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The paper reports a theoretical study of scattering of electrons by edges in graphene and its effect on Raman
scattering. First, we discuss effective models for translationally invariant and rough edges. Second, we employ
these models in the calculation of the edge-activated Raman D peak intensity and its dependence on the
polarization of the incident/scattered light, as well as on the position of the excitation spot. Manifestations of
the quasiclassical character of electron motion in Raman scattering are discussed.
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I. INTRODUCTION

Graphene, a monolayer of carbon atoms, first obtained in
2004,1 received increasing interest due to its exceptional
electronic properties and original transport physics.2 Gradual
miniaturization of graphene devices increases the importance
of edge effects with respect to the bulk two-dimensional
physics. Starting from a graphene sheet, nanoribbons and
quantum dots can be produced by lithography and etching.3–8

Edges also play a fundamental role in the quantum Hall ef-
fect.

Graphene edges can be studied by several experimental
techniques. Scanning tunneling microscopy �STM� and
transmission electron microscopy �TEM� can resolve the
structure of the edge on the atomic scale.9–14 Raman scatter-
ing has also proven to be a powerful technique to probe
graphene edges.15–19 The so-called D peak at 1350 cm−1 is
forbidden by momentum conservation in a perfect infinite
graphene crystal, and can only be activated by impurities or
edges. Invoking the double-resonance mechanism for the D
peak activation,20 Cançado et al. showed that a perfect zig-
zag edge does not give rise to the D peak.15 It should be
emphasized that this property is determined by the effect of
the edge on the electronic states.

A great deal of theoretical studies of electronic properties
near the edge has focused on the case of ideal zigzag or
armchair edges, most commonly adopting the tight-binding
description. One of the spectacular results obtained by this
approach was the existence of electronic states confined to
the zigzag edge,21–25 which was later confirmed
experimentally.9–11,14 The question about general boundary
condition for Dirac electron wave function at a translation-
ally invariant graphene edge has been addressed,26 and a
detailed analysis of boundary conditions which can arise in
the tight-binding model has been performed.27 In spite of the
fact that all graphene samples produced so far have rough
edges, the number of theoretical works dedicated to rough
edges is limited. Most of them model edge roughness in the
tight-binding model by randomly removing lattice sites.28–31

The opposite limit of smooth and weak roughness has been
considered.32 Edge states on zigzag segments of finite length
have also been studied recently.33

The present work has several purposes. One is to develop
analytically treatable models which would describe electron

scattering on various types of edges in terms of as few pa-
rameters as possible. The second one is to calculate the po-
larization dependence of the D peak intensity for different
models of the edge, and thus see what information can be
extracted from this dependence. The third one is to identify
the characteristic length scale which confines the Raman pro-
cess to the vicinity of the edge, i.e., the spatial extent of the
Raman process. It will be shown that the last two issues are
intimately related to the quasiclassical character of the elec-
tron motion during the Raman-scattering process.

The paper is organized as follows. In Sec. II we discuss
the problem in qualitative terms and summarize the main
results of the work. In Sec. III we summarize the Dirac de-
scription of single-electron states in an infinite graphene
crystal and formulate the Huygens-Fresnel principle for
Dirac electrons. In Sec. IV we discuss models for the elec-
tron scattering from a graphene edge, considering transla-
tionally invariant as well as rough edges. Section V intro-
duces the model for electron-phonon coupling and describes
the general scheme of the calculation of the D peak intensity
using the standard perturbation theory in the coordinate rep-
resentation. Finally, Secs. VI–VIII are dedicated to the cal-
culation of the D peak intensity for an ideal armchair edge,
an atomically rough edge, and an edge consisting of a ran-
dom collection of long zigzag and armchair segments, re-
spectively.

II. QUALITATIVE DISCUSSION AND SUMMARY OF THE
MAIN RESULTS

A. Electron scattering by the edge

First, we discuss translationally invariant edges. For ex-
ample �see Fig. 1�, a zigzag edge has a spatial period de

=a�3 �a�1.42 Å is the C-C bond length�, an armchair edge
has de=3a, and a more complicated edge, shown in Fig. 1�c�,
has de=�21a�4.6a �the spatial period is measured along the
average direction of the edge�. It is important to compare de
to the electronic wavelength �we prefer to divide the latter by
2��, ���v / ���, where � is the electron energy, and v�1.1
�108 cm /s�7.3 eV·Å is the electron velocity �the slope
of the Dirac cones�. For comparison, at �=1 eV ��
�7.3 Å�5a. As long as de����, the component of the
electronic momentum along the edge, p�, is conserved �we
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measure the electron momentum from the Dirac point�. For
longer periods the edge acts analogously to a reflective dif-
fraction grating in optics; this case is not considered here. In
the limit de��� the reflection of electrons from any periodic
edge can be described by an effective energy-independent
boundary condition for the electronic wave function.26,27

Next, we study rough edges. An extreme case is when the
edge is rough at the atomic scale, like that in the tight-
binding model with randomly removed sites. Then it is rea-
sonable to assume that in the vicinity of the edge all plane-
wave components with a given energy in both valleys are
mixed randomly, as there is no small or large parameter
which would suppress or favor any particular channel �the
smallness a /���1 suppresses the direct intravalley scatter-
ing, but multiple intervalley scattering efficiently mixes
states within the same valley as well�. The electron is thus
scattered randomly both in all directions �as a consequence
of the randomization of the momentum direction within the
same valley�, and between the two valleys. For this case in
Sec. IV B we propose a phenomenological model which de-
scribes such random scattering of electrons by the edge, re-
specting only the particle conservation and the time-reversal
symmetry. Essentially, each point of the edge is represented
by an independent point scatterer, which randomly rotates
the valley state of the electron. This model is used for quan-
titative calculations in the subsequent sections.

Edges, rough on length scales much larger than the lattice
constant, are likely to consist of distinct segments of zigzag
and armchair edges, as shown by STM �Refs. 10, 11, and 14�
and TEM.12,13 Then the overall probability of scattering
within the same valley or into the other valley is simply
determined by the fraction of the corresponding segments.
The problem of angular distribution of the scattered electrons
is analogous to the well-studied problem of light scattering
by rough surfaces.34–40 The main qualitative features of the
scattering, namely, the sharp coherent peak in the specular

direction, the smooth diffuse background, and the enhanced
backscattering peak should be analogous for the electrons in
graphene as well. The so-called surface polaritons, shown to
play an important role in the light scattering, are analogous
to the electronic edge states in graphene. Still, full adaptation
of this theory for the case of Dirac electrons in graphene
represents a separate problem and is beyond the scope of the
present work. Here we only consider the case when regular
edge segments are sufficiently long, i.e., their typical length
de���. Then the diffraction corrections, small in the param-
eter �� /de�1, can be simply found as it is done in the clas-
sical optics,41 using the Huygens-Fresnel principle for Dirac
electrons, Eq. �3.8�.

B. Quasiclassical picture of Raman scattering

Since graphene is a nonpolar crystal, Raman scattering
involves electronic excitations as intermediate states: the
electromagnetic field of the incident laser beam interacts pri-
marily with the electronic subsystem, and emission of
phonons occurs due to electron-phonon interaction. The ma-
trix element of the one-phonon Raman process can be sche-
matically represented as

M � 	
a,b


i�Ĥe−em�a�
a�Ĥe−ph�b�
b�Ĥe−em�f�
�Ei − Ea + 2i	��Ei − Eb + 2i	�

. �2.1�

Here �i� is the initial state of the process �the incident photon
with a given frequency and polarization, and no excitations
in the crystal�, �f� is the final state �the scattered photon and
a phonon left in the crystal�, while �a� and �b� are the inter-
mediate states where no photons are present, but an electron-
hole pair is created in the crystal and zero phonons or one
phonon have been emitted, respectively. Note that these in-
termediate states correspond to electronic eigenstates in the
presence of the edge, i.e., scattered states rather than plane
waves. Ei=Ef, Ea, and Eb are the energies of the correspond-
ing states, and 2	 is inverse inelastic-scattering time �the
overall rate of phonon emission and electron-electron colli-

sions�. Ĥe−em and Ĥe−ph stand for the terms in the system
Hamiltonian describing interaction of electrons with the elec-
tromagnetic field and with phonons, respectively.

As discussed in Refs. 42 and 43, for one-phonon scatter-
ing processes it is impossible to satisfy the energy conserva-
tion in all elementary processes. This means that the
electron-hole pair represents a virtual intermediate state, and
no real populations are produced. Formally, at least one of
the denominators in Eq. �2.1� must be at least of the order of
the phonon frequency 
ph�	. In fact, the main contribution
to the matrix element comes from such states that the elec-
tron and the hole have the energy � close �within �
ph� to
half of the energy 
in of the incident photon: ��−
in /2�
�
ph. These two energy scales are well separated: 
ph
�0.17 eV, while typically 
in /2�1 eV. According to the
uncertainty principle, the energy uncertainty, 
ph, determines
the typical lifetime of the virtual state �electron-hole pair�,
�1 /
ph. This time scale determines the duration of the
whole process.

As we are dealing with a translationally noninvariant sys-
tem, it is useful to analyze the Raman process in the coordi-

(c)

(b)

(a)

FIG. 1. Examples of ordered edges: �a� zigzag, �b� armchair, �c�
a more complicated but still translationally invariant edge.
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nate representation. The time scale 1 /
ph, introduced above,
translates into the length scale �ph=v /
ph. Thus, this length
scale, �ph�4 nm, determines the spatial extent of the pro-
cess �we will return to this point below�. Its largeness com-
pared to the electron wavelength, �ph /��=
in / �2
ph��1, en-
sures that the electronic wave functions determining the
matrix elements for each elementary process admit a quasi-
classical representation. The quasiclassical approximation
for the electronic wave functions is fully analogous to the
geometrical optics approximation for electromagnetic waves,
electronic trajectories corresponding to light rays. Correc-
tions to this approximation are known as diffraction and are
small by the parameter 
ph /
in�1. It should be emphasized
that the quasiclassical picture is neither an assumption nor a
hypothesis, but it arises automatically in the direct calcula-
tion of the Raman matrix element which is performed in the
main part of the paper.

In the quasiclassical picture, the photoexcited electron and
hole can be viewed as wave packets of the size ���, initially
created at an arbitrary point of the sample. More precisely,
instead of a point one can consider a region of a size �l, such
that ����l��ph. Then momentum conservation holds up to
�p�1 /�l�� /v by virtue of the uncertainty principle so that
electron and hole momenta, whose magnitude is � /v
�counted from the Dirac point�, have approximately opposite
directions, as the photon momentum is very small. The same
argument holds for the phonon emission and for the radiative
recombination process: in order to emit a photon, the elec-
tron and the hole must meet in the same region of space of
the size �l with almost opposite momenta �up to 1 /�l�. Mo-
mentum conservation at the reflection from the edge depends
on the quality of the edge, as discussed in Sec. II A. Regard-
less of the properties of the edge, an elementary geometric
consideration, illustrated by Fig. 2, shows that for the elec-
tron and the hole to be able to meet, the scattering on both

the phonon and on the edge must be backward.
In the quasiclassical picture, the electron and the hole

have to travel the same distance between creation and anni-
hilation, as their velocities are equal. Then the process in Fig.
3�a� has more phase space satisfying this restriction, and this
process gives the main contribution to the Raman matrix
element. This will be also shown by an explicit estimate in
Sec. VI B. Note that the three processes shown in Fig. 3 can
be considered in the momentum space, as shown in Fig. 4.
According to the abovesaid, processes �b� and �c�, often
shown in the literature as an illustration of the double
resonance,20 are in fact weaker than process �a� by a factor
�
ph /
in.

C. Polarization dependence

The backscattering condition has immediate conse-
quences for the polarization dependence of the Raman-
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FIG. 2. �Color online� Real-space representation of the scatter-
ing process responsible for the D peak near graphene edges. The
lightning represents the incoming photon which generates the
electron-hole pair. The solid black arrows represent the quasiclassi-
cal trajectories of the electron and the hole. The dashed arrow rep-
resents the emitted phonon. The flash represents the radiative re-
combination of the electron-hole pair producing the scattered
photon. �a� Backscattering off a translationally invariant edge is
possible only at normal incidence �up to the quantum uncertainty�.
�b� For oblique incidence on a translationally invariant edge the
reflection is specular, so the electron and the hole will not be able to
meet at the same point. �c� For a rough edge backscattering is
possible even at oblique incidence.
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FIG. 3. �Color online� Real-space representation of different
contributions to the matrix element of the scattering process respon-
sible for the D peak at an ideal armchair edge, placed at x=0. The
solid black arrows represent the quasiclassical trajectories of the
electron and the hole corresponding to the three Green’s functions
in Eqs. �5.7c� and �5.7d�. Trajectories �a�, �b�, and �c� correspond to
decomposition of each of the three Green’s functions in Eq. �5.7c�.
� is the overall spatial extent of the process, and ��=v /� is the
electron wavelength divided by 2�.

K

KK(b) KK(c)

K(a)

FIG. 4. �Color online� Momentum space representation of dif-
ferent contributions to the matrix element of the scattering process
responsible for the D peak at an armchair graphene edge, corre-
sponding to the real-space picture shown in Fig. 3. Solid lines rep-
resent the Dirac cones around K and K� points of the first Brillouin
zone. Vertical solid arrows represent interband electronic transitions
accompanied by photon absorption or emission �photon wave vec-
tor is neglected�, dashed arrows represent phonon emission, the
horizontal dotted arrow represents the scattering from the edge.
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scattering intensity. Indeed, the matrix element of creation or
annihilation of an electron and a hole pair with momenta p,
−p �counted from the Dirac point� by a photon with the
polarization e, is proportional to �e�pz, reaching its maxi-
mum when e�p. Since a perfect edge conserves the compo-
nent of momentum along the edge, the backscattering is pos-
sible only at normal incidence, as seen from Fig. 2�.44 This
gives the polarization dependence of the D peak intensity as
ID�sin2 in sin2 out, where in and out are the angles be-
tween the polarizations of the incident and scattered photons
and the normal to the edge. If one does not use the analyzer
to fix the polarization of the scattered photons, the depen-
dence is ID�sin2 in. In experiments, however, the intensity
never goes exactly to zero for the polarizations perpendicular
to the edge, but remains a finite fraction � of the intensity in
the maximum.15,18,19 What determines this residual intensity
in the minimum?

For an ideal edge the finite value of the intensity in the
minimum is entirely due to the quantum uncertainty.
Namely, the momenta of the electron and the hole upon their
creation are not exactly opposite, but up to an uncertainty
�1 /�l; the annihilation occurs not exactly at the same spatial
point, but within the spatial uncertainty �l. If the spatial ex-
tent of the process is �, the uncertainty is estimated as �l
�����, and the ratio � of the intensities in the minimum and
in the maximum �i.e., for polarizations perpendicular and
parallel to the edge, respectively� should be small as a power
of the small parameter quasiclassical parameter �� /�. The
calculation is performed in Sec. VI B, the result is given by
Eqs. �6.5b� and �6.5c� for the detection without and with the
analyzer, respectively. Up to logarithmic factors, the ratio �
�
ph

2 /
in
2 ���� /�ph�2. This corresponds to �ph��, in accor-

dance with the energy-time uncertainty principle, as dis-
cussed in the previous subsection.

For rough edges the intensity in the minimum is deter-
mined by the ability of the edge to backscatter electrons at
oblique incidence, as shown in Fig. 2�c�. If the edge is rough
at the atomic scale, oblique backscattering is nearly as effi-
cient as normal backscattering. Still, such oblique trajectories
are longer than those corresponding to the normal incidence,
so they are expected to have a smaller weight since the vir-
tual electron-hole pair lives only for a restricted time. So one
still can expect a minimum of intensity for perpendicular
polarization, but it is of a purely geometrical origin, so one
does not expect a parametric smallness of the ratio �. The
calculation using the model �Sec. IV B� for atomically rough
edges is performed in Sec. VII A, and the result is given by
Eqs. �7.3b� and �7.3c� for the detection without and with the
analyzer, respectively. In the former case the ratio �=1 /3,
and the minimum occurs indeed for the polarization of the
incident light perpendicular to the edge. With the analyzer,
the absolute minimum is �=1 /10, reached when the polar-
izer and the analyzer are oriented at the angle � /3 with
respect to the edge and to each other. When the polarizer and
the analyzer are both rotated parallel to each other, the mini-
mum is �=1 /5.

For an edge consisting of segments longer than electronic
wavelength, de���, we first analyze the contribution of a
single armchair segment. It is calculated in Sec. VIII, and
given by Eqs. �8.5a� and �8.5b� for the detection without and

with the analyzer, respectively. The minimum is reached for
the polarization, perpendicular to the armchair direction
�which does not have to coincide with the average direction
of the edge�, and is determined by the quantum diffraction of
the electron on the segment, ���� /de �provided that �� /de
�
ph

2 /
in
2 , the ratio for the infinite armchair edge, which is

the case when de�50 nm for 
in=2 eV�. To obtain contri-
bution of the whole edge, it is sufficient to multiply these
expression by the total number of such segments and replace
de by its average, provided that all armchair segments have
the same orientation.

It is crucial, however, that up to three different orienta-
tions of armchair segments are possible, at the angle � /3 to
each other. When contributions corresponding to several dif-
ferent orientations are added together, the polarization de-
pendence may change quite dramatically, as was briefly dis-
cussed by the author and co-workers in Ref. 19 and is
considered in more detail in Sec. VIII. Note that if the aver-
age direction of the edge is armchair or zigzag, the possible
orientations of armchair segments are symmetric with re-
spect to the average direction: three orientations at angles 0
and �� /3 for an armchair edge, and two at angles �� /6 for
a zigzag edge. Most likely, the number of segments corre-
sponding to “+” and “−” signs will be equal on the average.
Then, by symmetry, the maximum of intensity in both cases
will be reached for the polarization along the average direc-
tion of the edge, in agreement with recent experimental
observations.18,19

When the average direction is armchair, the ratio between
the minimum and the maximum of intensity is determined by
the relative fraction of segments oriented at �� /3 with re-
spect to those oriented along the average direction. When the
average direction is zigzag, the polarization dependence is
fully determined by the symmetry �on the average� between
the two armchair directions, and is given by Eq. �8.10�. The
ratio between the minimum and the maximum is �=1 /3 for
detection without analyzer, and �=1 /9 for detection with an
analyzer parallel to the polarizer of the incident light, again,
in agreement with Refs. 18 and 19. Thus, quantum diffrac-
tion effects appear to be masked by the purely geometrical
effects.

Remarkably, the quantum diffraction limit is still acces-
sible if only two orientations of armchair segments are
present �which is the case when the average direction is zig-
zag or close to it�. It is sufficient to put the polarizer perpen-
dicular to one of the armchair directions, and the analyzer
perpendicular to the other one, thereby killing the leading
specular contribution for both segments. In this polarization
configuration the absolute minimum of the intensity is
reached, and it is indeed determined by the quantum diffrac-
tion, as given by Eq. �8.11a�.

D. Excitation position dependence

In Ref. 16, confocal Raman spectroscopy was suggested
and used as a way to probe the length scale �, which restricts
the D peak to be in the vicinity of the edge �the spatial extent
of the Raman process�. The idea is to focus the incident light
beam as tightly as possible so that its electric field Ein�r� has
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the shape Ein�r��e−�r − r0�2/�2L2�, where the width L can be
measured independently, and the spot center position r0 can
be varied experimentally. Then, given that the intensity of
the D peak is proportional to

ID �� K�r,r��Ein�r�Ein
� �r��d2rd2r�, �2.2�

where K�r ,r�� is a certain kernel, decaying away from the
edge with a characteristic length scale �, a measurement of
the dependence ID�r0� would give information on the kernel.
The measurement would be especially simple in the case L
��. In reality, however, the relation is the opposite: in Ref.
16 L=186.5 nm, and � is a few tens of nanometers at
most.45

In this situation the dependence of the Raman intensity
ID�r0� is very close to the excitation intensity profile �Ein�r��2,
and the nonlocality of the kernel K�r ,r�� manifests itself
only in a slight change of shape of ID�r0� with respect to
�Ein�r��2. In the first approximation it can be viewed just as
small shift and broadening. When the signal-to-noise ratio is
not sufficiently high to perform the full functional deconvo-
lution, one has to assume a specific functional form for the
kernel and do a few-parameter fit. It is clear that different
functional forms will give values of �, differing by a factor
of the order of 1. In Ref. 16 the form K�r ,r��
=��x���x��e−2	�x+x��/�	 was assumed, where x is the distance
from the edge, ��x� is the step function, and �	=v / �2	� is
the electron inelastic-scattering length �2	 is the electron
inelastic-scattering rate, see Eq. �2.1�. This assumption
seems to contradict the fact that the lifetime of the virtual
electron-hole pair is �1 /
ph, discussed in Sec. II B, as it was
pointed out in Refs. 19 and 43.

The explicit form of the kernel K�r ,r�� for an ideal arm-
chair edge is calculated in Sec. VI C, it is given by Eq.
�6.7c�, and it turns out to be more complicated than a simple
exponential. In fact, it depends on both length scales, �ph and
�	. The length �ph is shorter, but the spatial cutoff it provides
is only power law. The longer length �	 is responsible for the
strong exponential cutoff. Which of the two lengths plays the
dominant role in the Raman process turns out to depend on
the specific observable to be measured. The total integrated
intensity for Ein�r�=const is proportional to the integral
�K�r ,r��d2rd2r�, which is determined mainly by �ph, while
�	 enters only in a logarithmic factor. The same can be said
about the polarization dependence and diffraction correc-
tions, discussed in Sec. II C. However, the change in the

shape of ID�r0�, compared to the excitation intensity profile
�Ein�r��2, is determined by the second and higher moments of
the kernel, �xn�x��n�K�r ,r��d2rd2r�, with n+n��2. These
moments turn out to be determined by the longer scale �	.
Thus, the interpretation by the authors of Ref. 16 of their
experiment is qualitatively correct.

Analysis of the experimental data of Ref. 16 using kernel
�6.7c� gives �	=66 nm, corresponding to 2	�11 meV.
Analogous analysis was done for the case of strongly disor-
dered edge in Sec. VII B, and in this model one obtains �	
=120 nm. Indeed, as the disordered edge gives more weight
to oblique trajectories, as shown in Fig. 2�c�, the effective
distance from the edge at which the kernel decays is shorter
than for the normal incidence, so a larger value of �	 is
required to fit the data.

The inelastic-scattering rate for an electron with the en-
ergy � due to phonon emission can be written as 2	= ���
+�K�� /2,42,43 where �� and �K are dimensionless electron-
phonon coupling constants ��K is defined in Eq. �5.5�, and ��
is defined analogously, but the optical phonons at the � point
should be considered. The value of the constant �� can be
reliably taken to be about ���0.03. Indeed, a density-
functional theory �DFT� calculation46 gives ���0.028; mea-
surements of the dependence of the G-peak frequency 
G on
the electronic Fermi energy �F, d
G /d��F���� /2�, give
���0.034 �Ref. 47� and ���0.027;48 the value of �� is not
renormalized by the Coulomb interaction.49 The value of �K
has been debated recently.49–51 The measurements of the
phonon group velocity �see Ref. 51 for the summary of the
experimental data� give �K�0.04. The ratio between the two
coupling constants can be also extracted from the experimen-
tal ratio of the two-phonon peak intensities,43 2��K /���2

�20,52 which gives �K�0.10.
Thus, ��+�K�0.1�0.03 seems to be a reasonable esti-

mate. This estimate gives 2	�50 meV for electrons with
the energy 
in /2=0.98 eV, which translates into a value of
�	 several times shorter than that following from the results
of Ref. 16.

E. On the Tuinstra-König relation

For a sample of a finite size La the total D peak intensity
is proportional to the total length of the edge, i.e., the sample
perimeter, so that ID�La. At the same time, the intensity of
the G peak at 1581 cm−1 is proportional to the area of the
sample, i.e., IG�La

2. These simple facts result in the so-called
Tuinstra-König relation, established in experiments on

TABLE I. Irreducible representations of the group C6v and their characters.

C6v E C2 2C3 2C6 �a,b,c �a,b,c�

A1 1 1 1 1 1 1

A2 1 1 1 1 −1 −1

B2 1 −1 1 −1 1 −1

B1 1 −1 1 −1 −1 1

E1 2 −2 −1 1 0 0

E2 2 2 −1 −1 0 0
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graphite nanocrystallites long ago,53,54 and confirmed experi-
mentally many times afterwards:55–58 ID / IG�1 /La. The pro-
portionality coefficient cannot be determined universally; it
clearly depends on the character of the edge. The explicit
expression for the D peak Raman efficiency �the absolute
probability for the incident photon to be scattered into the
solid angle 4� with any polarization� can be written as

ID = C�K� e2

c
�2v2

c2

vLa/
in

LxLy


in
2


ph
2 ln

ph

2 + �4	�2

�4	�2 . �2.3�

Here LxLy is the photon quantization area in the crystal plane
�the size of the laser spot�, and C is the shape-dependent
numerical coefficient. For a perfect hexagonal flake with all
edges being armchair and having the length La /2, the results
of Sec. VI give C=4. For a circular flake with the diameter
La and atomically rough edge, the results of Sec. VII give
C=�2 /18. One can also imagine a hexagonal flake with en-
tirely zigzag edges which do not give any D peak at all,
except at the junctions between them; then ID is not even
proportional to La �i.e., C=0�.

What is the boundary of validity of the Tuinstra-König
relation on the small-size side? At the same time, it was
noted in Ref. 59 that since the atomic displacement pattern
corresponding to the D peak must involve at least one aro-
matic ring, the size of the ring, a few angstroms, represents
an absolute lower bound. From the results of the present
work it follows that the dependence ID�La becomes loga-
rithmically sensitive to the presence of the opposite edge,
ID�La ln�
phLa /v� if the size is smaller the electron inelastic
length La�v / �2	�, and the whole approach becomes invalid
when La�v /
ph�4 nm. The breakdown of the 1 /La depen-
dence has indeed been observed for La smaller than a few
nanometers.60

III. FREE DIRAC ELECTRONS

In this section we summarize the model for the bulk
graphene only, which is fully analogous to that of Ref. 43.
Properties of the edge are discussed in Sec. IV.

We measure the single-electron energy � from the Fermi
level of the undoped �half-filled� graphene. The Fermi sur-
face of undoped graphene consists of two points, called K
and K�. Graphene unit cell contains two atoms, labeled A and
B �see Fig. 5�, each of them has one � orbital, so there are
two electronic states for each point of the first Brillouin zone
�we disregard the electron spin�. Thus, there are exactly four
electronic states with zero energy. An arbitrary linear combi-
nation of them is represented by a four-component column

vector �. States with low energies are obtained by including
a smooth position dependence ��r�, r��x ,y�. The low-
energy Hamiltonian has the Dirac form

Ĥ0 =� d2r�̂†�r��− iv� · ���̂�r� . �3.1�

Here we used the second-quantized notation and introduced

the electronic � operators �̂�r�, �̂†�r�.
It is convenient to define the 4�4 isospin matrices �

���x ,�y�, not through their explicit form, which depends on
the choice of the basis �specific arrangement of the compo-
nents in the column ��, but through their transformation
properties. Namely, all 16 generators of the SU�4� group,
forming the basis in the space of 4�4 hermitian matrices,
can be classified according to the irreducible representations
of C6v, the point group of the graphene crystal �Tables I and
II�. They can be represented as products of two mutually
commuting algebras of Pauli matrices �x, �y, �z and �x, �y,
�z,

61,62 which fixes their algebraic relations. By definition,
�x, �y are the matrices, diagonal in the K, K� subspace, and
transforming according to the E1 representation of C6v.

In the following we will take advantage of the symmetry
with respect to time reversal. The action of the time-reversal
operation on the four-component envelope function ��r� is
defined as

a2 a1

A A A

B BB

A A A

B B B

A A A

B B B

B B B

AAA

FIG. 5. Honeycomb lattice with the A and B sublattices and the
elementary translation vectors.

TABLE II. Classification of 4�4 hermitian matrices according to irreducible representations �irreps� of
the C6v group.

Irrep A1 B1 A2 B2 E1 E2

valley-diagonal matrices

matrix 1 �z �z �z�z �x , �y −�z�y , �z�x

valley-off-diagonal matrices

matrix �x�z �y�z �x �y �x�y , −�x�x �y�x , �y�y
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��r� � Ut�
��r� , �3.2�

where Ut is a unitary 4�4 matrix. When applied twice, the
time-reversal operation should give an identity, which results
in an additional requirement UtUt

�=1. The explicit form of Ut
depends on the choice of the basis. Independently of the
basis, the matrices 1 and �i� j with i, j=x ,y ,z are invariant
with respect to the time reversal, while the matrices �i and
�i change sign.

The Dirac Hamiltonian also possesses the electron-hole
symmetry, which can be expressed as

�z�z�− iv� · ���z�z = iv� · � . �3.3�

Its consequence is that if ��r� is an eigenfunction of the
Hamiltonian with the energy �, then �z�z��r� is an eigen-
function with the energy −�.

In those rare cases when a specific representation has to
be chosen, we use that of Ref. 62,

� = �
�AK

�BK

�BK�

− �AK�

� , �3.4�

where the first subscript labels the sublattice �A ,B� and the
second one labels the valley �K ,K��. In this basis �i are the
Pauli matrices acting within upper and lower two-component
blocks of the column �the sublattice subspace�, while �i are
the Pauli matrices acting in the “external” subspace of the
two-component blocks �the valley subspace�. The time-
reversal matrix in this representation is given by Ut=�y�y.

The electron Green’s function, corresponding to Hamil-
tonian �3.1�, is given by

G0�p,�� =
� + vp · �

�2 − �vp − i	��2 , �3.5�

where p and � are electronic momentum and energy, counted
from the Dirac point. The inelastic broadening 	�� ��� is
introduced phenomenologically. In the coordinate represen-
tation the Green’s function is given by

G0�r,�� =
� + i	� sgn � − iv� · �

4iv2 H0
�1���� , �3.6�

where H0
�1���� is the Hankel function and ������+ i	��r /v.

We will mostly need the asymptotic form valid at distances
r� ��� /v,

G0�r,�� = −� i�

2�

ei�

vr
� sgn � + � · r/r

2
�1 +

i

8�
�

−
sgn � − � · r/r

2

i

4�
+ O��−2�� . �3.7�

Any wave function ��r� satisfying the Dirac equation,
��+ i	� sgn �+ iv� ·����r�=0, in some region O of space,
satisfies also the Huygens-Fresnel principle. Namely, the
value of ��r� at an arbitrary point r�O can be written as an
integral over the boundary �O,

��r� = iv�
�O

n · �G0�r − re,�����re�dre. �3.8�

Here re is the distance along the boundary and n is the inner
normal to the boundary. This relation follows from the Gauss
theorem and the fact that �p2+�2�H0

�1��pr�=4i��r� for any p.

IV. MODELS FOR ELECTRONS NEAR THE EDGE

A. Translationally invariant edge

The main assumption of this subsection is that the com-
ponent of the electronic momentum p along the edge is con-
served upon reflection, so that a plane wave is reflected as a
plane wave. The most studied ideal zigzag and armchair
edges fall into this category. Here we do not restrict our-
selves just to zigzag or armchair edges, requiring only that
the spatial period de of the edge is smaller than half the
electron wavelength, de����. For de��� the reflection of
electrons from the edge can be described by an effective
boundary condition for the electronic wave function.26,27

The edge is assumed to be a straight line determined by
its normal unit vector n, so that graphene occupies the half-
plane n ·r�0. The microscopic Schrödinger equation deter-
mines the effective boundary condition on the wave function
��r�, which for smooth functions �on the scale de� can be
simply written as B� �edge=0, where B is a 4�4 hermitian
matrix. The rank of B is equal to 2 since the linear space of
incident states at fixed energy is two dimensional due to the
valley degeneracy. Thus, it has two zero eigenvalues, while
the other two can be set to 1 without the loss of generality
�only the zero subspace of B matters�. Thus, one can impose
the condition B2=B. Equivalently, one can write B= �1
−M� /2, where M has the same eigenvectors as B, but its
eigenvalues are equal to �1, hence, M2=1. To ensure current
conservation, the condition B� �edge=0 must automatically
yield �†�n ·���=0; this means that M�n ·��+ �n ·��M =0.
Finally, the time-reversal symmetry requires that the condi-
tions B�=0 and BUt�

�=0 must be equivalent, which yields
M�=Ut

†MUt. To summarize all the above arguments, the
general energy-independent boundary condition has the form

�1 − M���edge = 0, �4.1�

where the 4�4 hermitian matrix M satisfies the following
conditions, which result to be the same as obtained in Ref.
26:

M2 = 1, M�n · �� + �n · ��M = 0, M = UtM
�Ut

†.

�4.2�

Matrices satisfying these constraints can be parametrized by
an angle � and a three-dimensional unit vector �mx ,my ,mz�
�Ref. 27�:

M = ��z cos � + �n� �zsin ��M�, �4.3a�

M� = 	
i=x,y,z

mi�i, mi � R, 	
i=x,y,z

mi
2 = 1. �4.3b�

Without loss of generality we can assume cos ��0 �the
negative sign can always be incorporated in M��.
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The concept of electron-hole symmetry, introduced by Eq.
�3.3� for the Dirac Hamiltonian, can be extended to the
edges. Namely, requiring that if a wave function � satisfies
the boundary condition, then the wave function �z�z�
should also satisfy it; we obtain that an edge preserves the
electron-hole symmetry when M commutes with �z�z.

Explicit expressions for the matrix M, corresponding to
the edges shown in Fig. 1, can be obtained in the tight-
binding model on the terminated honeycomb lattice63 �it is
convenient to use representation �3.4�. For the zigzag edge
with n=−ey �Fig. 1�a� the boundary condition is �BK
=�BK�=0, which gives M =�z�z. This agrees with the pre-
diction of Ref. 15 that upon reflection from a zigzag edge the
electron cannot scatter between the valleys, which corre-
sponds to a valley-diagonal matrix M. For the armchair edge
with n=ex �Fig. 1�a� rotated by 2� /3 counterclockwise, we
have �AK+�AK�=�BK+�BK�=0 and M =−�y�y. It can be
shown that in the nearest-neighbor tight-binding model on a
terminated honeycomb lattice only zigzag and armchair
boundary conditions can be obtained, the latter occurring
only if the edge direction is armchair; while to obtain the full
form of Eq. �4.3a�, one has to include an on-site potential in
the vicinity of the edge.27

It is known for quite some time that a perfect zigzag edge
supports states, confined to the edge.21–25 Let us see what
class of boundary conditions is compatible with existence of
such states. The wave function of an edge state must have the
form

��r� = �0e−��n·r�+ip��n � rz, � � 0, �4.4�

where the vector �0 is such that the solution satisfies both the
Dirac equation in the bulk with some energy �, as well as the
boundary condition at the edge. It is convenient to make a

unitary substitution �0=ei�x�/2e−i�zn/2�̃0, where n is the po-
lar angle of the direction n. Then the two conditions have the
following form:

�i��x + p� cos ��y + p� sin ��z��̃0 =
�

v
�̃0, �4.5a�

�zM��̃0 = �̃0. �4.5b�

The boundary condition is satisfied by two linearly indepen-

dent vectors �̃�, which can be chosen to satisfy �z�̃�
=��̃� �to find them it is sufficient to diagonalize the matrix
M��. Each of them satisfies the first condition if and only if
�=�vp� sin �, �=�p� cos �. The requirement ��0 leaves

only one of them, �̃−sgn p�
, and the energy of the edge state is

�=−v�p��sin �. Thus, it seems that almost any edge can sup-
port a bound state, the exception being the case cos �=0
�armchairlike edge�, which thus seems to be a special rather
than a general case.

Now we turn to the scattering �reflecting� states, which
are the ones responsible for the edge-assisted Raman scatter-
ing. Even though the component p� of the electron momen-
tum p, parallel to the edge, is conserved, reflection can
change the valley structure of the electron wave function.
The general form of such solution is

��r� = �peip��n·r�+ip��n � rz + S��n� �z�pe−ip��n·r�+ip��n � rz,

�4.6�

where p�= �n ·p��0, p� = �n�pz, and �p is an eigenvector
of �p ·���p=� �p��p. The first term represents the wave in-
cident on the edge and the second one is the reflected wave.
The matrix �n��z simply aligns the isospin of the reflected
particle with the new direction of momentum. The unitary
matrix S� represents a rotation in the valley subspace. It
should be found from boundary condition �4.1� �this is con-
veniently done in the basis of the eigenvectors of M��, which
gives

S� = �
�0 + M��cos � + �� sin ��
�0 + M��cos � + � sin ��

, �4.7a�

� = �
1

p
�− �n� pz + i�n · p��, ��� = 1. �4.7b�

For sin �=0 �zigzag edge� we have S�=�. For cos �=0
�armchair edge� we have S�=M�, independent of the direc-
tion of p. The reflected part of Eq. �4.6� can be identically
rewritten using the Huygens-Fresnel principle, Eq. �3.8�, as

��r� = �peipr − �
edge

dreG0�r − re,��v�zS��peipre,

�4.8�

so that −v�zS� can be viewed as the T matrix of the edge.
When S� does not depend on the direction of p �armchair

edge�, it is easy to write down the exact explicit expression
for the single-particle Green’s function,

G�r,r�;�� = G0�r − r�,��

+ G0�r − r� + 2n�n · r��,��n� �zS�.

�4.9�

The second term represents nothing but the contribution of a
fictitious image source of particles, appropriately rotated, and
placed at the point r�−2n�n ·r�� obtained from r� by the
reflection with respect to the edge. In the quasiclassical ap-
proximation �analogous to geometric optics�, Eq. �4.9� is also
valid for a general edge at large distances r, r��v / ���, pro-
vided that position-dependent S� is taken, determined by

� = − sgn �
i�n · �r + r�� + �n� �r − r��z

��n · �r + r��2 + �n� �r − r��z
2

. �4.10�

Again, using the Huygens-Fresnel principle, we can rewrite
Eq. �4.9� identically as

G�r,r�;�� = G0�r − r�,��

− �
edge

dreG0�r − re,��v�zS�G0�re − r�,�� .

�4.11�

B. Atomically rough edge

As discussed in Sec. II A, when the edge is rough on the
atomic length scale, electron scattering is random both in all
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directions and between the two valleys. This case will be of
main interest for us, as it �i� represents the opposite limiting
case to that of an ordered edge, and �ii� can be described by
a simple model proposed below. The main assumption is that
each point of an atomically rough edge acts as an indepen-
dent point scatterer, independent from other segments. Asso-
ciating thus a T matrix to each point of the edge, we write the
scattered wave function in the form

��r� = �peipr + �
edge

dreG0�r − re,��T�s,ep;re��peipre,

s =
r − re

�r − re�
, ep =

p

�p�
, �4.12�

where energy argument of the Green’s function �=�vp for
electrons and holes, respectively. The �one-dimensional� in-
tegration is performed along the edge, which is assumed to
be a straight line determined, as in Sec. IV A, by the condi-
tion �n ·re�=0, where the unit vector n is the normal to the
edge. The unit vectors ep and s indicate the incident and
scattering directions.

The T matrix must satisfy �i� the particle conservation
condition �unitarity�, and �ii� the time-reversal symmetry
�reciprocity�,

T�s,ep;re� = UtT
T�− ep,− s;re�Ut

†. �4.13�

Here TT stands for the 4�4 matrix transpose. Unitarity and
reciprocity are discussed in Appendix A in the context of a
general scattering theory, similar to that for light scattering
on a rough surface.34 We propose the following form of the T
matrix:

T�ps,p;re� = − ���s,ep�v�zS��re� . �4.14a�

The angular factor ��s ,ep� ensures the particle conservation
�unitarity of the edge scattering, see Appendix A for details�,

��s,ep� =
− 2�n · ep��n · s�

1 − �n · ep��n · s� − �n� epz�n� sz
.

�4.14b�

If we introduce the angles of incidence and scattering by
�n ·ep�=−cos i, �n ·s�=cos s, �n�epz=sin i, and �n
�sz=sin s, the specular direction corresponding to s=i,
then �=2 cos i cos s / �1+cos�i+s�. Note that since the
structure of the wave functions in the � subspace is fixed by
the direction of momentum, one may suggest slightly differ-
ent forms of Eq. �4.14b� which would be equivalent. For
example, the T matrix obtained by from Eq. �4.14b� by re-
placement of �z by i�n��zsgn � and by changing the sign
of the third term in the denominator in Eq. �4.14b� would
have the same matrix elements between Dirac eigenstates of
the same energy.

For a coordinate-independent S� the re integration elimi-
nates all directions s different from the specular one. Since
for the latter �=1, Eq. �4.14a� reduces to Eq. �4.8�. In this
case S� can be identified with the scattering matrix. For the
short-range disorder such identification is not possible since
scattering process is necessarily nonlocal on the length scale

of at least �1 / p. The connection between the T matrix in Eq.
�4.12� and the scattering matrix is more complicated, and is
discussed in detail in Appendix A. Here we only mention
that it would make absolutely no sense to require the unitar-
ity of S��re� at each given point. Instead, we use the follow-
ing form:

S��re� = �re� 	
i=x,y,z

mi�re��i, 	
i=x,y,z

mi
2�re� = 1.

�4.14c�

Here  �re� is a complex Gaussian random variable whose
real and imaginary parts are distributed independently and
identically �so its phase is uniformly distributed between 0
and 2��. The numbers mx, my, and mz, which can be viewed
as components of a unit three-dimensional vector, must be
real to ensure the time-reversal symmetry. One may assume
them to be constant or taking just few definite values, which
would correspond to the edge to be composed of segments
with a�de�1 / p of definite types �e.g., zigzag or armchair�.
Requirement of the electron-hole symmetry reduces to the
anticommutation of the T matrix with �z�z, which would fix
mz=0. However, the electron spectrum at energies of the
order of the bandwidth is not electron-hole symmetric. Thus,
for the case of atomic-scale roughness, de�a, we see no
reason for the electron-hole symmetry to be preserved in
scattering. In this case, assuming the scattering between the
valleys to be fully random, we take the vector �mx ,my ,mz� to
be uniformly distributed over the unit sphere. We assume the
matrices S��re� to be uncorrelated at different points on the
edge, distant by more than de, by writing

 �re� ��re�� =
�v
���
��re − re�� . �4.14d�

Here the overline denotes the ensemble averaging. However,
we assume that this product is self-averaging upon spatial
integration, i.e., that Eq. �4.14d� holds even in the absence of
the ensemble averaging when integrated over a sufficiently
long segment of the edge �namely, longer than de�. The pref-
actor �v / ��� at the � function ensures the unitarity of scat-
tering �see Appendix A�.

Equation �4.12� for the wave function yields an analogous
expression for the Green’s function, valid sufficiently far
from the edge, �n ·r��v / ���, �n ·r���v / ���,

G�r,r�;�� = G0�r − r�,��

+ �
edge

dreG0�r − re,��T�s,s�;re�G0�re − r�,�� ,

�4.15�

s =
r − re

�r − re�
, s� = −

r� − re

�r� − re�
. �4.16�

V. PHONONS AND RAMAN SCATTERING

We restrict our attention to scalar phonons with wave vec-
tors close to K and K� points—those responsible for the Ra-
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man D peak. The two real linear combinations of the modes
at K and K� points transform according to A1 and B1 repre-
sentations of C6v and are shown in Fig. 6. We take the mag-
nitude of the carbon atom displacement as the normal coor-
dinate for each mode, denoted by ua and ub, respectively.
Upon quantization of the phonon field, the displacement op-

erators ûa, ûb and the lattice Hamiltonian Ĥph are expressed
in terms of the phonon creation and annihilation operators

b̂q!
† , b̂q!, !=a ,b, as

û!�r� = LxLy� d2q

�2��2

b̂q!eiqr + b̂q!
† e−iqr

�2NM
ph

, �5.1a�

Ĥph = LxLy� d2q

�2��2 	
!=a,b


ph�b̂q!
† b̂q! +

1

2
� . �5.1b�

The crystal is assumed to have the area LxLy and to contain N
carbon atoms of mass M. The area per carbon atom is
LxLy /N=�27a2 /4.

The phonon frequency 
ph�1350 cm−1, standing in Eq.
�5.1b�, is assumed to be independent of the phonon momen-
tum. To check the validity of this assumption one should
compare the corresponding energy scale �the spread of the
phonon momenta "q multiplied by the phonon group veloc-
ity vph� with the electronic energy uncertainty. The latter is
given by 
ph itself. Recalling that phonon emission corre-
sponds to the backscattering of the electron �hole�, "q is
given by the uncertainty of the electronic momentum, "q
�
ph /v. Since vph /v�7·10−3�1, the phonon dispersion
can be safely neglected.

If we neglect the phonon dispersion, the normal modes
and the phonon Hamiltonian can be rewritten in the coordi-
nate representation by introducing the creation and annihila-
tion operators for a phonon in a given point of the sample,

#̂!�r� = 	
q

b̂q,!eiqr

�LxLy

, �5.2a�

û!�r� =� LxLy

2NM
ph
�#̂!�r� + #̂!

† �r� , �5.2b�

Ĥph = 	
!


ph� d2r�#̂!�r�#̂!
† �r� +

N

2LxLy
� . �5.2c�

Then it is convenient to define the phonon Green’s function
as the time-ordered average of the # operators,

D!
�+��r,
� = − i� 
T#̂!�r,t�#̂!

† �0,0��ei
td2rdt

=
��r�


 − 
ph + io
. �5.3�

By symmetry, in the electron-phonon interaction Hamil-
tonian the normal-mode displacements u! couple to the cor-
responding valley-off-diagonal 4�4 matrices from Table II
�Ref. 43�:

Ĥint = FK� d2r�̂†�r��ûa�r��x�z + ûb�r��y�z�̂�r� .

�5.4�

Here FK is the coupling constant having the dimensionality
of a force. It is more convenient to use the dimensionless
coupling constant

�K =
FK

2

M
phv
2

�27a2

4
. �5.5�

The value of �K was discussed in Sec. II D.
The Hamiltonian describing interaction of electrons with

light is obtained from Dirac Hamiltonian �3.1� by replace-

ment �→�−i�e /c�Â, where the vector potential Â is ex-
pressed in terms of creation and annihilation operators âQ,�

† ,
âQ,� of three-dimensional photons in the quantization volume
V=LxLyLz, labeled by the three-dimensional wave vector Q
and two transverse polarizations �=1,2 with unit vectors
eQ,�,

Â�r� = 	
Q,�

�2�c

VQ
�eQ,�âQ,�eiQr + H.c.� . �5.6�

The derivation of the formal expression for the Raman-
scattering probability is fully analogous to that given in Ref.
43. The only difference is that the calculation is done in the
coordinate representation. As a result, we obtain the follow-
ing expression for the probability for anvincident photon
with wave vector Qin and polarization ein to be scattered with
emission of a single phonon within an elementary area d2R
around a given point R,

dID

d2R
=

1

cLxLy
	
eout

� d3Qout

�2��3 2���c�Qout� − 
out�

� 	
!=a,b

�2M!�2, �5.7a�

M! =��K

2

2�e2v3

�
in
out
� d�

2�
d2rind2rout

� eiQinrin−iQoutrout Tr�D! + D!� , �5.7b�

Da,b = G�rout,rin;���ein · ��G�rin,R;� − 
in�

��x,y�zG�R,rout;� − 
out��eout
� · �� , �5.7c�

1A B1

FIG. 6. Phonon modes responsible for the Raman D peak.
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Da,b = G�rin,rout;���eout
� · ��G�rout,R;� + 
out�

��x,y�zG�R,rin;� + 
in��ein · �� . �5.7d�

Here G�r ,r� ;�� is the electronic Green’s function corre-
sponding to the full single-particle part of the Hamiltonian
�i.e., including not only the Dirac term, but the edge as well�.
It can be represented in terms of the exact single-electron
eigenfunctions �s�r� and energies �s as a sum over the eigen-
states s,

G�r,r�;�� = 	
s

�s�r��s
†�r�

� − �s + i	� sgn �
. �5.8�

Using this representation, integrating over the energy and the
coordinates, one obtains Eq. �2.1�. The summation in Eq.
�5.7a� is performed over the wave vectors Qout and the po-
larizations eout of the scattered photon. When integrated over
the area of the crystal, Eq. �5.7a� gives the absolute dimen-
sionless probability of the one-phonon Raman scattering for
a single incident photon �Raman efficiency�.

The matrix element M! can always be represented in the
form

M! = M!
x �eout

x �� + M!
y �eout

y ��. �5.9�

If one collects all the light scattered in the full solid angle
4�, without analyzing the polarization, the integration over
the angles of Qout is straightforward. It gives

dID

d2R
=

8

3�


out
2

c4LxLy
	
!=a,b

��M!
x �2 + �M!

y �2� . �5.10a�

The dependence on the polarization of the scattered light is
obtained most easily when the light is collected in a small
solid angle oout�4� around the normal �the case of an arbi-
trary solid angle was considered in Ref. 43�. If the analyzer
is oriented at an angle out to the x axis, the polarization-
dependent intensity is given by

dID

d2R
=

oout

�2


out
2

c4LxLy
	
!=a,b

�M!
x cos out + M!

y sin out�2.

�5.10b�

Equation �5.6� corresponds to the free-space quantization
of the electromagnetic field whose normal modes are plane
waves. In the case of a spatially resolved experiment as in
Ref. 16, Eqs. �5.7a� and �5.7b� in order to account for the
spatial profile of the electric field, induced by the focusing
lens. Namely, the electric field, corresponding to a single
photon with a wave vector Qin, incident from vacuum,
should be replaced by the field Ein�rin� of the focused laser
beam,

i� 2�
in

LxLyLz
eineiQinrin → einEin�rin� . �5.11�

As long as the distance between the lens and the sample is
much larger than the light wavelength, the summation over
the continuum of the final states of the scattered photon can
still be performed using the vacuum mode structure. Finally,
dividing the resulting probability by the photon attempt pe-

riod Lz /c, we obtain the number of photons emitted per unit
time, dID /dt �which is more appropriate when the incident
light is characterized by its electric field strength�. As a re-
sult, Eqs. �5.7a� and �5.7b� are modified as follows:

dID

d2Rdt
=

1

2�
in
	
eout

� d3Qout

�2��3 2���c�Qout� − 
out�

� 	
!=a,b

�2M!�2, �5.12a�

M! =��K

2

2�e2v3

�
in
out
� d�

2�
d2rind2rout

� Ein�rin�e−iQoutrout Tr�D! + D!� . �5.12b�

VI. RAMAN SCATTERING ON A TRANSLATIONALLY
INVARIANT EDGE

A. General considerations

For simplicity we consider an armchair edge character-
ized by n=ex, M =−�y�y, as discussed in Sec. V. Due to the
translational invariance in the y direction, it is sufficient to
calculate the probability of phonon emission at the point R
=Xex. As we will see below, the main contribution to the
signal comes from X���=2v /
in. In this regime the motion
of the photoexcited electron-hole pair can be described qua-
siclassically, and the asymptotic large-distance expansion for
the Green’s functions, Eq. �3.7�, can be used. Namely, the
electron and the hole can be viewed as wave packets of the
size ����X, propagating across the crystal along classical
trajectories. Initially, they are created in the same region of
space of the size ����X with opposite momenta and oppo-
site velocities. As they undergo scattering processes �emis-
sion of a phonon or reflection from the edge�, they change
the directions of their momenta. In order to recombine radia-
tively and contribute to Raman signal, the electron and the
hole should meet again within a spatial region of the size
����X. Clearly, these conditions can be fulfilled if all mo-
menta are almost perpendicular to the edge. Small deviations
by an angle ���� /X are allowed by quantum uncertainty.
These considerations are illustrated by Fig. 3.

Emission of one of the phonons shown in Fig. 6 corre-
sponds to intervalley scattering of the photoexcited electron
or the hole, as represented formally by one of the valley-off-
diagonal matrices �x or �y in the matrix element �see Eqs.
�5.7b�, �5.7c�, and �5.7d�. For the process to be allowed,
another act of intervalley scattering is required, so one of the
three electronic Green’s functions in Eqs. �5.7c� and �5.7d�
must contain another �x or �y matrix from decomposition
�4.9�. Otherwise, the trace in Eq. �5.7b� vanishes. Thus, for
an armchair edge with M =−�y�y only the B1 phonon can be
emitted, so Ma=0, Mb=M. Trajectories, corresponding to
decomposition of each of the three Green’s functions in Eq.
�5.7c� are shown in Figs. 3�a�–3�c�, respectively. According
to the quasiclassical picture, the electron and the hole have to
travel the same distance between creation and annihilation,
as their velocities are equal. Then the process in Fig. 3�a� has
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more phase space satisfying this restriction, and this process
gives the main contribution to the Raman matrix element.
This will be also shown explicitly below.

The general polarization structure of the matrix element,
compatible with the reflection symmetry y→−y possessed
by the armchair edge, is

M = M�ein
y �eout

y �� + M�ein
x �eout

x ��

= M� sin in sin out + M� cos in cos out �6.1�

�we introduced in, out the polar angles of the polarization
vectors�. Since the interband transition dipole moment is per-
pendicular to the electronic momentum, and for a regular
edge the momentum is �almost� perpendicular to the edge,
M� is entirely due to quantum diffraction. Thus, M� is
smaller than M� by the parameter �� /X�1 �it is this param-
eter that governs the quantum diffraction, as discussed
above�. Nevertheless, in a polarization-resolved experiment
the two intensities can be measured independently, so below
we calculate both M� and M�, each to the leading order in
�� /X.

B. Spatially integrated intensity and polarization dependence

In this subsection the electric field of the excitation wave
is assumed to be spatially homogeneous. As displacements
along the edge are expected to be parametrically smaller than
those away from the edge, �y���x��, we use the paraxial
approximation, �r���x�+y2 / �2�x��. The Green’s function can
be approximated as

G0�r,�� � −� i���
2�v3�x�

e�i���−	��x�/v+i���y2/�2v�x��

� � sgn � + �x sgn x

2
+

y�y

2�x�

+
sgn � − �x sgn x

8
� y2

x2 −
iv

��x��� , �6.2�

where the coefficient at each matrix is taken in the leading
order. Taking the first term in the square brackets in Eq. �6.2�
and evaluating the matrix traces, we obtain the following
expression for M�, corresponding to the process in Fig. 3�a�:

M� =� i�K

�3v

e2


in

� �
−$

$ d�

v
�

0

X

dxindxout�
−$

$

dyindyoute
i#−2	X/v

�� ��
in − ���
out − ����
�X − xin��X − xout��xin + xout�

, �6.3a�

# =
����xin + xout�

v
+

����yin − yout�2

2v�xin + xout�
+

�
out − ���X − xout�
v

+
�
out − ��yout

2

2v�X − xout�
+

�
in − ���X − xin�
v

+
�
in − ��yin

2

2v�X − xin�
.

�6.3b�

For the calculation of M� we need the rest of the terms in
the square brackets in Eq. �6.2�. As a result, M� is given by
an analogous integral, but with an extra factor in the inte-
grand,

�1

4
� yout − yin

xin + xout
+

yin

X − xin
�� yin − yout

xin + xout
+

yout

X − xout
�

+
iv

4����xin + xout�
� .

The details of integration are given in Appendix B. First, we
integrate over yin and yout. The subsequent integration over �
fixes xin /v+xout /v��X−xin� /v+ �X−xout� /v �the difference
is allowed to be ��X / �v
in��X, which has the meaning of
the time spent by the electron and the hole in traveling from
the creation point xin to the annihilation point xout. At the
same time, x integration fixes ��
in /2 with the precision
��
inv /X�
in. Performing all the integrations, we obtain
the matrix element,

M� = e2� ��K

i
inX/v
sin�
phX/�2v�

ph/�2v�

ei�
in+
out�X/�2v�−2	X/v,

�6.4a�

M� =
iM�


inX/v
. �6.4b�

According to Eq. �5.10a�, the integrated intensity into the full
solid angle 4�, summed over two polarizations of the emit-
ted photon, is given by

d2ID

d2R
=

8�K

3

�e2/c�2

LxLy


in
2

c2

sin2�
phX/�2v�
�
ph/�2v�2

e−4	X/v


inX/v

��sin2 in + �
inX/v�-2cos2 in , �6.5a�

ID =
8�K

3
� e2

c
�2v2

c2

v

inLx


in
2


ph
2

��sin2 in ln

ph

2 + �4	�2

�4	�2 + cos2 in


ph
2


in
2 ln

in


ph
� .

�6.5b�

The second term in the square brackets is written with loga-
rithmic precision since the short-distance cutoff �v /
in is
known only up to a factor of the order of 1. If we use Eq.
�5.10b� for the intensity in a solid angle oout in the presence
of an analyzer, we obtain
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ID = 4�K
oout

4�
� e2

c
�2v2

c2

v

inLx


in
2


ph
2

� �sin2 in sin2 out ln

ph

2 + �4	�2

�4	�2

+ cos2 in cos2 out


ph
2


in
2 ln

in


ph
� . �6.5c�

Let us estimate the contribution to the matrix element M�
corresponding to Fig. 3�b�, i.e., when decomposition �4.9� is
applied to G�R ,rout ;�−
out�. Equation �6.1� remains valid,
as it is based on symmetry only. The expression for M��
looks analogous to Eqs. �6.3a� and �6.3b�,

M�� =
e2


in

� i�K

�3v
�

−$

$ d�

v

� �
0

X

dxin�
0

xin

dxout�
−$

$

dyindyoute
i#�−2	X/v

�� ��
in − ���
out − ����
�X − xin��X + xout��xin − xout�

, �6.6a�

#� =
����xin − xout�

v
+

����yin − yout�2

2v�xin − xout�
+

�
out − ���X + xout�
v

+
�
out − ��yout

2

2v�X + xout�
+

�
in − ���X − xin�
v

+
�
in − ��yin

2

2v�X − xin�
.

�6.6b�

However, here integration over � fixes xin−xout�xout+X
+ �X−xin�, which is compatible with the limits of the spatial
integration only when xout�v /
in, X−xin�v /
in, as shown
in Fig. 3�b�. This restriction results in suppression M�� /M�

�
ph /
in�1.
If xout , �X−xin��v /
in, the asymptotic form, Eq. �6.2�,

cannot be used for G�rin ,R ;
in−�� �thus, Eqs. �6.6a� and
�6.6b� represent only an estimate of M�� by the order of
magnitude, but it can be used for G�R ,rout ;
out−�� and
G�rout ,rin ;��. This fact results in an additional smallness for
the matrix element M�� : assuming the typical value X
�v /
ph, we can write �M�� ���M����
ph /
in�
��M���
ph /
in�. Thus, M�� produces only a small correc-
tion to the cos2 in term in Eqs. �6.5a� and �6.5b�, and to the
cos2 in cos2 out term in Eq. �6.5c�.

Finally, the intensity in Eq. �6.5c� has an interference con-
tribution �Re�M�

�M�� �, which produces a term
�sin in cos in sin out cos out. Note that the interference
term Re�M�

�M�� is absent because of the factor i in Eq.
�6.4b�. We have not been able to calculate M�� explicitly or
to establish a phase relationship between M� and M�� in any
other way. However, it is hard to imagine that the interfer-
ence of two strongly oscillating amplitudes, corresponding to
two different processes, would survive the integration over
X.

C. Excitation position dependence

This subsection aims at describing a spatially resolved
experiment like that of Ref. 16 and clarifying the role of
different length scales in the dependence of the Raman in-
tensity on the position of the excitation spot. Consequently,
we use Eqs. �5.12a� and �5.12b�, and repeat the calculation of
Sec. VI B with an arbitrary dependence of Ein�r�, smooth on
the length scale v /
in �we assume detection without analyzer
and sum over the polarizations of the scattered photon�. The
result is

dID

dt
=

4�K

3�
� e2

c
�2v

c
sin2 in�

−$

$

dyI� v

ph

,
v

2	
� , �6.7a�

I��ph,�	� = �
0

$

Ein�x,y�Ein
� �x�,y�K�x,x��dxdx�,

�6.7b�

K�x,x�� = − e−i�x−x��/�phEi�− 2 max�x,x��/�	� , �6.7c�

where the exponential integral Ei�z� is defined as

− Ei�− z� = �
z

$ e−tdt

t
. �6.7d�

Let us assume the excitation intensity to have the form
�Ein�x��2=w�x−x0�, where w�x� is some smooth bell-shaped
function centered at x=0, and x0 is the position of the focus,
which serves as the experimental control parameter. In the
following we also assume that the phase of Ein�x� does not
depend on x, then Ein�x� can be taken real without loss of
generality. The integral in Eq. �6.7b� is determined by three
length scales. The width L of the excitation profile w�x� is
assumed to be much longer than �ph=v /
ph and the electron
inelastic-scattering length �	=v / �2	�: �ph,�	�L. In all
above expressions of this section no assumption was made
about the relative magnitude of �ph and �	. However, it is
reasonable to assume �ph��	; also, the final expressions be-
come more compact in this limit.

In the zeroth approximation in 1 /L one can assume
w�x�=const in the effective region of integration in Eq.
�6.7b�, i.e., replace the kernel by a � function. This gives the
result of Sec. VI B,

Ix0
= l0

2w�− x0� + O��/L� , �6.8a�

l0
2 = �

0

$

K�x,x��dxdx� = �ph
2 ln

�	
2 + 4�ph

2

4�ph
2 . �6.8b�

The length scale l0, appearing here, may be viewed as the
effective range of integration in Eq. �6.7b�, which determines
the magnitude of the signal. As we see, this length is mainly
determined by �ph and is only logarithmically sensitive to the
electron inelastic scattering.
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What is detected experimentally in Ref. 16 is the differ-
ence in the profiles of w�−x0� and Ix0

, appearing because of
the nonlocality of the kernel. This difference appears in the
second order of the expansion of Eq. �6.7b� in the spatial
derivatives of Ein�x� �i.e., in the order 1 /L2�,

Ix0
= l0

2w�l1 − x0� +
l0
2l2

2

2
w��l1 − x0� + O��3/L3� . �6.9�

Here the length l1 �the “center of mass” of the kernel in Eq.
�6.7c� is given by

l1 = Re �
0

$

xK�x,x��
dxdx�

l0
2 =

�	
3/8

�	
2/4 + �ph

2 �ln
�	

2/4 + �ph
2

�ph
2 �−1

.

�6.10�

It describes the overall shift of the profile, which may be
difficult to detect experimentally, unless the precise location
of the edge is known. The length l2, appearing in Eq. �6.9�,
determines the broadening of the signal profile Ix0

with re-
spect to the excitation profile w�−x0�, proportional to w��x�
�the second derivative�. In the limit �	��ph it is given by
�see Appendix C for the full expression and other details�

l2
2 = �	

2 2 ln��	/�ph� − 1

16 ln2��	/�ph�
+ O��ph

2 � . �6.11�

Note that this length is indeed determined by the electronic
inelastic length �up to logarithmic corrections�, in qualitative
agreement with the assumption of Ref. 16.

Instead of Eq. �6.7c�, Cançado et al.16 fitted the experi-
mental profile Ix0

using the following expression:

Ix0
� ��

xe

$

e−�x−xe�/xDEin�x − x0�dx�2

, �6.12�

where the excitation profile was independently determined to
be Gaussian: �Ein�x��2�e−x2/L2

. The effective position of the
edge xe, the width xD, as well as the overall proportionality
coefficient were used as fitting parameters, and the value
xD=20 nm was obtained. Expanding Eq. �6.12� to the order
1 /L2 and comparing it to Eq. �C5�, we obtain

Ae−�x0 − xe − xD�2/L2�1 +
xD

2

L2� �x0 − xe − xD�2

L2 − 1��
= e−�x0 − l1�2/L2�1 +

l2
2

L2�2�x0 − l1�2

L2 − 1�� + O�L−3� .

�6.13�

This equation is satisfied for all x0 provided that xe+xD= l1,
A=1+ l2

2 /L2, and xD
2 =2l2

2. Thus, in spite of the fact that in
Ref. 16 a wrong kernel was used, we still can take the ex-
perimentally found l2 and use it with the correct kernel.
Namely, the experimentally measured xD=20 nm yields l2
=14 nm. Using Eq. �6.11� and taking �ph=4 nm, we obtain
�	=66 nm, which gives 2	=11 meV. As discussed in Sec.
II D and in Ref. 19, this value is significantly smaller than an
estimate obtained using other sources of information.

VII. RAMAN SCATTERING ON AN ATOMICALLY
ROUGH EDGE

In this section we calculate the Raman intensity for an
edge rough on atomic scale, and described by the model of
Sec. IV B. The general arguments of Sec. VI A mostly re-
main valid, except for that of the symmetry y→−y, not pos-
sessed by any given realization of the disorder. This symme-
try is restored upon averaging of the intensity over the
realizations of disorder, but the matrix element M! must be
taken in the general form.

A. Spatially integrated intensity and polarization dependence

Since the edge can scatter an electron by an arbitrary
angle, it is convenient to use the rotated coordinates �% ,&�, as
shown in Fig. 7. Taking the first Green’s function in Eqs.
�5.7c� and �5.7d� as given by Eq. �4.15�, and taking the free
Green’s functions in the paraxial approximation �i.e., assum-
ing �&��%�, we arrive at the following expression for the
Raman matrix element:

M! =��K

2

e2v
4�2
in

� �
−$

$

dyee
−2�	/v��X2+ye

2
Tr

2�2
��!S��ye��

�
X�Xein

y + yeein
x ��Xeout

y + yeeout
x ��

�X2 + ye
2�3/2

� �
−$

$ d�

v
�

0

�X2+ye
2

d%ind%out�
−$

$

d&ind&out

���
in − ���
out − �����2

v4%in%out%in� %out�
ei#in+i#out, �7.1a�

#a =
���
v
�%a +

&a
2

2%a
� +

�
a − ��
v

�%a� +
&a

2

2%a�
� , �7.1b�

%a� = �X2 + ya
2 − %a, �7.1c�

where a is either “in” or “out.” Analogously to the case of
the regular edge, we first integrate over &in , &out, and sub-
sequent integration over � and %in,out fixes %in+%out

��X2+ye
2, ��
in /2. As a result, we obtain

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

ye

Xxinxout
ξ

η

FIG. 7. �Color online� Electron trajectories corresponding to Ra-
man scattering on a disordered edge. Notations are the same as in
Fig. 3.
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M! =
ie2

4
��K

2
�

−$

$

dye Tr
2�2

��!S��ye��

� e�i
in/2+i
out/2−2	��X2+ye
2/v

�
X�Xein

y + yeein
x ��Xeout

y + yeeout
x ��

�X2 + ye
2�2

�
sin�
ph

�X2 + ye
2/�2v�


ph/�2v�
. �7.2�

To calculate the intensity, we use Eqs. �4.14c� and �4.14d� to
average the square of the matrix element, and sum over the
two-phonon modes. Angular integration and summation over
the two detector polarizations according to Eq. �5.10a� gives

dID

d2R
=

2�K

9
� e2

c
�2v2

c2


in/v
LxLy

�
−$

$

dyee
−4	�X2+ye

2/v

�
sin2�
ph

�X2 + ye
2/�2v�

�
ph/�2v�2

�
X2�X2 sin2 in + ye

2 cos2 in�
�X2 + ye

2�3 , �7.3a�

ID =
��K

36
� e2

c
�2v2

c2


in

vLx

v2


ph
2 ln

ph

2 + �4	�2

�4	�2

��3 sin2 in + cos2 in� . �7.3b�

Equation �5.10b� for the intensity emitted into a solid angle
oout in the presence of an analyzer gives

ID =
��K

24

oout

4�
� e2

c
�2v2

c2


in

vLx

v2


ph
2 ln

ph

2 + �4	�2

�4	�2

��sin2 in + sin2 out +
1

2
cos�2in − 2out�� .

�7.3c�

The trigonometric expression in the square brackets can be
identically rewritten as sin2 in+sin�2out−in�sin in+1 /2,
so its absolute minimum is 1/4, reached at out=−in
=�� /6.

B. Excitation position dependence

Here we follow the same logic as in Sec. VI C, but instead
of Eqs. �6.7a�, �6.7b�, and �6.7c� we have

dID

dt
=
�K

9�� e2

c �2v
c
� �

−$

$

dYdXdyee
−4�	/v��X2+ye

2

�
X2�X sin in + ye cos in�2

�X2 + ye
2�3

� �
0

�X2+ye
2

d%ind%in� e−i�
ph/v��%in−%in� �

�Ein� %inX

�X2 + ye
2
,Y + ye −

%inye

�X2 + ye
2�

�Ein
� � %in� X

�X2 + ye
2
,Y + ye −

%in� ye

�X2 + ye
2� , �7.4�

where �X ,Y� is the point where the phonon is emitted. As in
Sec. VI C, we expand in the spatial derivatives of Ein�r�, and
obtain Eq. �6.9� with l2 given by �actually, the result depends
slightly on the polarization; here we choose unpolarized de-
tection and excitation polarization along the edge, in=� /2�,

l2
2 = �	

2 5 ln��	/�ph� − 3 · 214/�45��2

48 ln2��	/�ph�
+ O��ph

2 � . �7.5�

This expression reproduces the experimental value l2
=14 nm if �	=120 nm �again, �ph=4 nm is taken�.

VIII. RAMAN SCATTERING ON A FRAGMENTED EDGE

In this section we consider the Raman scattering on an
edge consisting of armchair and zigzag segments whose typi-
cal length de significantly exceeds the electronic wavelength,
de���, where ��=2v /
in. This is an intermediate case be-
tween the two limiting cases considered in Sec. VI and VII.

Only armchair segments contribute to the Raman
process.15 Moreover, contributions from different segments
add up incoherently. Thus, we first focus on the contribution
of a single armchair segment, placed at x=0, −de /2'y
'de /2 �as before, graphene is assumed to occupy the half-
space x�0�. The electronic Green’s function corresponding
to the reflection from a single armchair segment can be easily
written from the Huygens-Fresnel principle, Eq. �3.8�, if one
approximates its value on the boundary by that for an infinite
perfect armchair edge,

G�r,r�;�� = G0�r − r�,�� − iv�
−de/2

de/2

dye

�G0�x,y − ye;���xG0�x�,ye − y�;���y�y .

�8.1�

This approximation ignores the change of the exact wave
function within the distance ��� from the ends of the seg-
ment, which gives a small error if de���. In fact, it is the
standard approximation for the study of diffraction in
optics.41

Using this Green’s function, we obtain the following ex-
pression for the matrix element corresponding to emission of
a phonon in an arbitrary point �X ,Y�:

M = −��K

2

e2v
�2
in

�
−$

$ d�

v
� d2rind2rout�

−de/2

de/2

dye

���
in − ���
out − ���2

v4�in�out�in� �out�
ei#in+i#out

� cos
(in − (out

2
sin

2out + (out� − (out

2

� cos
(in� − (out�

2
sin

2in + (in� − (in

2
, �8.2a�

�a = �xa
2 + �ya − ye�2, �8.2b�
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�a� = ��X − xa�2 + �ya − Y�2, �8.2c�

(a = arctan
ya − ye

xa
, (a� = arctan

ya − Y

X − xa
, �8.2d�

#a =
��� + i	

v
�a +

�
a − �� + i	

v
�a�, �8.2e�

where a is either in or out. It is convenient to use the paraxial
approximation with respect to the axis connecting the points
�0,ye� and �X ,Y�. In this approximation we expand

�a + �a� �
X

cos (0
+

X cos3(0

xa�X − xa�
�ya − ya0�2

2
, �8.3a�

(a � (0 +
ya − ya0

xa
cos2 (0, �8.3b�

(a� � − (0 +
ya − ya0

X − xa
cos2 (0, �8.3c�

ya0 = xa tan (0, tan (0 =
Y − ye

X
. �8.3d�

Integrating over rin , rout in the usual way, we obtain

M = − ie2��K

2
�

−de/2

de/2

dye
sin�
phX/�2v cos (0�

phX/�2v cos (0�

� exp��i

in + 
out

2
− 2	� X

v cos (0
�

�sin�in − (0�sin�out − (0� . �8.4�

This integral can be calculated analogously to the standard
diffraction integral in optics.41 According to Eq. �5.10a�, the
integrated intensity into the full solid angle 4�, summed over
two polarizations of the emitted photon, and integrated over
R, is given by

ID =
8�K

3
� e2

c
�2v2

c2

v

inLx

de

Ly


in
2


ph
2

��sin2 in ln

ph

2 + �4	�2

�4	�2 + cos2 in

��
ph
2


in
2 ln

in


ph
+

2v

inde

ln

ph

2 + �4	�2

�4	�2 �� . �8.5a�

This expression is analogous to Eq. �6.5b�, weighted by the
factor de /Ly. The coefficient at the last term, �cos2 in, de-
termines the minimum of the intensity at in=0 and has two
contributions: the one corresponding to the infinite edge, and
the one due to the finite size of the segment. The latter one is
dominant unless de� �v /
in��
in /
ph�2�50 nm for 
in
=2 eV. Still, as long as 
inde /v�1, the ratio between the
intensities for the parallel and perpendicular polarizations is
large. If we use Eq. �5.10b� for the intensity in a solid angle
oout in the presence of an analyzer, we obtain

ID = 4�K
oout

4�
� e2

c
�2v2

c2

v

inLx

de

Ly


in
2


ph
2

��sin2 in sin2 out ln

ph

2 + �4	�2

�4	�2

+ �sin2�in + out� +
1

2
sin 2in sin 2out�

�
v

inde

ln

ph

2 + �4	�2

�4	�2 + cos2 in cos2 out

��
ph
2


in
2 ln

in


ph
+

v

inde

ln

ph

2 + �4	�2

�4	�2 �� . �8.5b�

Equations �8.5a� and �8.5b� describe the contribution of a
single armchair segment to the Raman intensity. To obtain
the contribution of the whole edge, it is sufficient to multiply
these expression by the total number of such segments and
replace de by its average, if all segments have the same ori-
entation. It is crucial, however, that up to three different ori-
entations of armchair segments are possible, at the angle � /3
to each other, as discussed by the author and co-workers in
Ref. 19.

Let us first consider a measurement in the absence of an
analyzer. Since the intensity is a bilinear form of the polar-
ization vector ein, it can always be written in the form

I�in� � cos2�in − max� + � sin2�in − max�

=
1 + �

2
+

1 − �

2
cos�2in − 2max� , �8.6�

where max is the angle where the intensity is maximum and
� is the ratio between the intensities in the minimum and in
the maximum. Equation �8.5a� corresponds to max=� /2 and
small ��1 due to the quantum diffraction.

Let the edge have N0 armchair segments oriented along
the y direction, such as the one considered above, and N�
segments oriented at �� /3 to the y axis. Note that the av-
erage direction of the edge may still be arbitrary, as it de-
pends on the distribution of zigzag segments too. Let each
segment be characterized by the same values of � and max,
when the latter is measured with respect to the corresponding
normal. Adding the contributions, we again obtain an expres-
sion of the form of Eq. �8.6�, but with different values of
parameters,

N0I�in� + N+I�in − �/3� + N−I�in + �/3�

� cos2�in − ̃max� + �̃ sin2�in − ̃max� , �8.7a�

̃max = max +
1

2
arctan

�3�N+ − N−�
2N0 − N+ − N−

, �8.7b�

�̃ =
�1 + ��Ntot − �1 − ��Ñ

�1 + ��Ntot + �1 − ��Ñ
, �8.7c�

Ñ � �Ntot
2 − 3�N+N− + N0N+ + N0N−� , �8.7d�
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Ntot � N0 + N+ + N−. �8.7e�

Inspection of Eq. �8.7b� shows that �̃�1 if and only if �i�
��1 and �ii� Ntot− Ñ�Ntot. The latter condition is equiva-
lent to having one of N0 , N+ , N− to be much larger than the
others. If these conditions hold, we can write �assuming that
N0�N+ ,N− for concreteness�

�̃� � +
3

4

N+ + N−

N0
. �8.8�

In the opposite case N0=N+=N− we have �̃=1 so that isot-
ropy is fully restored and no signatures of quantum diffrac-
tion are left.

An analogous summation can be performed in the pres-
ence of an analyzer in the general case, but the final expres-
sions are very bulky and not very informative. The qualita-
tive conclusion is the same: the terms which were small
compared to the leading term sin2 in sin2 out grow as one
adds segments with different orientations. At N0=N+=N− the
isotropy is restored,

sin2 in sin2 out + sin2�in − �/3�sin2�out − �/3�

+ sin2�in + �/3�sin2�out + �/3�

=
3

8
sin2�in − out� +

9

8
cos2�in − out� , �8.9�

and signatures of the quantum diffraction are lost.
Let us focus on the special case when the average direc-

tion of edge is zigzag, and it is symmetric on the average,
N+=N0, N−=0. Then we have

ID � sin2 in sin2 out + sin2�in −
�

3
�sin2�out −

�

3
� + O���

=
3

8
+

3

4
cos2�in − out� − cos2�in −

�

6
�cos2�out −

�

6
�

+ O��� . �8.10�

The maximum of intensity is reached when both polariza-
tions are along the average direction of edge. For the unpo-
larized detection, we add the contributions with out=0 and
out=� /2 and obtain the ratio between the minimum and the
maximum intensity to be 1 /3+O���; if an analyzer is used
and in=out, we obtain �̃=1 /9+O���. These findings agree
with the available experimental data.18,19

The dependence of Eq. �8.10� has a remarkable property:
at in=0, out=� /3 �or vice versa� the leading term vanishes
and ID=O���, i.e., the quantum limit is still accessible. In
fact, the same will be true for any edge with only two orien-
tations of the segments �i.e., for N−=0, but N0�N+, gener-
ally speaking�. The ratio of intensity in this minimum to the
maximum without analyzer is given by

�̃ =
2

Z
� v

inde

+

ph

2

4
in
2 ln

ph


in
�ln

ph

2 + �4	�2

�4	�2 �−1� ,

�8.11a�

Z � 1 +
�N0

2 + N+
2 − N0N+

N0 + N+
. �8.11b�

IX. CONCLUSIONS

We have studied scattering of Dirac electrons on a
graphene edge. For a translationally invariant edge �such as
zigzag or armchair or another edge with a certain spatial
period�, the reflection can be described by an effective low-
energy boundary condition for the electronic wave
function.26,27 For edges which are rough on the atomic scale
we have proposed a random-matrix model which describes
random scattering of electrons on the edge, respecting the
particle conservation and time-reversal symmetry. Essen-
tially, each point of the edge acts as an independent point
scatterer with a random rotation of the valley state. We have
also considered edges consisting of zigzag and armchair dis-
tinct segments longer than the electron wavelength, each seg-
ment can be treated as a piece of an ideal edge, while the
small corrections due to quantum diffraction, can be found
using the Huygens-Fresnel principle for Dirac electrons,
analogously to the standard treatment of diffraction in the
classical optics.

Next, we have calculated the intensity of the edge-
induced D peak in the Raman-scattering spectrum of
graphene. It is shown how the quasiclassical character of the
electron motion manifests itself in the polarization depen-
dence of the intensity. For an ideal armchair edge the maxi-
mum of intensity corresponds to the case when both the po-
larizer and the analyzer are along the edge, and the large
ratio of intensities in the maximum and the minimum turns
out to be determined by the quantum corrections to the qua-
siclassical motion of the photoexcited electron and the hole.
For an edge consisting of randomly distributed zigzag and
armchair segments of the length significantly exceeding the
electron wavelength, the effect of quantum diffraction can be
masked by the presence of armchair segments of different
orientations. The maximum and the minimum of the inten-
sity are determined by the number of the armchair segments
with different orientations, rather than the average direction
of the edge. If only two orientations of armchair segments
are present in the edge, the quantum diffraction limit can still
be probed by a careful choice of the polarizer and the ana-
lyzer �the polarizer should be oriented perpendicularly to one
of the armchair directions, the analyzer perpendicularly to
the other one�. For an edge, rough at the atomic scale, no
segments can be identified, and the intensity reaches its
maximum for the polarization along the average direction of
the edge. The ratio of the maximum and the minimum inten-
sity is determined by the ability of the edge to scatter elec-
trons at oblique angles.

As the whole Raman process is edge assisted, one can
pose the question about the characteristic length scale which
restricts the process to the vicinity of the edge. We find that
the answer is not unique, and the length scale depends on the
specific observable under study. If one is interested in the
total intensity or its polarization dependence, the effective
length scale is v /
ph �v being the electronic velocity and 
ph
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the phonon frequency�. However, if one makes a spatially
resolved experiment, measuring the dependence of the inten-
sity on the position of the excitation spot, the relevant length
scale is the electron inelastic-scattering length v / �2	�. We
have thus found a qualitative agreement with the interpreta-
tion of Ref. 16, but we argued the inelastic-scattering length
found in that work is too large to be consistent with other
available information on electron inelastic scattering in
graphene.
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APPENDIX A: SCATTERING MATRIX FOR AN EDGE

The representation of the four-column vector �, natural
for scattering problems, is that of Ref. 62, Eq. �3.4�. For
four-column vectors which can be represented as a direct
product

�
x1y1

x2y1

x1y2

x2y2

� � �x1

x2
� � �y1

y2
� � �x1

x2
� � �y1(K + y2(K�� ,

�A1�

the � matrices act on the x variables, while the � matrices
act on the y variables. The basis in the valley subspace is
denoted by (K, (K� for future convenience.

To keep the formulas compact we assume that the edge is
along the y direction and graphene is occupying the half-
space x�0, i.e., n=ex. The average orientation of a disor-
dered edge with de�a does not have to be correlated with
any crystallographic direction, so the description is equiva-
lent for all orientations. Thus, expressions for a general ori-
entation of the edge are obtained by replacing the coordi-
nates by x→n ·r, y→ �n�rz, and the polar angles by 
→+n.

Let us label the eigenstates of the problem by three quan-
tum numbers: �i� �, the energy of the electron; �ii� py, the y
component of the momentum of the incident plane wave
�obviously, �py�� ��� /v�, and �iii� �, the valley index �we
write �=�1 for K and K�, respectively�. The most general
wave function of such an eigenstate has the form

��,py,��x,y� =
eipyy−ipxx

�LxLy

� ���
vpx
�� �,py,�

+ 	
py�

Spy�py

��� eipy�y+ipx�x

�LxLy

� ���
vpx�
�� �,py�,��,

�A2a�

px � ���/v�2 − py
2, px� � ���/v�2 − �py��

2, �A2b�

	
py�

� �
−���/v

���/v Lydpy�

2�
, �pypy�

=
2�

Ly
��py − py�� , �A2c�

�� �,py,� =
1
�2
� ei�py

−��/2

ei��−py
�/2 sgn �

� � (�, �A2d�

�� �,py,� = �y�
�
�,py,� =

1
�2
�e−ipy

/2 sgn �

eipy
/2 � � (�, �A2e�

py
= arctan

py

px
, −

�

2
' py

'
�

2
. �A2f�

The prefactor ���� / �vpx� in Eq. �A2a� fixes the component of
the probability current perpendicular to the boundary to be

jx=−v sgn � / �LxLy� for the incident wave.64 Finally, Spy�py

��� are

the scattering matrix elements, which may depend on �. Note
that py

=py�
corresponds to the specular reflection. The

wave functions ��,py,��x ,y� are orthogonal,

�
−$

$

dy�
0

$

dx��,py,�
† �x,y����,py�,���x,y�

=
2�v
Lx
��� − ����pypy�

����, �A3�

provided that the scattering matrix is unitary,

	
py�,��

�Spy�py

��� ��Spy�py�
���� = �����pypy�

. �A4�

The same condition ensures the conservation of the flux, i.e.,
that the current jx=v sgn � / �LxLy� for the scattered part of
wave function �A2a�. Reflection from a regular edge with

wave function given by Eq. �4.6�, corresponds to Spy�py

���

=�py�py
(��

† S�(�.
The time-reversal symmetry imposes another condition on

the scattering matrix �reciprocity condition�. Namely, the
time-reversed wave function Ut��,py,�

� �x ,y� describes an
eigenstate of the problem, and thus it must be a linear com-
bination of ��,py�,���x ,y� with different py�, ��. Noting that

Ut�
�
�,−py,−�
� = i��� �,py,�, �A5a�

Ut�
�
�,−py,−�
� = − i��� �,py,�. �A5b�

we obtain the reciprocity condition,

Spy�py

��� = − ���S−py,−py�
−�,−�� , �A6�

which can also be written in the matrix form as Spy�py
=

−�yS−py,−py�
T

�y, where ST denotes the 2�2 matrix transpose.

To relate the scattering matrix to the T matrix in Eq.
�4.12�, we compare the x�v / ��� asymptotics of the corre-
sponding wave functions. The Green’s function G0�r−re ,��
entering Eq. �4.12� can be represented as follows:
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G0�x,y − ye,�� = �
−$

$ d��

2�v
�

−����/v

����/v dpy

2�

����
vpx

eipy�y−ye�

� − �� + i0+ sgn �

�	
�

��� ��,py,��
�
��,py,�
† eipxx

+ �� ��,py,��
�
��,py,�
† e−ipxx� , �A7�

where we suppressed the damping 	�→0+ and denoted px

����� /v�2− py
2�. To determine the x�v / ��� asymptotics of

the Green’s function, we shift the �� integration contour in
the upper �lower� complex half-plane at ���0 ����0� for
the term �eipxx, and in the lower �upper� half-plane at ��
�0 ����0� for the term �e−ipxx. The magnitude �� of the
shift is such that v /x���� ���� As a result, �i� the contribu-
tion from the term �e−ipxx will be exponentially small except
for the small region near zero, �����v /x; �ii� the contribution
from the term �eipxx will be determined by the pole ��=�
+ i0+ sgn �, the rest of the contour contributing an exponen-
tially small quantity; �iii� the contribution from �����v /x
will be small as v / ����x�. Thus, at x�v / ��� we arrive at

G0�x,y − ye,�� =
i

v
�

−���/v

���/v dpy

2�

�

vpx
eipy�y−ye�+ipxx

�	
�

�� �,py,��
�
�,py,�
† . �A8�

Substituting this expression and the first term of Eq. �4.6�
into Eq. �4.15�, and comparing the result with last term of
Eq. �4.6�, we obtain the relation

Spy�py

��� =
i sgn �

v
� dye

Ly
e−i�py�−py�ye

�
�� �,py�,��

† T�py�
,� − py

;ye��� �,py,�

�cos py�
cos py

. �A9�

Here py�
is the polar angle of the direction s, and �−py

is
the polar angle of the incident momentum p, directed toward
the edge. Using Eqs. �A5a� and �A5b�, one can establish the
equivalence between the reciprocity condition, Eq. �A6�, and
Eq. �4.13�. Using the unitarity condition, Eq. �A4�, one fixes
the prefactor �v / ��� in front of the �-function in Eq. �4.14d�.

APPENDIX B: INTEGRALS OF SEC. VI B

First, let us focus on Eq. �6.3a� for M�. Upon integration
over yin, yout it takes the following form:

M� =
e2


in

�4�Kv
i�

�
−$

$ d�

v
�

0

X

dxindxoute
i#x−2	X/v

� � xin + xout

���
+

X − xin

�
in − ��
+

X − xout

�
out − ���
−1/2

, �B1a�

#x =
���
v

�xin + xout� +
�
in − ��

v
�X − xin� +

�
out − ��
v

�X − xout� .

�B1b�

If one neglects the square root and integrates first over xin,
the energy is constrained to be ��
in /2 with the precision
�v /X. If one integrates over xout, then ��
out /2 �which is
not inconsistent with the previous condition as long as X
�v /
ph�. If one also removes the moduli and integrates over
�, then xin+xout�X.

To implement these observations more rigorously, let us
introduce new variables,

x̃ =
xin + xout − X

2
, x0 = xin − xout, �B2a�

�̃ = � −

in + 
out

4
, �B2b�

#x = 4
�̃x̃

v
−

phx0

2v
+

in + 
out

2v
X . �B2c�

Recalling that the typical scale of the �̃ dependence of the
rest of the integrand is 
in, and that of the x̃ dependence is X,
we rewrite

4
�̃x̃

v
=

inX

v
� �̃

in

+
x̃

X
�2

−

inX

v
� �̃

in

−
x̃

X
�2

. �B3�

Taking the two expressions in the brackets as new integration
variables, we can use the stationary phase approximation jus-
tified by 
inX /v�1. As a result, the integral is contributed
by ��̃���
inv /X�
in and by �x̃���Xv /
in�X. Thus, in the
rest of the integrand they can be simply set to zero, i.e., we
approximate e4i�̃x̃/v���v /2����̃���x̃�. The remaining integra-
tion over x0 is elementary,

�
−X

X

dx0�
−�X−�x0��/2

�X−�x0��/2

dx̃�
��̃��
in/2

d�̃

v
ei#x

� �ei�
in+
out�X/�2v�sin�
phX/�2v�

ph/�2v�

. �B4�

For the integral in Eqs. �6.6a� and �6.6b� we have:

x̃ =
xin − xout − X

2
, x0 =

xin + xout − X

2
, �B5a�

�̃ = � −

in + 
out

4
, �B5b�

#x� = − 2
�̃x̃

v
+

phx0

v
+

inX

v
. �B5c�
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�
��̃��
in/2

d�̃

v
�

0

X

dx̃�
−x̃/2

x̃/2

dx0ei#x� = ei
inX/v�
��̃��
in/2

vd�̃

2
ph

� � e−i�2�̃−
ph/2�X/v − 1

2�̃ − 
ph/2
− �
ph → − 
ph�� . �B6�

If we extend the limits of the �̃ integration to infinity, the
integral vanishes by analyticity. Thus, it is determined by the
region ����
in and can be estimated as �v /
in.

Now let us pass to the derivation of Eq. �6.4b� for M�.
The difference from the previous case is that integration over
yin, yout in the derivation is more subtle. Namely, we encoun-
ter oscillating integrals of the kind �y2ei)y2

dy. This integral
is assigned the value �� /4�−i)�−3/2, which may be under-
stood as the analytical continuation from the upper complex
half-plane of ). One may argue that since the integral is
divergent for real ), it is determined by �y��1 /�Im ) which
are not small, so the expansion to y2 both in the exponential
and in the pre-exponential factor is not valid.

Let us write down the expression for the matrix element
without using the paraxial approximation �we omit the 1 /�
terms of the expansion in Eq. �3.7� as they do not produce y2

terms and do not represent any convergence problem,

M =� i�K

�3v

e2


in
�

−$

$ d�

v
� d2rind2rout cos

2 − 3

2

� sin
2in + 1 − 2

2
sin

2out − 1 − 3

2

� e�i���−	��1/v+�i�
in−��−	��2/v+�i�
out−��−	��3/v

����
in − ���
out − ����
�1�2�3

. �B7�

The distances �1,2,3 and the angles 1,2,3 are shown in Fig. 8.
Again, integration over � /v gives effectively ���1−�2−�3�,
so the exponential in the integrand becomes
e�i
in−2	��2/v+�i
out−2	��3/v. The phase of this exponential is rap-
idly oscillating, and the stationary phase condition gives pre-
cisely yin, yout→0. The straightforward application of the
stationary phase method for in=out=0 is impeded by the
presence of two sine functions in front of the exponential.

First of all, let us check the convergence of the integral at
large distances, i.e., assuming rin, rout�X. Then it is conve-
nient to use the polar coordinates for rin, rout whose polar
angles are almost �+2 , �+3. The � function fixes 2

=�−1, 3=�+1. We can set X=0 everywhere except the
Jacobian,

�1 � rinrout −
rinrout

2�rin + rout�
�2 + 3�2, �B8a�

�2,3 � rin,out + X cos 2,3, �B8b�

���1 − �2 − �3� ��rin + rout

Xrinrout
��2 + 3� . �B8c�

This gives a finite value,

M =� i�K

�3v

e2


in
�

−�/2

�/2

d1� rindrinroutdrout

��rin + rout

Xrinrout

� �
in/2�3

�rin + rout�rinrout

� e�i
in−2	�rin/v+�i
out−2	�rout/v

�cos 1 cos�in + 1�cos�out − 1�

�� i�Ke4

8�3

v

inX

v

in

��2

3
sin in sin out −

4

3
cos in cos out� . �B9�

Note that for any polarization it is smaller than M� from Eq.
�6.4a� by a factor 
ph /
in.

Thus, we are facing a situation of the kind

F�)� = �
−$

$

f�y�ei)#�y�dy , �B10�

where �i� the function #�y� is growing as �y� at �y�→$ and
has an extremum at y=0, where it can be expanded as
#�y�=#�0�+#��0�y2 /2+O�y4�, �ii� ) is large and is as-
sumed to have a positive imaginary part, and �iii� f�y�
= f��0�y2 /2+O�y3� at y→0, while the behavior of the func-
tion f�y� at �y�→$ is such that the in the limit Im )→0 the
integral F�)� remains finite. Then F�)� is analytic in the
upper complex half-plane of ). Thus, the expansion

F�)� =
��/2f��0�

�− i)#��0�3/2 + O��− i)�−5/2 , �B11�

established for large positive imaginary ), holds in the whole
upper half-plane, including the vicinity of the real axis. The
two-dimensional integration over yin, yout, leading to Eq.
�6.4b� is fully analogous.

APPENDIX C: DETAILED EXPRESSIONS FOR SEC. VI C

Note that length l2 is not well defined in the general case.
Namely, for an arbitrary kernel K�x ,x�� and an arbitrary
shape of Ein�x�, the expansion in the derivatives of Ein�x�
does not automatically “wrap” into the expansion in the de-
rivatives of w�x�, Eq. �6.9�. However, l2 can be defined in
two particular cases which are most important for us. It is
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� �
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� �
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rin
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ρ

ρ

2

3

1
ρ

ϕ
2

3
ϕ

ϕ
1

FIG. 8. �Color online� Geometry corresponding to Eq. �B7�. The
solid black arrows show the vectors �1, �2, and �3.
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convenient to introduce an auxiliary notation: for an arbitrary
function F�x ,x�� we define



F�x,x���� � �
0

$

F�x,x��K�x,x��
dxdx�

l0
2 − F�l1,l1� .

�C1�

One case when the length l2 can be defined is when the
kernel K�x ,x�� is such that



x2�� + 

�x��2�� = 2

xx��� , �C2�

then one can set l2=�

xx���. For the kernel given by Eq.
�6.7c� this property holds in the limit �	��ph,

�
0

$

x2K�x,x��dxdx� = − 2�ph
4 ln

�	
2 + 4�ph

2

4�ph
2

+ �	
2�ph

2 �	
4 − 4i�	

3�ph + 20�	
2�ph

2 + 32�ph
4

4��	
2 + 4�ph

2 �2 ,

�C3�

�
0

$

xx�K�x,x��dxdx� = �ph
4 ln

�	
2 + 4�ph

2

4�ph
2 +

�	
2�ph

2

4

�	
2 − 4�ph

2

�	
2 + 4�ph

2 ,

�C4�

The second case when l2 can be defined is the Gaussian
profile Ein�x��e−�x − x0�2/�2L2�, which has a special property

Ein� �x�Ein�x�= �Ein� �x�2− �Ein�x�2 /L2. Then the difference be-
tween the left-hand and the right-hand sides of Eq. �C2� can
be absorbed in the overall coefficient, so that instead of Eq.
�6.7c� we have its slightly modified version:

Ix0
= Al0

2�w�l1 − x0� +
l2
2

2
w��l1 − x0�� + O��3/L3� ,

�C5a�

A = 1 −


x2�� + 

�x��2�� − 2

xx���

4L2 , �C5b�

l2
2 =



x2�� + 

�x��2�� + 2

xx���
4

=
�	

2��	
4 + 10�	

2�ph
2 + 8�ph

4 �
4��	

2 + 4�ph
2 �2 �ln

�	
2 + 4�ph

2

4�ph
2 �−1

−
�	

6

4��	
2 + 4�ph

2 �2�ln
�	

2 + 4�ph
2

4�ph
2 �−2

−
�ph

2

2
. �C5c�
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