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We discuss the effect of a charged impurity on the qubit encoded in the two low-energy states of an
electrostatically defined triple quantum dot with one-electron spin in each dot. The two qubit levels are
identified with the two opposite directions of the motion of a minority spin. The effect of the charged impurity
on the coded qubit is mapped onto the problem of an effective spin in a random magnetic field. The effective
magnetic field is related to exchange rather than Coulomb interaction which ensures stability of the coded qubit
with respect to charge fluctuations.
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I. INTRODUCTION

There is currently an interest in exploiting electron spin
for nanospintronic1 and quantum information processings.2–5

The advantages of electron-spin-based qubits are long coher-
ence times6 and solid-state implementation with well-
established scalable semiconductor technology. In the
electron-spin-based qubits described here electron spins are
spatially localized in the plane of the GaAs/GaAlAs hetero-
junction using voltages applied to metallic gates at the GaAs
surface. Due to random charge fluctuations of remote
impurities7 the confining potential may fluctuate and affect
the electronic states of qubits. Hu and Das Sarma8 studied
the effect of charged impurity on two-qubit gate defined by
exchange interaction between two electron-spin qubits local-
ized in a double quantum dot. In this work we study the
effect of remote charged impurity on the qubit encoded in the
two low-energy levels of electrostatically defined triple
quantum dot �TQD� with one-electron spin each.9,10 A coded
qubit controlled by exchange interaction composed of three
spins has been proposed by Di Vincenzo et al.11 Its imple-
mentation in a triple lateral quantum dot with one electron
each has been proposed by some of us in Refs. 9 and 10 and
a triple quantum dot molecule with controlled electron num-
bers has been demonstrated recently.12,13

In this work, starting from the microscopic model, we
derive the Heisenberg Hamiltonian of a TQD in the presence
of a charged impurity. We find that the charged impurity
affects significantly the confining potential and the one-
electron spectrum of a TQD. By contrast, the logical qubit
states identified with the two opposite directions of the mo-
tion of a minority spin are coupled to charged impurity via
complex exchange interactions and only weakly affected by
its presence. By mapping the coded qubit into an effective
two-level system, i.e., spin, the charge fluctuation translates
into an effective fluctuating magnetic field. This allows us to
estimate the time scale T2

� for the charged impurity
fluctuation-induced decoherence. The charge fluctuation-
induced decoherence discussed here is specific to gated ar-
chitecture used in creating coded qubit and is in addition to
material specific individual spin decoherence mechanisms
due to interaction with nuclear spins14 and a combination of
spin-orbit interaction and phonons.15

The paper is organized as follows. In Sec. II we present
and discuss microscopic, Hubbard, and Heisenberg Hamilto-
nians of a coded qubit. In Sec. III we investigate the effects
of the charged impurity on the electronic states of the TQD
charged with one and with three electrons. In Sec. IV, we
map our coded qubit into an effective spin, translate charge
fluctuations into fluctuating magnetic field, and estimate a T2

�

for a model TQD device. Conclusions are given in Sec. V.

II. CODED QUBIT MODEL

A. Linear combination of harmonic-oscillator orbitals-
configuration-interaction microscopic model

For our microscopic calculation, we adopt the linear com-
bination of harmonic-oscillator orbitals-configuration-
interaction �LCHO-CI� method following our previous
work.10 With energy measured in effective Rydberg and
length in effective Bohr radius �see below� the dimensionless
Hamiltonian of Nel electrons confined in a two-dimensional
lateral TQD molecule in the presence of a charged impurity
is given by

ĤNel = �
i

�− �� i
2 + VTQD�r�i�� + �

i�j

2

�r�i − r� j�
− �

i

2

�r�i − R� imp�
,

�1�

where r�i is the �x ,y� position of ith electron, the first term is

the sum of one-electron Hamiltonians Ĥ1el
o , with VTQD�r�i� the

TQD potential, the second term accounts for the mutual Cou-
lomb interaction among electrons, and the third term de-
scribes interaction of electrons with charged impurity located

at R� imp= �Rimp,�imp,Zimp�. We denote the part of Eq. �1� with-

out the impurity term by ĤNel
o . The TQD potential VTQD is

approximated by three Gaussian potentials

VTQD�r�i� = − �
k=1

3

Vkexp�−
�xi−Xk�2+�yi−Yk�2

dk
2 � . �2�

Each Gaussian potential is characterized by depth Vk, width
dk, and center at �Xk, Yk�. With GaAs effective mass m�

=0.067me, dielectric function �=12.4, electron charge e, and
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Planck’s constant �, the effective Rydberg is Ry�

=m�e4 /2�2�2=5.93 meV and the effective Bohr radius is
aB

� =��2 /m�e2=9.79 nm. We consider impurity positions
such that the impurity-induced potential 2

�R� k−R� imp�
in any dot k

is much smaller than the amplitude of the electrostatically
generated confinement Vk. Our theory will be illustrated by
numerical results for a model TQD in GaAs with TQD pa-
rameters Vk=5.964 Ry� and dk=2.41805 aB

� and a distance
from the center of each quantum dot to the center of the
structure RTQD=2.8 aB

� .
Following Ref. 10, the molecular single-particle states are

written as linear combination of harmonic-oscillator �HO�
wave functions localized at each dot �LCHO�.10 For resonant
TQD with S-type HO wave function ��i� localized at ith dot
the generalized eigenvalue problem for Hamiltonian H1el

o

readily admits a solution in the form of Fourier transform of
localized orbitals

�kn� = An�i=1

3
exp�i 2�

3 n�i − 1����i�,n = − 1,0,1,

�k0� = 1/�3�1 + 2s����1� + ��2� + ��3�� ,

�k1� = 1/�3�1 − s����1� + ei2�/3��2� + ei4�/3��3�� ,

�k−1� = 1/�3�1 − s����1� + e−i2�/3��2� + e−i4�/3��3�� , �3�

where s is the overlap matrix element 	�i �� j�, i� j. The
molecular ground state �k0� is nondegenerate and the two
excited states labeled by wave vector k, �k1� and �k−1�, are
degenerate and correspond to electron moving either to the
left or to the right �charge current�.

With states i corresponding to the molecular states �ki�,
the properties of the Nel electron complex are described by
the Hamiltonian written in the second-quantized form

ĤNel = �
j

� j
0dj

+dj +
1

2�
ijkl

	ji�V̂�kl�di
+dj

+dkdl + �
ij

	i�V̂imp�j�di
+dj ,

�4�

where dj
+ �dj� creates �annihilates� an electron on the molecu-

lar single-particle state j �including spin� and � j
0 represents

the corresponding single-particle energy. The first term is the
sum of single-particle energies, the second sum accounts for

the mutual Coulomb interaction 	ij�V̂�kl� among electrons,

and the last sum represents the interaction 	i�V̂imp�j� between
electron and the positively charged impurity.

In the subsequent discussion, we focus on a coded qubit
with one electron in each quantum dot. The Sz=− 1

2 subspace
consists of nine configurations built with three electrons dis-
tributed on the molecular single-particle levels. In the ab-
sence of charged impurity, total wave vector Ki=−1,0 ,1, a
sum of the wave vectors of the three molecular orbitals �Eq.
�3�� of each configuration, is a good quantum number con-
served in Coulomb scattering. The scattering wave vectors
K’s which lie outside the Brillouin zone �−2� /3,2� /3� are
translated back by reciprocal-lattice vectors �2� /3�n. This
reduces the 9�9, Sz=− 1

2 , Hamiltonian matrix written in the
configuration basis 
�Ki�� to a block-diagonal matrix com-

posed of three 3�3 matrices, each of them corresponding to
a value of K=−1,0 ,1, respectively. It follows that the eigen-
states of the Hamiltonian have well defined wave vector K
and can be written as a linear combination of only configu-
rations with the same K : �Ki

0�=� j=1
3 Aj

K,i�Kj�.
Figure 1 shows the energy levels of the coded qubit in the

absence of impurity.9,10 The energy levels are labeled by the
corresponding eigenvectors �Ki

0�. In terms of localized con-
figurations, the six highest levels are mostly composed of
doubly occupied configurations whereas the three lowest en-
ergy levels are mainly composed of singly occupied configu-
rations

�01
0� =

1
�3

�c1↑
+ c2↓

+ c3↓
+ �0� + c1↓

+ c2↑
+ c3↓

+ �0� + c1↓
+ c2↓

+ c3↑
+ �0�� ,

�11
0� =

1
�3

�c1↑
+ c2↓

+ c3↓
+ �0� + ei2�/3c1↓

+ c2↑
+ c3↓

+ �0�

+ ei4�/3c1↓
+ c2↓

+ c3↑
+ �0�� ,

�− 11
0� =

1
�3

�c1↑
+ c2↓

+ c3↓
+ �0� + e−i2�/3c1↓

+ c2↑
+ c3↓

+ �0�

+ ei−4�/3c1↓
+ c2↓

+ c3↑
+ �0�� , �5�

where ci
+ �ci� creates �annihilates� an electron on the local-

ized HO single-particle orbital i. The state �01
0� in the K=0

subspace corresponds to the total spin S= 3
2 while the two

lowest energy coded qubit states, �11
0� and �−11

0�, have S= 1
2

and correspond to minority spin moving to the left or to the
right and hence correspond to spin current. The two coded
qubit states are separated by exchange gap 	 from the S= 3

2
spin-polarized state. In our example in Fig. 1, 	
=0.61 mRy�.

The effect of a charged impurity, the last term in Eq. �4�,
is to break the rotational symmetry and mix the electronic
configurations belonging to different total wave vectors K.
Hence the effect of impurity will be the mixing, i.e., deco-
herence of the two coded qubit states.

FIG. 1. The three low energy singly occupied states. The two
degenerate states form a coded qubit. Inset: energy spectrum of
three electrons in a resonant TQD, including singly and doubly
occupied states, grouped by total K=0,1 ,−1.

GIMENEZ et al. PHYSICAL REVIEW B 79, 205311 �2009�

205311-2



B. Hubbard and Heisenberg models

Following Ref. 16, we first establish the Hubbard Hamil-
tonian, including impurity potential and next derive the
Heisenberg spin Hamiltonian of the coded qubit. The Hub-
bard model is obtained by orthogonalizing the localized HO
orbitals and using them as the basis for the representation of
Hamiltonian �4�,

ĤHub = �



�
i=1

3

Eici

+ ci
 + �



�
i�j

tijci

+ cj
 + U�

i=1

3

ni↑ni↓. �6�

Here Ei is the on-site energy of the ith quantum dot due to
both the applied gate voltages and impurity potential, tij is
the tunneling between ith and jth dots created by both gate
voltages and impurity potential, U is the Coulomb repulsion
between two electrons in the same dot which we here assume
to be independent of the impurity, and ni
=ci


+ ci
 is the num-
ber operator for electrons with spin 
 in ith dot. The param-
eters entering the Hubbard Hamiltonian can be related to the

matrix elements of the one-electron Hamiltonian Ĥ1el and
overlap matrix elements

Ei = 	�i�Ĥ1el��i� + 2s̃�	�i�Ĥ1el�� j� + 	�i�Ĥ1el��k��

+ s̃2�	� j�Ĥ1el�� j� + 	�k�Ĥ1el��k� + 2	� j�Ĥ1el��k�� ,

tij = 	�i�Ĥ1el�� j� + s̃�	�i�Ĥ1el��i� + 	� j�Ĥ1el�� j� + 	�i�Ĥ1el��k�

+ 	� j�Ĥ1el��k�� + s̃2�	�k�Ĥ1el��k� + 	�i�Ĥ1el�� j�

+ 	�i�Ĥ1el��k� + 	� j�Ĥ1el��k�� , �7�

where s̃=
1

3
�

1

�1+2s
−

1

�1−s
� is defined with respect to localized

HO orbital overlap matrix elements s.

Next, we map the low-energy spectrum of the Hubbard
Hamiltonian into the Heisenberg Hamiltonian

ĤHeis = �
i�j

JijS� i · S� j . �8�

The Heisenberg Hamiltonian yields the coded qubit states
obtained via the LCHO-CI method. We compute the ex-
change constants Jij from the Hubbard Hamiltonian �6�
through perturbation theory in strong Coulomb interaction
regime �U� tij�. We find

Jij = 4
�tij�2

U
� 2

1 − �	Eij/U�2 , �9�

where 	Eij =Ei−Ej. In the absence of impurity all quantum
dot energies Ei are equal and hence all exchange constants
are equal. The presence of impurity leads to modifications of
both energy levels Ei and tunneling matrix elements tij, and
hence leads to different exchange interactions Jij for different
pairs of spins i and j. The changes in Jij depend on the ratio
of the impurity-induced difference in dot energies 	Eij to the
on-site Coulomb repulsion U.

III. EFFECT OF IMPURITY ON A CODED QUBIT

A. Effect of impurity on the one-electron spectrum

We now analyze the effect of a charged impurity, the last
term in Eq. �4�, on the one-electron spectrum. We only con-
sider impurity positions which weakly modify the confining
potential of the resonant TQD.

After some algebra, the one-electron Hamiltonian, written
in the basis of molecular states 
�k0� , �k1� , �k−1��, reads

H1el =��k0

0 + C00
ov�Ēimp + 2t̄imp� C01

ov��E˜

imp − �t˜

imp� C01
ov��E˜

imp − �t˜

imp��

C01
ov��E˜

imp − �t˜

imp�� �k−1

0 + C11
ov�Ēimp − t̄imp� C11

ov��E˜

imp + 2�t˜

imp�

C01
ov��E˜

imp − �t˜

imp� C11
ov��E˜

imp + 2�t˜

imp�� �k+1

0 + C11
ov�Ēimp − t̄imp�

� . �10�

The first terms in the diagonal, �kn

0 ,n=0,−1,1, give the en-
ergy of the molecular ground state �k0� and two degenerate
excited states �k−1� , �k+1�, respectively. All remaining terms

correspond to impurity effects. Here Ēimp= 1
3� j=1

3 Ej
imp is the

average shift of the energy levels due to impurity with Ej
imp

= 	� j�V̂imp�� j�. t̄imp= 1
3�i�j=1

3 tij
imp, i� j is the average shift of

the tunneling matrix elements due to impurity, with tij
imp

= 	�i�V̂imp�� j�. �E˜

imp= 1
3� j=1

3 �Ej
impei2�/3�j−1� is related to a

shift in quantum dot energy measured from the average shift

due to impurity �Ei
imp=Ei

imp− Ēimp and �t˜

imp= 1
3

��t23
imp+�t13

impei2�/3+�t12
impei4�/3� depends on deviation of each

tunneling matrix element from their average �tij
imp= tij

imp

− t̄imp, i� j. Coefficients C00
ov= 1

�1+2s� , C01
ov= 1

�1−s�1+2s
, and C11

ov

= 1
�1−s� , with s= 	�i �� j� , i� j, account for the nonorthogonal-

ity of the HO basis.
The effect of impurity potential on the one-electron spec-

trum is illustrated in Fig. 2 for a charged impurity located at
Rimp=3RTQD, �imp=� /3, and Zimp=4RTQD. We start on the
left of Fig. 2 with the one-electron spectrum in the absence
of impurity. We first consider the effect Eimp of impurity on
on-site energy levels shown as the second column in Fig. 2.
In the third column, we turn on the effect timp of impurity on
interdot tunneling. We see that these effects of impurity are
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to lower the energy of all levels proportional to the average

impurity shift Ēimp and increase the energy gap between
ground and excited states by 3 times the average impurity-
induced tunneling matrix element, 3t̄imp. In our numerical
example this shift is small due to the small overlaps between
localized orbitals �s=2.64�10−3�.

Next we consider the coupling of states �k1� and �k−1�
caused by the impurity potential in the fourth column of Fig.

2. The energy gap is given by 	�GAP
1el =2�C11

ov��E˜

imp+2�t˜

imp��.
Due to the small overlaps, i.e., �tij

imp�10−3�Ei
imp, the energy

gap created by impurity can be approximated by

	�GAP
1el � 2��E˜

imp�

=
2

3
��E1

imp −
E2

imp + E3
imp

2
2

+
3

4
�E2

imp − E3
imp�2.

�11�

If we neglect the coupling of the excited states to the �k0�
state which has much lower energy, we conclude that the
energy gap caused by the impurity is proportional to the
differences between the impurity on-site shifts Ei

imp

= 	�i�
−2

�r�−R� imp�
��i�. Making a Taylor-series expansion and keep-

ing only the first term we find that the energy shift due to the

impurity potential of dot i is Ei
imp� −2

�R� i−R� imp�
, where R� i is the

position of the center of dot i. Therefore the energy gap
created by the impurity is proportional to the differences be-
tween the values of the impurity potential at the center of
each dot. In the last two columns of Fig. 2 we compare the
approximate gap to the gap calculated by exact diagonaliza-
tion and we see that the two approaches agree very well.

Figure 3 shows the one-electron spectra of the TQD as a
function of impurity positions calculated by diagonalization
of the Hamiltonian �4� with Nel=1. The spectra show the
splitting of the doubly degenerate levels, its dependence on
the distance of the impurity from the TQD, and on the posi-
tion with respect to symmetry axis of the TQD. The charged
impurity modifies the one-electron spectra through direct
Coulomb interaction, which mixes states �k1� and �k−1� and
redistributes charge density on the dots as a function of
charged impurity positions. Hence, results from Fig. 3 indi-

cate that any quantum information processing schemes trying
to utilize the electron’s charge degree of freedom17,18 will
have to consider the decoherence channel induced by the
charge fluctuations.

B. Effect of impurity on the coded qubit spectrum

We calculate the eigenenergies and eigenvectors of the
coded qubit Hamiltonian in the presence of impurity �4� in
the basis of eigenvectors of the resonant TQD with three
electrons without the impurity, 
�Ki

0��, discussed in Sec. II.
The impurity matrix elements in the basis 
�Ki

0�� are calcu-
lated as a linear combination of the impurity matrix elements
in the basis of configurations 
�Ki��,

	Ki
0�V̂imp�Kj�

0� = �
p=1

3

�
q=1

3

Ap
K,iAq

K�,j	Kp�V̂imp�Kq�� , �12�

with

	Kp�V̂imp�Kq�� = 	0�dkp3↑
dkp2↓

dkp1↓� �
n=−1

1

�
m=−1

1

Ṽnm
impdkn

+ dkm
�

�dkq1↓
+ dkq2↓

+ dkq3↑
+ �0� ,

which is zero unless configurations �Kp� and �Kq�� differ at
most in the spin orbital of only one of the three electrons.
Ap

K,i are the coefficients of the three-electron eigenfunctions


�Ki
0�� written in terms of the configurations 
�Ki�� and Ṽnm

imp

= 	kn� −2

�r�−R� imp�
�km� are the molecular impurity matrix elements.

Figure 4�a� shows the splitting of low-energy levels
�black lines� of a coded qubit obtained by the diagonalization
of the full Hamiltonian for various distances between the
TQD and the charged impurity. Figure 4�b� shows the same
splitting but as a function of the positions with respect to
symmetry axis of the TQD.

No Impurity
x2

impE
x2

impt
x2

Coupling
±1=k Impurity

Interactions

En
er
gy
(R
y*
)

FIG. 2. Evolution of the energy levels of one electron in a triple
quantum dot in the presence of a charged impurity as function of
interaction type. See text for details. “x2” denotes a doubly degen-
erate level.

FIG. 3. Energy spectrum of one electron in a TQD in the pres-
ence of an impurity located in the plane Zimp=4RTQD as a function
of Rimp and �imp. Rimp is given in units of RTQD. �imp is measured
from the symmetry axis that goes through the center of a quantum
dot. The zero energy is set to the ground level of the resonant TQD.

GIMENEZ et al. PHYSICAL REVIEW B 79, 205311 �2009�

205311-4



The full Hamiltonian containing all doubly and singly oc-
cupied configurations can be approximated by the 2�2
Hamiltonian in the subspace of the two logical qubit levels
�11

0� and �−11
0�. The spectra obtained by diagonalizing this

approximate 2�2 Hamiltonian, shown as shorter lines in
Fig. 4, agree well with results of the full calculations.

Let us now turn to the analysis of the effects of charged
impurity on the coded qubit described by the Heisenberg

model. For a system of three localized spins with total
Sz=− 1

2 we can build a basis equivalent to the eigenvectors of
Eq. �5�, in terms of states describing minority spin moving to
the left, to the right, or being stationary, as


�KHeis�� = 
�1Heis� = 1
�3

��↑↓↓� + ei2�/3�↓↑↓� + ei4�/3�↓↓↑�� ,

�− 1Heis� = 1
�3

��↑↓↓� + e−i2�/3�↓↑↓� + e−i4�/3�↓↓↑�� ,


�0Heis� = 1
�3

��↑↓↓� + �↓↑↓� + �↓↓↑��� .

After some algebra, the Heisenberg Hamiltonian in this basis
reads

HHeis = �− 3/4Jav 3/2	� 0

3/2	 − 3/4Jav 0

0 0 3/4Jav
� , �13�

where Jav=
J12+J13+J23

3 , 	=
J23+ei2�/3J12+ei4�/3J13

3 , and the exchange
couplings are positive. Similarly to �01

0� in Eq. �5�, the basis
vector �0Heis� has S= 3

2 and does not couple to the S= 1
2 vec-

tors �1Heis� and �−1Heis�, which form the spin-coded qubit. For
a resonant TQD these two qubit states are degenerate, J’s are
equal and �	�=0, reproducing the results of microscopic cal-
culations. When the system is detuned by the charged impu-
rity the coded qubit levels are mixed and split, with the en-
ergy gap given by

	�GAP
3el = 3�	� =��J23 −

J12 + J13

2
2

+
3

4
�J12 − J13�2.

�14�

We see that the energy gap in the three-electron TQD
created by the impurity depends on differences in Jij, which
depend on �tij�2 and 	Eij through Eq. �9�. For a resonant
TQD, neglecting the dependence of tunneling matrix ele-
ments on impurity potential allows us to express the gap in
the coded qubit spectrum in terms of the exchange constant
in the absence of impurity, J0, and �	Eij /U�2,

	�GAP
3el = J0���	E23/U�2 −

�	E12/U�2 + �	E13/U�2

2
�2

+
3

4
��	E12/U�2 − �	E13/U�2�2

. �15�

We see that while the splitting of the single-particle spectrum
is proportional to differences of single-particle energies 	Eij,
the splitting of coded qubit levels is proportional to differ-
ences in �	Eij /U�2. Since 	Eij U, the energy gap created
by the impurity in the three-electron spectrum is several or-
ders of magnitude smaller than the gap created in the one-
electron spectrum. In other words, the direct Coulomb repul-
sion significantly modifies the charge distribution of the
TQD in single electron case. In the case of three highly lo-

calized electrons, the effect of charged impurity is to modify
the spin distribution of the TQD through much weaker ex-
change interactions.

IV. DEPHASING OF THE CODED QUBIT

A. Effective random magnetic fields

It has been shown in Sec II A that the two eigenstates of
the degenerate ground state of three electrons with Sz=− 1

2 in

(a)

(b)

FIG. 4. �Color online� Two lowest energy levels of three elec-
trons in a TQD in the presence of an impurity for different impurity
positions in the plane Zimp=4RTQD, with ground level normalized to
zero. Top: radius dependence for �imp=0. Bottom: angle depen-
dence for impurity Rimp=3RTQD.
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a triple quantum dot, �11
0� and �−11

0�, form a coded qubit.
State �0L�= �11

0� is identified with minority spin moving
clockwise and state �1L�= �−11

0� with minority spin moving
anticlockwise. Initialization of the qubit states is possible by
applying a magnetic field perpendicular to the TQD.19 In
Sec. III B we showed that the effect of the impurity on this
qubit can be described by the effective 2�2 Hamiltonian

Ĥqubit = �Eo + 	0L�V̂imp�0L� 	0L�V̂imp�1L�

	1L�V̂imp�0L� Eo + 	1L�V̂imp�1L�
 , �16�

where Eo is the energy of the qubit level in the absence of
impurity and the impurity matrix elements are calculated
with Eq. �12�. Hence the coded qubit is an effective spin S
= 1

2 with clockwise spin-current state �0L� corresponding to
spin up and counterclockwise spin-current state �1L� repre-
sented by spin down. In this picture the charged impurity

acts as an effective magnetic field B� eff. Since charge densities
of both qubit states are equal, the impurity couples to each of

them in the same manner, hence 	0L�V̂imp�0L�= 	1L�V̂imp�1L�. It

follows that the impurity effective magnetic field B� eff does

not have a z component. The in-plane component of B� eff

�	0L�V̂imp�1L� flips the spin and leads to dephasing of the
coded qubit. We have converted the charged impurity-

induced decoherence problem to a problem of dephasing of a
spin by a random magnetic field.20–22 We have shown how to
compute this effective field once the fluctuating impurity is
identified.

B. Estimation of T2
�

We now turn to estimate T2
� of the coded qubit due to the

fluctuating in-plane magnetic field.20,21 Following Ref. 7, on
average, we expect each charged impurity to last 1.0 s with a
quiet interval of 0.2 s between successive impurity appear-
ances. These experimental findings suggest that there is a
significant mismatch between charged impurity fluctuating
time scale and inherent coded qubit dynamics time scale,
which is characterized by 	�GAP

3el /�=O��s�. Hence we only
need to simulate the time evolution of the coded qubit in the
presence of a single charged impurity. First, we initialize a
coded qubit at t=0 in a given state. Next, we randomly select
position of impurity, its switch-on time Timp, and lifetime
�imp. We then simulate the time evolution of the coded qubit
up to certain time t� and measure its state. This constitutes
one complete numerical experiment in our study. We repeat
the same procedures N times; each time we initialize the
coded qubit in exactly the same state but let it evolve in the
presence of different charged impurity. The averaged time
evolution, based on these N numerical experiments, of the
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FIG. 5. �Color online� Top left: the x and y coordinates of 200 charged impurities randomly generated in a rectangular box restricted in
x, y, and z dimensions from −5 RTQD to 5 RTQD, from −5 RTQD to 5 RTQD, and from 4 RTQD to 8 RTQD, respectively. Circle of radius
1 RTQD around the origin outlines the size of the TQD device while the center of the TQD is located at the origin. The circled impurity is
used in experiment no. 5. Top right: The magnitudes of effective magnetic fields due to 200 charged impurities in the ensemble. The circled
effective magnetic field is used in experiment no. 5. Lower left: the fluctuation of the effective magnetic field in experiment no. 5 is specified
by T5

imp, the time it is switched on, and �5
imp, its lifetime. Lower right: the simulated time evolution of x component of Bloch vector, Sx�t�,

in effective magnetic field Bext+B5
imp, for experiment no. 5. In this study, we set Bext= 	Bimp�.
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off-diagonal density-matrix elements of the coded qubit suf-
fers exponential decay, which is characterized by T2

�.
Figure 5�a� shows the positions of N=200 randomly gen-

erated charged impurities used in this study. For each of
these 200 charged impurities, we perform LCHO-CI calcula-
tion to obtain the effective magnetic field as explained in
Sec. IV A. Figure 5�b� shows the distribution of effective
magnetic fields. Next, we specify the fluctuating aspects of
the effective magnetic field by assigning the lifetime �i

imp and
switch-on time Ti

imp to the ith charged impurity. The random
generations of �i

imp and Ti
imp are done with the mean of the

distribution equal to 1.0 and 0.2 s as extracted from Ref. 7.
At this stage, we have completely specified the fluctuating

magnetic fields due to charged impurities. We next solve the
Bloch equation of the coded qubit separately for each
experiment,

dSi

dt
= �Si � �Bi

imp�t� + Bext� , �17�

where Sx=�12+�21, Sy = i��12−�21�, and Sz=�22−�11, �ij are
density-matrix elements of the coded qubit, Bi

imp�t� is the
effective magnetic field due to ith impurity, Bext denotes the
effective external magnetic field, and � is effective gyromag-
netic ratio of the coded qubit inferred from ��Bi

imp�t���
=	�GAP

3el . Let us follow through the entire computational pro-
cedure for one particular impurity. In Figs. 5�a� and 5�b�, a
circle is drawn, respectively, around the charged impurity
position no. 5 and the associated effective magnetic field
derived from LCHO-CI calculation. Figure 5�c� shows the

B5
imp, which is turned on at T5

imp and lasts for �5
imp. Figure 5�d�

shows the time evolution of Bloch vector component Sx�t�
for the coded qubit in the presence of Bext+B5

imp and Bext

= 	Bimp�=�iBi
imp�t� /N. As shown in the figure, the coded qu-

bit always undergoes coherent time evolution even in the
presence of charge fluctuations. The dephasing of Bloch vec-
tor, similar to inhomogeneous broadening effects in NMR
characterized by T2

�, only emerges from averaging the time
evolutions of the coded qubit over N impurities, i.e., 	S�t��
=�iSi�t� /N.

To estimate T2
�, we fit 	S�t�� to the result of the time

evolution of Seff satisfying effective Bloch equation with
parameter T2

�,

dSeff

dt
= �Seff � Bext −

Seff,�

T2
� , �18�

where Seff denotes the effective Bloch vector and Seff,� de-
notes the effective Bloch vector perpendicular to the exter-
nally applied field. The value of T2

� is a function of 	Timp�,
	�imp�, and averaged distance of the charged impurity from
the TQD with dominant contribution from 	Timp�.

Figure 6 shows the simulated and fitted result of 	Sx�t�� in
the presence of external field Bext= 	Bimp�, with extracted
value T2

�=0.2s. These times are much longer than the re-
ported dephasing times of individual spins due to nuclear
spins.21,23,24

Time (s)

Sx

FIG. 6. �Color online� Oscillating curve represents the simulated time evolution of the averaged Bloch vector x component, �Sx�t��.
Decaying curve shows the envelope of the decaying oscillation for the x component of effective Bloch vector, Seff,x�t�.
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V. CONCLUSIONS

In conclusion, we discussed here the effects of a charged
impurity on the qubit encoded in the two low-energy levels
of an electrostatically defined triple quantum dot with one-
electron spin in each dot. The two qubit levels were identi-
fied with the two opposite directions of the motion of a mi-
nority spin. The effects of the random charged impurity on
the coded qubit were mapped onto the problem of an effec-
tive spin in a random magnetic field. The effective magnetic
field was computed as a function of impurity position. It was
shown that the effective magnetic field is related to varia-
tions of exchange interaction, which were demonstrated to be
orders of magnitude smaller than the impurity-induced varia-
tions of the one-electron levels. These results predict stability

of the coded qubit based on electron spin with respect to
random charge fluctuations. We estimate the inhomogeneous
dephasing time T2

� of coded qubit and find it to be much
longer than the dephasing times due to nuclear spins.
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