantly decrease the slope of the G+

peak. These results are also in excellent agreement with our
first-principles calculations �see later�.

We can now use our fitted �E2g
to deduce the expected

peak variations for graphene under biaxial strain. In this case
�ll=�tt=� and, from Eq. �3�, ��E2g

=−2�E2g

0 �E2g
�, since the

shear deformation term cancels. This means, as expected,
that the G peak does not split. Also, no difference is expected
between free-hanging graphene and graphene on a substrate.
Thus, for biaxial strain, ��G /���−63 cm−1 /%.

To the best of our knowledge, no data exist in literature
for uniaxial strain on graphite. However, several authors ap-
plied hydrostatic pressure on graphite41–43 finding ��G /��h
�4.4–4.8 cm−1 /GPa, where �h is the hydrostatic pressure
�stress�. The in-plane biaxial strain under hydrostatic pres-
sure is �= �Sll+Slt��h. Since for graphite in-plane 1 / �Sll
+Slt��1 /1250 GPa,40 the data in Refs. 41–43 correspond to
an in-plane Grüneisen parameter �E2g

�1.72–1.90, in very
good agreement with our results. Many groups have consid-
ered hydrostatic pressure on nanotubes �see, e.g., Refs. 35,
36, and 43�. Generally it is found ��G /��h
�4–5 cm−1 /GPa, in good agreement with graphene and
graphite. However, electron confinement and other effects in
nanotubes warrant a more detailed comparison of our results
on graphene with the trends for the individual LO and TO G
bands in nanotubes, which will be the subject of further in-
vestigation.

Several experiments exist for uniaxial strain on graphite
fibers.44 These could be the best approximation of uniaxial
strain along the graphite plane, since their very large diam-
eter compared to single-wall nanotubes ensures other pos-
sible effects due to electron confinement will be negligible.33

Extensive work on carbon fibers of different moduli has
shown that the peaks’ shift is directly related to axial stress,
rather than strain.45 Thus, one can assume that in uniaxial
experiments, the applied stress is the known parameter, and
the strain applied to the atomic bonds can be derived from
�ll=Sll�ll, where Sll=1 /E is the fiber elastic compliance, E is
the Young’s modulus and �ll is the applied longitudinal
stress. Therefore, in order to correctly estimate the strain, it
is necessary to know the fiber E, which, in general, is sig-
nificantly lower than the in-plane Young’s modulus of
graphite.44 Then, if we extend the universal relation between
Raman peak shift and uniaxial stress to graphene, the follow-
ing should hold:

��fiber

�� =
Efiber

Egraphene

��graphene

�� . Most fibers show a
uniaxial stress sensitivity of ��G /��ll�2–3 cm−1 /GPa.44 In
particular, polyacrylonitrile �PAN�-based carbon fibers with
“onion skin” morphology �i.e., those most similar to large
multiwall nanotubes� have ��G /��ll=−2.3 cm−1 /GPa.44

Note that, due to disorder, the G peak of carbon fibers is very
broad and not resolved in two subbands. Thus, the fitted G
represents the average shift of the two subbands. Our average
shift, using the in-plane graphite Poisson’s ratio, as needed in
order to compare with fibers, is ��G /���−27 cm−1 /%. If
we scale the uniaxial strain sensitivity of PAN fibers by the
in-plane Young’s modulus of graphite �1090 GPa,40 this
would imply a value of �−25 cm−1 /%, in excellent agree-
ment with our average value. This also validates the assump-
tion that the graphene Young’s modulus is similar to the in-
plane Young’s modulus of graphite, in agreement with recent
measurements.46 A notable discrepancy exists only with Ref.
38 for uniaxial measurements on fibers. However, their data
imply �E2g

�2.87, in disagreement with both our measure-
ments and with all graphite literature.41–44 We also note that
our results disagree with recent Raman experiments on
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uniaxial strain in graphene,20,24 which report much smaller
�� /��, implying much smaller Grüneisen parameter. It is
difficult to see how the Grüneisen parameter of graphene
should be much smaller than that measured in plane for
graphite. Moreover, no G peak splitting was observed for
uniaxial strain,20,24 again in contrast with both our observa-
tion and general expectations.

We now consider the singly degenerate modes corre-
sponding to the D and D� peaks. The D peak is a breathing
mode similar to the TO A1g phonon at K.47 For pure A1g
symmetry and small strains, the uniaxial shift ��A1g

is given
only by the hydrostatic component of the stress

��A1g
= − �A1g

0 �A1g
��tt + �ll� . �7�

On the other hand, the D� phonon has E symmetry47 and we
could expect in principle splitting and a relation similar to
Eq. �4�. However, experimentally this peak is very weak and
we cannot resolve any splitting in the strain range we have
considered. Thus, for small strains, we write for both Raman
peaks

��2D;2D� = − �2D;2D�
0 �D;D��1 − 
�� . �8�

Combining our data with Eq. �8�, we get �D�3.55 and
�D��1.61. For free-hanging graphene, these give ��2D /��
�−83 cm−1 /% and ��2D� /���−45 cm−1 /%. In the case of
graphene under biaxial strain, �ll=�tt=� and ��2D,2D�=
−2�2D;2D�

0 �D;D��. Thus, using our fitted Grüneisen param-
eters, the expected 2D and 2D� variation as a function of
biaxial strain are ��2D /���−191 cm−1 /% and ��2D� /���
−104 cm−1 /%.

To the best of our knowledge, no data exist for the 2D- or
2D�-peak dependence in graphite as a function of uniaxial
strain. However, Ref. 44 measured ��2D /��ll
�6.4 cm−1 /GPa for PAN carbon fibers. This scales to
��2D /���−70 cm−1 /% in graphene, in agreement with our
predicted uniaxial trend, when using the in-plane Poisson’s
ratio of graphite to compare with fibers. For graphite under
hydrostatic pressure, Ref. 48 reported ��2D /��h
�12.3 cm−1 /GPa and ��2D� /��h�9 cm−1 /GPa. This cor-
responds to an in-plane biaxial strain �= �Sll+Slt��h. From
1 / �Sll+Slt��1 /1250 GPa,40 we get ��2D /���
−154 cm−1 /%, �2D=2.84, ��2D� /���−113 cm−1 /%, and
�2D�=1.74, in broad agreement with our predictions for bi-
axial strain.

Finally, we note that, in all cases, the 2D peak is ex-
tremely sensitive to strain. With a typical spectrometer reso-
lution of �2 cm−1, a remarkable sensitivity of �0.01% and
0.03% can be achieved for biaxial and uniaxial strains, re-
spectively. We also note that a combined analysis of G and
2D FWHM and shifts should allow to distinguish between
effects of strain, doping, or disorder.9–11

C. First-principles calculations

To further understand our findings, we perform first-
principles calculations on free-standing graphene, for small
strains up to �1%, to compare with experiments. The effects
on electron and phonon bands of larger strains will be re-

ported elsewhere. We use density-functional theory and
density-functional perturbation theory49 as implemented in
the PWSCF package of the QUANTUM-ESPRESSO distribution,50

within the local-density approximation, with norm-
conserving pseudopotentials51 and a plane-wave expansion
up to 55 Ry cutoff. The Brillouin zone is sampled on a 42

42
1 Monkhorst-Pack mesh with a cold smearing in the
electronic occupations of 0.02 Ry. We use the equilibrium
lattice parameter a=2.43 Å and an interlayer spacing of
15 Å. We apply the strain in different directions. For each
direction and strain, we determine the structure with the low-
est total energy by varying the size of the unit cell in the
direction perpendicular to the strain. At zero strain, �G0
=1603.7 cm−1, �D0

=1326 cm−1, and 
=0.15. Figure 4 plots
the resulting G+ /G− eigenvectors. These are perpendicular to
each other with the G− eigenvector oriented along the strain
direction as expected. For small strains, we find ��G− /���
−34 cm−1 /% and ��G+ /���−17 cm−1 /%, independent on
the strain direction, as expected from symmetry. We also get
�E2g

=1.87 and �E2g
=0.92, in excellent agreement with our

measured parameters. Note that in order to compare the cal-
culated trends for G+ and G− with our measurements, we
need to insert the theoretical parameters in Eq. �4� together
with the substrate Poisson’s ratio. This gives ��G− /���
−30 cm−1 /% and ��G+ /���−10.3 cm−1 /%, in excellent
agreement with the fits in Fig. 3�a�. We also calculate the
biaxial strain variation for the G peak. We find ��G /���
−58 cm−1 /% and �E2g

=1.8, again in excellent agreement
with the biaxial values based on our experimental Grüneisen
parameter.

We then calculate the uniaxial and biaxial strain variation
for the 2D peak. We find ��2D /���−60 cm−1% for
uniaxial, and ��2D /���−144 cm−1 /% for biaxial and �D
�2.7 for both. These are in excellent agreement with the
results of hydrostatic pressure experiments on graphite, and
in broad agreement with our experimental data for uniaxial
strain �and the consequent biaxial predictions�, being
�25 /% smaller. It is important to consider that, while for the
Raman-active G mode we are probing the same center-zone
phonon when measuring the Raman spectrum on a strained
sample, the Raman D and D� peaks are zone-boundary
phonons activated by double resonance. Any change in the
double-resonance condition during the strain experiments

FIG. 4. �Color online� Eigenvectors of G+ and G− modes deter-
mined by density-functional perturbation theory. These are perpen-
dicular to each other, with G− polarized along the strain axis, as
expected.
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will vary the actual phonon probed in the Raman measure-
ments, as well as inducing a change in the phonon frequen-
cies. Thus, the relationship between phonon Grüneisen pa-
rameters and the variation in the Raman peaks with applied
strain is, in principle, more complex than the case of the G
peak and what implied by Eqs. �7� and �8�. Indeed, while
biaxial strain does not move the relative positions of the
Dirac cones, uniaxial strain changes them.52 Note that this
does not open any gap, in contrast with the conclusions of
Ref. 20. Still, it can have a significant influence in the
double-resonance process. While the D� is intravalley, i.e.,
connecting two points belonging to the same cone around K
or K�, the D peak phonon requires scattering from the cone
around K to that around K�.7,17,32 Thus, its wave vector is
determined by the relative distance of the Dirac cones and by
the laser excitation energy. Our experiments are performed
for a fixed excitation. Then, what we measure in Raman
spectroscopy of uniaxially strained graphene is the combina-
tion of the 2D phonon shift due to strain and a possible
additional shift due to the fact that the relative movement of
the Dirac cones changes the phonon wave vector. For an
asymmetric movement, this could lead to peak broadening
and splitting. Indeed the experimental FWHM �2D� signifi-
cantly increases with strain. In the case of the 2D� peak, the
movement of the relative positions of the cones will have no
consequence since it is an intravalley process. However, for
both D and D�, other effects could be given by the renormal-
ization of Fermi velocity and phonon-group velocity with
strain. Thus, especially for the D peak, our measured �D has
to be taken as an upper boundary, and a more general expres-

sion to evaluate it can be �D=−
��2D−���2D

�2D
0 �1−
�� with ���2D en-

compassing corrections due to the changes in the phonon
selected in double resonance, as a function of strain. We note
that in the case of biaxial strain, at least the effects due to the
relative movement of the Dirac cones are absent. Then, Ra-
man experiments on graphene under biaxial strain would be
more suited to measure the D mode Grüneisen parameter,
and this explains why our calculations are in excellent agree-
ment with the hydrostatic pressure experiments on graphite.
Thus, given the peculiar nature of electron-phonon and
electron-electron interactions around the K point in
graphene9,17,53 combined with the relative movement of the
K and K� points under uniaxial strain,52 and the possible
renormalizations of electron and phonon bands, the full the-
oretical description of the 2D peak under uniaxial strain still
needs further investigation.

D. Crystallographic orientation

We now consider the polarization dependence of the G+

and G− intensities expected due to the nature of the phonon
eigenvectors and their orientation with respect to the strain.38

The effective photon-phonon interaction Hamiltonian for the
E2g phonons is53

Hint � ��Ex
inEx

out − Ey
inEy

out�uy − �Ex
inEy

out + Ey
inEx

out�ux� . �9�

Here Ex
in�out� ,Ey

in�out� are the Cartesian components of the elec-
tric field of the incident �scattered� light and ux ,uy are the
phonon displacements in the �x ,y� basis �see Fig. 5 for de-

tails�. The x axis is chosen perpendicular to the C-C bond.
This Hamiltonian is the only allowed by the C6v symmetry of
graphene. In the presence of strain, the Hamiltonian changes
but the correction will be on the order of the strain itself. For
a fixed small strain, these corrections can be ignored, in first
approximation, in the calculation of the polarization depen-
dence of the G bands. The main effect of strain is to force the
phonon normal modes to be longitudinal �ul� and transverse
�ut� with respect to the strain axis, as discussed above, and
shown in Fig. 4. If we call �s the angle between the strain
axis and the x axis, we can write

ux = ul cos �s + ut sin �s, uy = − ul sin �s + ut cos �s.

�10�

In our Raman spectrometer, we can excite with linearly
polarized light and use an analyzer for the scattered radia-
tion. This means that the corresponding electric-field vectors
have definite orientations Ex

in,out=E0
in,out cos��in,out+�s�,

Ey
in,out=E0

in,out sin��in,out+�s�, where the polarization is mea-
sured with respect to the strain axis. Substituting these in Eq.
�9�, the matrix elements corresponding to the emission of
longitudinal and transverse phonons are proportional to
−sin��in+�out+3�s� and cos��in+�out+3�s�, respectively.
The intensities of the two peaks are given by their squares

IG− � sin2��in + �out + 3�s�, IG+ � cos2��in + �out + 3�s� .

�11�

To test this, we do polarization measurements with an ana-
lyzer for scattered light aligned with the strain direction
��out=0� and rotating the incident polarization with respect to
the strain axis in steps of 10° �Fig. 6�. The data in Fig. 6 are
well fitted by IG− �sin2��in+34°� and IG+ �cos2��in+34°�.
According to Eq. �11�, this gives �s=11.3°. We thus get the
orientation of the graphene crystal with respect to the known
strain axis.

The physical origin of the polarization dependence of the
G+ /G− peaks can be traced to the microscopic mechanism of
Raman scattering. The light interaction with graphene
phonons is mediated by electrons. As discussed in Ref. 53

y

ϕs

ux
uy

θ

x

light polarization

θout
in

axis
strain

FIG. 5. �Color online� Polarization geometry. The circles in the
hexagon represent carbon atoms. The x axis is chosen perpendicular
to the C-C bond. The short black arrows represent phonon displace-
ments in the �x ,y� basis, as assumed in Eq. �9� �the longitudinal and
transverse normal modes are given by their linear combinations�. In
the right panel, the strain axis is the dashed line. The arrows repre-
sent the polarization of incident and detected light.
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for unstrained graphene, if one assumes the electron spec-
trum to be isotropic �Dirac�, the G peak intensity vanishes.
Thus, the G peak is entirely due to the anisotropic terms in
the electronic spectrum. In other words, in order to contrib-
ute to the G peak, electrons must “feel” the crystallographic
directions. In unstrained graphene, this has no consequence
since the two vibrations are degenerate and not resolved.
Under strain, the two subbands correspond to definite orien-
tations of the vibrations with respect to the strain axis. It is
thus the interaction of electrons, which feel the crystallo-
graphic directions, with phonons entirely determined by the
strain direction that gives the polarization dependence.

V. CONCLUSIONS

In summary, we probed with Raman spectroscopy the op-
tical phonons of graphene as a function of uniaxial strain. We
find that the doubly degenerate E2g mode splits in two com-
ponents: one polarized along the strain, the other perpendicu-
lar. This split of the Raman G peak in two subbands G+ and

G− is analogous to that induced by curvature in nanotubes.
These subbands redshift with increasing strain, while their
splitting increases, in excellent agreement with first-
principles calculations. Their relative intensities vary with
polarization, allowing to probe the sample crystallographic
orientation with respect to the strain. The 2D and 2D� bands
downshift but do not split for small strains. Our results can
be used to quantify the amount of uniaxial or biaxial strain,
providing a fundamental tool for graphene-based nanoelec-
tronics and nano/microelectro mechanical systems.
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