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Electronic transport through a quantum wire with an attractive impurity is investigated via the Feshbach
coupled-channel approach �in the three-channel approximation�. The impurity is modeled by a �-function
potential along the propagation direction while it is Gaussian in the transverse direction. For such an impurity,
it is well known that the transmission probability may exhibit a single Fano resonance �due to a zero-pole pair�
in each energy subband. It is shown here that varying the parameters of the impurity �such as its strength,
position, and lateral extent� may produce substantially different effects on the Fano resonance, depending on
the subband it occurs. In particular, the resonance widths and the asymmetry parameters of Fano line shapes
that occur in the first and second subbands are investigated and compared to each other. The temperature
dependence of the Fano resonances is also demonstrated. Furthermore, the effect of a transverse electric field
on the resonances is examined. It is shown that increasing the field strength from zero causes either the collapse
of the Fano profile in the first subband or the collapse of the Fano profile in the second subband, depending on
whether the electric field points in the negative or positive direction. Comparison of the three-with the two-
channel model is made.
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I. INTRODUCTION

When a discrete level interacts with a continuum of states,
a quasibound �resonant� state is created around the discrete
level, giving rise to asymmetric Fano line shapes. Such
asymmetric resonances have been treated theoretically in
various condensed-matter systems including electronic bal-
listic transport through quasi-one-dimensional �Q1D� sys-
tems �such as quantum wires and rings� with attractive
impurities.1–17 Fano resonances have also been observed ex-
perimentally in transport through mesoscopic systems with
embedded quantum dots.18–22 The Fano effect, a result of
quantum interference, is of great interest both as a basis for
the creation of new resonant nanoelectronic devices and for
revealing the quantum-mechanical wave nature of the charge
carriers. Resonance phenomena in narrow channels �or con-
strictions, defined by a split gate23� with impurities can also
lead to a connection between the line shape and the param-
eters of the impurity.13

Various types of impurity potential have been employed
for studying resonant electronic transport in uniform quan-
tum wires; for example, the short-range,2,4,8,14 the square
well,6 the Gaussian,11 and the Pöschl-Teller12,13 models. Usu-
ally the Fano resonance structure is investigated by employ-
ing the two-channel approximation, namely, by considering
coupling between the �first� propagating channel and the
bound state of the second channel. In this single-subband
regime, by varying the impurity parameters novel coherent
effects were predicted such as the collapse of the Fano line
shape6 and the so-called profile, or Fano q reversal,6,10,12,13,17

to name a few.
However the inclusion of a third channel, dominated by

its bound state, will give rise to a Fano resonance in the
second energy subband in addition to the Fano resonance in
the first subband. In this regime, the generally different cou-

pling strengths of the two bound states with the continuum
will lead to distinctly different behavior of the two Fano
resonances when the impurity parameters are varied. One
important issue, therefore, is in what manner do the reso-
nance characteristics of the two Fano line shapes differ when
varying the impurity parameters. This issue has been treated
partially in Ref. 13 because only two channels were em-
ployed while the impurity potential was taken to be an arbi-
trary function of the lateral coordinate. Specifically, the arbi-
trariness of the transverse potential did not allow for a
complete investigation of several effects of the impurity �es-
pecially those of the impurity position� on the resonance
structure.

Furthermore, it has been shown both experimentally24 and
theoretically25–28 that shifting the position of the impurity
with respect to the “walls” of the constriction causes drastic
change of the conductance. For instance, if a point attractive
impurity falls on the central axis of the channel, the conduc-
tance exhibits no resonance structure in the odd subbands,
that is, the resonances strongly depend on the impurity posi-
tion. The shifting of the impurity can be achieved by, for
example, applying different gate voltage to the two parts of a
split gate,24 which can be thought of as an applied electric
field in the transverse direction of the constriction. This
causes shifting of the confining potential, which is equivalent
to a “shifting” of the impurity in the opposite direction. It
becomes important, therefore, to understand how the reso-
nance characteristics are affected by a transverse electric
field.

In this paper we first outline the Feshbach theory29,30

which provides a proper treatment of transmission reso-
nances. We consider the case of one open and two closed
channels in a uniform quantum wire, the latter two being
dominated by their bound states. Feshbach’s approach has
been employed previously in the case of magnetic-field-
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induced coupling,5 and a similar two-channel approach31 was
used for the description of symmetric resonances. We then
apply the three-channel approach to the case of an impurity
potential which is short ranged �i.e., a � function� along the
propagation direction and having a Gaussian shape in the
transverse direction. By varying the impurity parameters, we
investigate and compare the resonance widths, energies, and
asymmetry parameters of Fano line shapes that occur in the
first and second subbands. The effect of an external electric
field on the Fano line shapes is also investigated and it is
shown that collapse of the Fano profile in the first or second
subband may occur depending on the direction of the electric
field. In addition, the effect of temperature �due to thermal
broadening� on the Fano resonances is also investigated and
is shown to be stronger for the narrower ones.

Furthermore, the obtained results for the first Fano reso-
nance using the three-channel model are compared with
those obtained using the two-channel model. In Appendix B
we discuss the extent to which the two-channel approach is
valid by imposing a condition on the coupling between the
two closed channels.

The paper is organized as follows. In Sec. II, Feshbach’s
approach is presented and applied to the case of the above-
mentioned scattering potential. From the asymptotic form of
the resulting wave function we then extract the transmission
probability. In Sec. III, we investigate the effects of the im-
purity parameters as well as that of temperature on the Fano
resonances that occur in the first two subbands. In Sec. IV,
the electric field dependence of the Fano resonances is ex-
amined. A summary of our results is presented in Sec. V.

II. FESHBACH APPROACH

A. Coupled-channel equations

We consider a ballistic uniform quantum wire in which
electrons are confined along the y direction �transverse direc-
tion� but are free to propagate along the x direction. In the
presence of a scattering potential, and an electric field in the
transverse direction, the Schrödinger equation describing the
electron motion in the wire can be written as

� p2

2m
+ Vc�y� + U�y� + V�x,y����x,y� = E��x,y� , �1�

where Vc�y� is the confining potential chosen to be parabolic
with force constant m�0

2,

Vc�y� =
1

2
m�0

2y2, �2�

and U�y�=−qFy represents the potential energy due to the
electric field F �q is the charge of the electron, q�0�. Also,
V�x ,y� is the scattering potential in the wire. The total trans-
verse potential Vc�y�+U�y�, providing confinement of the
electron motion along the y direction, gives rise to channel
modes �n�y�,

� py
2

2m
+ Vc�y� + U�y���n�y� = En�n�y� , �3�

where En is the threshold energy for mode n. We expand the
wave function of Eq. �1� in terms of the channel modes

��x,y� = �
n=0

�

�n�x��n�y� . �4�

Substituting Eq. �4� into Eq. �1� we obtain the coupled-
channel equations for �n�x�,

�E − En − K̂��n�x� = �
l=0

�

Vnl�x��l�x� , �5�

where K̂=−��2 /2m�d2 /dx2 and Vnl�x� are the coupling ma-
trix elements given as

Vnl�x� =� dy�n
��y�V�x,y��l�y� . �6�

Now, in the decoupling limit �Vnl=0�, only the first chan-
nel mode �n=0� can be found in some scattering state, pro-
vided that the diagonal matrix elements Vnn vanish far away
from the scattering region. From Eq. �5�, the scattering states
for the first mode can be obtained as solutions of the equa-
tion

�K̂ + V00�x� + E0�	k

�x� = E	k


�x� , �7�

where 	k
+�x� and 	k

−�x� correspond to scattering states for
which the incident wave comes from −� and +�, respec-
tively. These states describe the background �nonresonant�
scattering, which is the scattering in a hypothetical system in
which the channel coupling is switched off.5,29,30 In Eq. �7�,
k is the wave vector for the propagating mode, i.e., k
= �2m�E−E0��1/2 /�. The scattering states have the
asymptotic form

	k

�x� = 	tbge
ikx, �x → 
 ��

e
ikx + r

bge�ikx, �x → � �� ,


 �8�

where the upper signs correspond to an incident wave com-
ing from −�. Furthermore, tbg and r


bg denote the background
transmission and reflection amplitudes in the wire.

In addition to the open channel n=0, we consider two
closed ones n=1 and 2, which are dominated by their bound
states �01�x� and �02�x�, respectively. From Eq. �5�, we ob-
tain the equations for the bound states of the uncoupled
channels n=1 and 2 as

�Ẽj − Ej − K̂��0j�x� = Vjj�x��0j�x� �j = 1,2� , �9�

where Ẽj are the bound-state energies. We now make the
approximation of truncating the sum in Eq. �5� at n=2 and
obtain the following system of three equations:
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�E − E0 − K̂ − V00�x���0�x� = V01�x��1�x� + V02�x��2�x� ,

�10�

�E − E1 − K̂ − V11�x���1�x� = V10�x��0�x� + V12�x��2�x� ,

�11�

�E − E2 − K̂ − V22�x���2�x� = V20�x��0�x� + V21�x��1�x� .

�12�

The above system of equations can be simplified by assum-
ing that �1�x� and �2�x� are simply multiples of the bound
states of the uncoupled channels,29 i.e.,

�1�x� = A1�01�x� , �13�

�2�x� = A2�02�x� . �14�

Inserting Eqs. �13� and �14� into Eq. �10� we get an inhomo-
geneous equation for ��0�, which can be solved with the
retarded Green’s function operator defined by

�E − E0 − K̂ − V00�x��Ĝ0�x,x�� = ��x − x�� . �15�

With Ĝ0 as obtained from Eq. �15�, the general solution of
that inhomogeneous equation can be written as

��0� = �	k
+� + A1Ĝ0V01��01� + A2Ĝ0V02��02� . �16�

In order to find the energy-dependent constants A1 and A2,
we first insert Eqs. �13� and �14� into Eqs. �11� and �12�, and
then employ Eq. �9� to get the following system of equations:

A1�E − Ẽ1���01� − A2V12��02�

= V10�	k
+� + A1V10Ĝ0V01��01� + A2V10Ĝ0V02��02� ,

�17�

− A1V21��01� + A2�E − Ẽ2���02�

= V20�	k
+� + A1V20Ĝ0V01��01� + A2V20Ĝ0V02��02� .

�18�

We multiply Eq. �17� with the bra 
�01� and Eq. �18� with the
bra 
�02� to obtain

�E − 
1�A1 − W12A2 = W10, �19�

− W21A1 + �E − 
2�A2 = W20, �20�

where we have introduced the energies 
 j by


 j = Ẽj + 
�0j�Vj0Ĝ0V0j��0j� �j = 1,2� . �21�

The matrix element in Eq. �21� is a self-energy term due to
the coupling of the jth bound state with the continuum and
has in general both a real and an imaginary part. If the third
channel were absent, the real part of this matrix element

would give the shift that the bound state Ẽ1 acquires, while
its imaginary part would give the width of the resulting qua-
sibound state. However, in the three-channel case considered
in this paper there is an additional contribution originating
from the coupling W12 between the two closed channels. We
have also introduced the matrix elements

Wj0 = 
�0j�Vj0�	k
+� �j = 1,2� , �22�

W12 = 
�01�V12��02� + 
�01�V10Ĝ0V02��02� = W21. �23�

In Eq. �23� the first matrix element represents the direct cou-
pling of the two closed channels, while the second matrix
element represents the indirect coupling of the closed chan-
nels via the open channel. Solving the system of Eqs. �19�
and �20� for A1 and A2 and inserting the resulting expressions
into Eq. �16� we finally obtain for x→�,

�0�x� = 	k
+�x� +

m

i�2ktbg	k
+�x�


�	k
−���V01��01���E − 
2�W10 + W12W20�

�E − 
1��E − 
2� − W12
2 +

m

i�2ktbg	k
+�x�


�	k
−���V02��02���E − 
1�W20 + W10W21�

�E − 
1��E − 
2� − W12
2 ,

�24�

where we have used the explicit form of the retarded Green’s
function in one dimension31 given in Eq. �A1� of Appendix
A. Note that in the absence of the third channel we can set
W20=W12=
2=0, and the above expression for �0�x� reduces
to that of the two-channel case.12 In Appendix B, we discuss
the effect of the interaction W12 between the two closed
channels and show that the strength of this interaction deter-
mines the extent to which the two-channel model is valid.
The above three-channel approach will now be applied to a
simple impurity potential in the wire.

B. Simple-model impurity

We consider now a scattering potential described by32

V�x,y� = −
�2�

2m
��x�exp�−

�y − yi�2

�2 � , �25�

which decays in the transverse direction with decay length �,
and has its center at y=yi. A Gaussian shape for the scatter-
ing potential in the transverse direction is employed here in
order to introduce the lateral extent of the impurity, quanti-
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fied by �, which may provide an extra parameter for fitting
experimental data. The magnitude of � sets the strength of
the impurity potential ���0�. An impurity potential of this
type can be used to model, for example, the negative elec-
trostatic influence of a scanning probe microscope �SPM� tip
in experiments studying the imaging of coherent electron
flow through a narrow constriction in a two-dimensional
�2D� electron gas.33,34 In fact, a similar potential �i.e., a 2D �
function� has been used previously35 in order to approximate
the potential induced by the SPM tip, and the obtained re-
sults were consistent with the experimental ones.36 Then, us-
ing Eq. �25�, the matrix elements of Eq. �6� take the form

Vnl�x� = −
�2�

2m
��x��nl, �26�

where

�nl =� �n
��y�exp�−

�y − yi�2

�2 ��l�y�dy . �27�

The mode eigenfunctions �n�y� are found by solving Eq. �3�,
which can now be written explicitly as

� py
2

2m
+

1

2
m�0

2�y − l�2 −
q2F2

2m�0
2��n�y� = En�n�y� , �28�

where l=qF /m�0
2. Equation �28� represents the Schrödinger

equation for a shifted one-dimensional �1D� harmonic oscil-
lator plus a constant energy term in the Hamiltonian. There-
fore �n�y� are the 1D harmonic-oscillator wave functions,

�n�y� = � 1

2nn ! ��
�m�0

�
�1/2

exp�−
m�0

2�
�y − l�2�

�Hn��m�0

�
�y − l�� , �29�

where Hn�y� denote the Hermite polynomials, and the
eigenenergies are En=��0�n+1 /2�− �q2F2 /2m�0

2�, with n
=0,1 ,2 , . . ., which are the Stark-shifted harmonic-oscillator
eigenenergies.

In order to find the scattering states 	k

�x�, which are

needed for the evaluation of �0�x�, we must solve Eq. �7� for
the effective 1D potential V00�x�=−��2� /2m���x��00. The
solution to Eq. �7� proceeds in a standard way and the back-
ground transmission and reflection amplitudes are found as
tbg= �1+ ���00 /2ik��−1 and r+

bg=r−
bg=−�1+ �2ik /��00��−1. The

bound states in the effective potentials V11�x� and V22�x� are
found by solving Eq. �9� and they are given as �0j�x�
=��0j exp�−�0j�x��, where �0j =�� j j /2, j=1,2. The corre-

sponding eigenenergies are Ẽj =Ej − ��2�2� j j
2 /8m�. For later

discussion it is worth noting that besides the impurity
strength �, these bound-state energies also depend on the
interaction of the modes �n�y� with the impurity. This inter-
action is quantified by the matrix elements � j j. Furthermore,
the calculation of the matrix elements that occur in the wave
function of Eq. �24� is done in Appendix A and the resulting
transmission amplitude can finally be extracted from �0�x�
= teikx as

t = tbg �E − Ẽ1��E − Ẽ2� − ��2/2m�2�2�12
2 �01�02

�E − Ẽ1 − ��2/4ikm��2�01
2 �01t

bg��E − Ẽ2 − ��2/4ikm��2�02
2 �02t

bg� − W12
2

, �30�

where W12 is the sum of Eqs. �A9� and �A10�. The transmis-
sion probability is then obtained as T= �t�2. We note that the

shifted resonance energies ER
�1� and ER

�2�, where ER
�j�= Ẽj +� j,

as well as the resonance widths �1 and �2 are determined by
the poles of the transmission amplitude.

In our treatment of transmission resonances as described
above, keeping only three modes is legitimate in the weak-
coupling regime5,6,29–31 defined by

�Vij� � �Ei − Ej� �i � j� , �31�

where �Ei−Ej� is the distance in energy between two sub-
bands. In this regime, the coupling between different chan-
nels is small37 and becomes progressively smaller if i is kept
fixed and j becomes large enough. Therefore only a small
number of channels is involved for the calculation of trans-
mission resonances. More precisely, let us consider the de-
coupling limit �i.e., the limit in which off-diagonal coupling
is absent, Vij =0�, in which the bound-state energy of the

uncoupled channel j=1 is Ẽ1=E1− ��2�2�11
2 /8m� as was

mentioned above �see also Eq. �32��. Now, in the presence of
coupling, corrections to the level Ẽ1 come from the off-
diagonal matrix elements, Vij ��2��ij /2m, which, according
to Eq. �31�, are small. Furthermore, as shown in Appendix B,
the interaction �W12� is also small as a consequence of Eq.
�31�, which also implies that the two-channel model is valid
for the calculation of the position and width of the Fano
resonance in this regime. Note also that the weak-coupling
regime can be realized whenever the impurity strength be-
comes small. However, this does not necessarily imply that
the effect of the impurity is weak. On the contrary, a weak
impurity may generate sharp resonances in the transmission
probability as will be shown below.

III. FANO RESONANCES IN THE TRANSMISSION
PROBABILITY

In the following the electron mass is taken to be the ef-
fective mass for GaAs which is 0.067 of the free-electron
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mass. We also set �2 /2m=1 and take the energy unit38 as

0=17.7 meV. Then the length unit is L0=5.7 nm. The
magnitude � of the impurity has dimension of inverse length,
so that �2� /2m is expressed in meV.

A. Effects of the impurity strength

In this subsection we take the center of the impurity at
yi=0.28L0. The transmission probability through the wire
plotted versus the incident electron energy is shown in Fig.
1�a�, for various impurity strengths �i.e., for �=2.8, 3.4, and
4.0 in units of L0

−1�, and for �=0.67L0. For comparison, the
black dashed line shows the transmission for �=2.8 in the
absence of the third channel �i.e., in the two-channel ap-
proximation�. It is seen that the transmission exhibits two
Fano resonances which are both of the 0→1 type �the Fano
parameters q are positive�, which means that the resonance

energies occur after the energies of the transmission zeros. It
is well known that these resonances are due to the formation
of quasibound states—at special energies—in the impurity
region. Electrons at those energies spend longer periods of
time in the impurity region, i.e., they become temporarily
trapped in the quasibound states. These states are solutions of
the Schrödinger equation for complex energies E=ER

�j�− i� j.
We note in Fig. 1�a� that increasing the strength of the

impurity causes shifting of the transmission zeros toward
lower energies while, at the same time, both resonances are
broadened, as reflected by an increase in the widths �1 and
�2. The first peak is also seen to shift lower in energy while
the second peak remains unaffected. The expected downward
shift of the transmission zeros is a consequence of the pro-
gressively larger binding energies Eb, where

Eb = Ẽj − Ej = −
�2�2� j j

2

8m
�j = 1,2� , �32�

as the impurity strength increases. We also note that in the
presence of the third channel the background transmission is
slightly suppressed �compare solid and dashed black lines�.
We can argue that the inclusion of more channels into the
calculation will tend to make this effect more pronounced.
This is also consistent with other conductance calculations in
multimode wires �see, for example, Ref. 39�. However, the
third channel appears to have a negligible effect on the po-
sitions in energy of the transmission zero and one.

In Fig. 1�b� we note that the width �2 of the second Fano
resonance grows much faster than �1 with increasing impu-
rity strength. The physical origin of such a behavior lies in
the stronger coupling of the second bound state with the
continuum, resulting in a faster decay rate �2 /� of the qua-
sibound state into a propagating state. However, as will be
illustrated in Fig. 2�b�, this effect strongly depends on the
impurity position, namely, as the impurity shifts away from
the axis of the wire, the distance between �1 and �2 continu-
ously decreases, becomes zero, and then �1 assumes larger
values than �2. This is due to the fact that away from the axis
the coupling of the first bound state with the continuum be-
comes stronger than that of the second bound state. Further-
more, as shown by the dashed lines in Fig. 1�b�, making the
impurity potential sharper in the transverse dimension �i.e.,
decreasing �� leads to the suppression of both �1 and �2
since the bound-state-continuum interactions become gener-
ally weaker. Note also that the second resonance width is
more sensitive to the lateral extent of the impurity than the
first one. Furthermore, the black dashed line shows �1 for
�=0.67 in the absence of the third channel. For small impu-
rity strengths, we note that �1 is not affected by the presence
of the third channel, while for larger impurity strengths �1
slightly increases. Therefore, depending on the impurity
strength, the inclusion of even more channels will tend to
make the resonance broader.

The Fano asymmetry parameter is a particularly important
quantity because it provides information about the detailed
structure of the line shape,40 and has been investigated
experimentally18–21 and theoretically9,13,16,17 in the context of
various systems. In particular, the asymmetry of Fano line
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FIG. 1. �Color online� �a� Transmission probability T through
the wire vs incident electron energy �E, in units of 
0�, plotted for
various values of the impurity strength ��, in units of L0

−1�, and for
fixed values of the impurity position yi and decay length � �i.e.,
yi=0.28L0 and �=0.67L0�. �b� Resonance widths ��1 and �2, in
units of 
0� vs impurity strength, for yi=0.28L0 and for two values
of �. �c� Fano asymmetry parameter q vs impurity strength, for yi

=0.28L0 and for two values of �. The black dashed lines in �a�, �b�,
and �c� illustrate the two-channel case �see text� for �=2.8L0

−1, �
=0.67L0, and yi=0.28L0.
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shapes has been investigated experimentally in the context of
electronic transport through: �i� a single-electron transistor,18

�ii� an Aharonov-Bohm ring with a quantum dot �QD� em-
bedded in one of its arms,19 �iii� a quantum wire with a
side-coupled QD,20 and �iv� a QD coupled to a 1D channel21

to name a few. The asymmetry parameter has also been ex-
amined theoretically in connection with: �i� the phase coher-
ence of electrons in transport through a QD,9 �ii� ballistic
electronic transport through straight13 and stubbed16 quantum
wires with impurities, and �iii� electronic transport through a
quantum waveguide with open rectangular QD �Ref. 17� to
mention a few examples. In Fig. 1�c� we show the asymme-
try parameters q1 and q2 for both resonances plotted versus
the impurity strength. They have been obtained by numeri-

cally evaluating qj = �ER
�j�− Ẽj� /� j, where j=1,2. We first note

that both q’s are positive, and that q1 increases faster than q2.
This is due to the fact that for Hamiltonians that possess
inversion symmetry the Fano parameter depends only on the
background transmission and not on the strength of the cou-
pling to the quasibound level.5 In this case, larger back-
ground scattering leads to a larger magnitude of the asym-
metry parameter. In Fig. 1�c�, the background scattering is
seen to be larger close to the first resonance energy resulting
in a larger asymmetry of the corresponding Fano profile.
This is reasonable since the scattering of electrons with
lower energy is enhanced while the more energetic ones tend
to have larger transmission probability through the barrier. In

the two-channel case, it can be easily shown that q
=��00 /2k. Even though this relation cannot be carried over
in the three-channel case, we can however argue that a larger
wave vector of the background transmission causes suppres-
sion of the asymmetry parameter. We also note in Fig. 1�c�
that making the impurity sharper in the transverse dimension
causes suppression of both q’s �especially of q1�, as shown
by the dashed lines. This is due to the weaker interaction �00
of the first mode with the impurity. In addition, the black
dashed line shows q1 for �=0.67 in the two-channel case.
The Fano parameter in this case becomes smaller as the im-
purity strength increases. This is due to the suppression of
the background scattering, as noted above, which becomes
more pronounced as � increases.

B. Effects of the impurity position

Several important differences are observed between the
two Fano resonances when varying the impurity position. In
Fig. 2�a� we show the transmission probability plotted versus
the incident electron energy for various impurity positions yi.
In this calculation �=2.8L0

−1 and �=0.67L0. It can be seen
that displacing the impurity away from the central axis of the
wire causes again systematic shifting of the first transmission
zero toward lower energy values, but the second zero shifts
slightly toward higher energies. At the same time, the width
�1 of the first resonance continuously increases until yi
�1.45L0, and then decreases �see Fig. 2�b��. The structure of
�1 follows closely the structure of the second mode �1�y�.
That is, ��1�y�� increases until yi�1.45L0, resulting in a
stronger coupling �01 to the quasibound state, and thereafter
decreases resulting in a weaker coupling. However �2 first
decreases, vanishes at yi�1.2L0, and then assumes nonzero
but small values. The vanishing of �2 at yi�1.2L0 �for which
�2�y� has a node and, therefore, �02→0� results in the col-
lapse of the Fano profile, as shown in Fig. 2�a�. Note also
that for yi=2L0 the second Fano resonance has transformed
into a Breit-Wigner dip.

Since the impurity strength is fixed, the large downward
shifting of the first zero �compared to the small upward shift-
ing of the second zero� is due to the gradually stronger in-
teraction �11 of the second mode �1�y� with the impurity,
resulting in an increase in the binding energy �see Eq. �32��.
This is again due to the gradual increase in ��1�y�� until yi
�1.45L0. However after this point the first transmission zero
shifts upward, as shown in Fig. 3�a�, since ��1�y�� decreases.
In contrast, the interaction �22 of the third mode �2�y� be-
comes slightly weaker as the impurity is displaced up to yi
�1.2L0, leading to a decrease in the binding energy and,
therefore, to a small upward shifting of the second transmis-
sion zero. Further displacing the impurity beyond yi�1.2L0
causes downward shifting of the second zero, as shown in
Fig. 3�b�.

We also note in Fig. 2�b� that decreasing � results in the
suppression of the resonance widths, as shown by the dashed
lines. This is due to the fact that the bound-state-continuum
interactions generally decrease when the impurity becomes
sharper in the transverse dimension, as was also noted in Fig.
1�b�. Note also that the suppression of �1 becomes gradually
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FIG. 2. �Color online� Transmission probability T through the
wire vs incident electron energy �E, in units of 
0�, plotted for
various values of the impurity position �yi, in units of L0�, and for
fixed values of the impurity strength and decay length �i.e., �
=2.8L0

−1 and �=0.67L0�. �b� Resonance widths ��1 and �2, in units
of 
0� vs impurity position yi, for the same values of � and � as in
�a�. Note that as the impurity shifts away from the wire’s axis, �1

increases and then decreases, while �2 continuously decreases and
vanishes for yi=1.2L0. The black dashed line shows �1 for �
=0.67L0 in the two-channel case.
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stronger as the impurity is displaced away from the axis of
the wire. Thus close to the axis of the wire the lateral extent
of the impurity has no effect on �1, but away from the axis of
the wire it can strongly affect it. This is due to the fact that as
yi approaches the wire’s axis, �01→0 �since �1�y� has a node
at y=0� and, therefore, the coupling to the quasibound level
vanishes. This happens for any value of �. However, the
effect of � on the second resonance is weak when the impu-
rity is close to the wire’s axis, while away from the axis it
has a negligible effect. For comparison, the black dashed line
shows �1 for �=0.67 in the absence of the third channel. It is
seen that �1 in the two-channel case becomes slightly smaller
as the impurity center shifts away from the symmetry axis of
the wire. However, closer to the axis, the third channel has
no effect on �1. Therefore, the inclusion of more channels
will tend to make �1 smaller, especially if the impurity is
away from the axis of the wire.

In Figs. 3�a� and 3�b�, the energies of the two transmis-
sion zeros are plotted versus the impurity position, for vari-
ous values of �. The impurity strength �=2.8L0

−1. Note in
Fig. 3�a� the fast decrease in energy of the first transmission
zero until yi�1.45L0 and, in Fig. 3�b�, the slow increase in
energy of the second zero until yi�1.2L0. This behavior
originates from the different interactions of the second and
third modes with the impurity, as has been discussed in the
context of Fig. 2. Both interactions, however, become gradu-
ally weaker with decreasing �, leading to smaller binding
energies. As a result, the positions in energy of both trans-
mission zeros are displaced upward, as it is shown by the
dashed lines, i.e., for �=0.57L0 and �=0.47L0. Note also that
away from the axis of the wire the lateral extent of the im-
purity has stronger effect on the first resonance energy, as

reflected by the larger vertical spacing between the curves in
Fig. 3�a�. Toward the axis of the wire, this effect gradually
diminishes. The reverse holds for the second resonance en-
ergy as shown in Fig. 3�b�, even though it is not so pro-
nounced. In addition, the black dashed line in Fig. 3�a�
shows the energy of the transmission zero for �=0.67 in the
two-channel case. We note that in the presence of the third
channel, there is an extra small downward shifting of the
transmission zero only when the impurity is away from the
symmetry axis of the wire. Thus, the inclusion of more chan-
nels in the calculation is expected to gradually influence the
transmission zero as the impurity shifts away from the axis
of the wire.

C. Temperature dependence of the Fano resonances

In order to consider thermal effects, we employ the finite-
temperature conductance formula

G��,T� = G0� dE� � f

��
�G�E,0� , �33�

where G0=2e2 /h, G�E ,0� is the zero-temperature conduc-
tance, and f is the Fermi distribution function given as
f�E�= �exp�E−�� /kBT+1�−1. We define a dimensionless pa-
rameter Td=kBT /
0 which is a measure of temperature. Then
Td=0.001 corresponds to T=206 mK.

The temperature dependence of the first and second Fano
resonances is shown in Figs. 4�a� and 4�b�, respectively, for
increasing values of the parameter Td. The impurity is lo-
cated at yi=0.28L0, while �=2.8L0

−1 and �=0.67L0. We note
that increasing the temperature causes rapid smearing of the
resonance structure; the Fano resonances become gradually
broader while their amplitudes, �G=Gmax−Gmin, decrease.
We also note that the effect of temperature is much stronger
on the first resonance. This is seen clearly in Fig. 4�c� where
the amplitudes �G of both resonances are plotted versus Td.
We note in Fig. 4�c� that the amplitude of the first resonance
�solid line� reduces drastically with increasing temperature
and becomes negligible at Td�0.024 �or equivalently at 4.92
K�. However, the amplitude of the second resonance �dashed
line� is seen to decrease much slower.

The origin of the above-mentioned smearing of the reso-
nance structure is the thermal broadening, via the smooth
peak in �f /��, which obscures the resonance as kBT be-
comes comparable to the resonance width. The amplitude of
the first resonance becomes half its zero-temperature value as
soon as Td�0.004 �or equivalently 0.82 K� which is compa-
rable to the calculated resonance width �1�0.0032. How-
ever, the broader second resonance requires much higher
temperature in order to diminish. The amplitude of the sec-
ond resonance becomes half its zero-temperature value at
Td�0.02, which corresponds to T�4.12 K, while the reso-
nance width is �2�0.014. The point to emphasize here is
that the Fano effect may almost disappear in one subband for
relatively low temperatures, while it may persist in another
subband even at higher temperatures. We also note that if we
had excluded the third channel, the results presented in Fig.
4�a� would not be modified. The reason being simply that for
the value of the impurity center used in Fig. 4�a� the reso-
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FIG. 3. �Color online� Positions of the first �shown in �a�� and
second �shown in �b�� transmission zeros �E, in units of 
0� vs
impurity position �yi, in units of L0�, for the same fixed value of the
impurity strength as in Fig. 2�a�, and for various values of �. In �a�,
the black dashed line shows the zero energy for �=0.67L0 in the
two-channel case.
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nance width �1 is the same in both the two- and three-
channel cases, as shown in Fig. 2�b�. Consequently, the ef-
fect of temperature is the same in both cases.

IV. EFFECTS OF A TRANSVERSE ELECTRIC FIELD

As mentioned in Sec. I and illustrated in Sec. III B, mov-
ing the impurity across the channel may cause significant
effects on the resonant transmission of the channel, namely,
it can change the position and the width of the resonance.
The displacement of the impurity can be achieved by the
application of an electric field in the transverse direction of
the quantum channel. That is, the electric field causes shift-
ing of the confining potential, which is equivalent to a “shift-
ing” of the impurity in the opposite direction, thereby affect-
ing the resonance characteristics. Hence an external electric
field may be used as a means for controlling the resonance
structure. It is desirable, therefore, to give a detailed account
of the effects of the electric field on the Fano resonance. In
the following we define the dimensionless parameter � as �
=qF /m�0

2L0. Then ��0 if the electric field points in the

negative direction, and ��0 if it points in the positive direc-
tion.

A. Electric field in the negative direction

We consider an impurity located at yi=0.4L0, having
strength �=2.8L0

−1 and decay length �=0.6L0. The transmis-
sion probability through the wire plotted versus the incident
electron energy is shown in Fig. 5�a�, for various values of
the parameter � �i.e., for �=0, 0.2, 0.4, and 0.6�. We first note
that the influence of the electric field on the two Fano reso-
nances is rather different. Increasing the field strength causes
a systematic downward shifting of the second transmission
zero while, at the same time, the resonance width �2 first
increases and then decreases. On the other hand, the energy
of the first transmission zero initially shifts upward while the
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FIG. 4. �Color online� Fano resonances in the first �shown in
�a�� and second �shown in �b�� subbands plotted for various values
of the dimensionless temperature Td, where Td=kBT /
0. Here we
used yi=0.28L0, �=2.8L0

−1, and �=0.67L0. Note that the second
Fano resonance persists even though higher temperatures were
used. �c� Amplitudes of the first and second resonances vs Td.
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FIG. 5. �Color online� �a� Transmission probability T through
the wire vs incident electron energy �E, in units of 
0�, plotted for
various positive values of the dimensionless parameter �, where �
=qF /m�0

2L0. Here we used yi=0.4L0, �=2.8L0
−1, and �=0.6L0, re-

spectively. It is seen that for �=0.4 �which corresponds to l=yi,
where l=qF /m�0

2�, the Fano structure in the first subband collapses.
�b� Poles of the transmission amplitude �near the first Fano reso-
nance� in the complex energy plane, as a function of �. The energies
ER and EI are in units of 
0 and the values of the impurity param-
eters are those used in �a�. Note that all three poles are on the real
axis �EI→0� when �=0.4, and the arrows point in the direction of
increasing �. �c� Poles of the transmission amplitude �near the sec-
ond Fano resonance� in the complex energy plane, as a function
of �.
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resonance width �1 gradually decreases. When the field
strength becomes such that �=0.4, �1 shrinks to zero result-
ing in the collapse of the Fano resonance in the first subband.
Further increasing the field strength to �=0.6 the Fano pro-
file is recovered but is down-shifted. The observed vanishing
of �1 for �=0.4 implies that the coupling �01 between the
first bound state and the continuum also vanishes. In fact,
this coupling becomes zero as soon as l=yi �or �=yi /L0�, that
is as soon as the field strength becomes such that the center
of the confining potential and, consequently, the node of the
second channel mode coincides with the impurity center.
This can be seen explicitly from the expression of �01,

�01 =
�yi − l�/�2

�1 + ��/m�0�2��3/2� 2�

�m�0�2 exp� − �yi − l�2/�2

1 + ��/m�0�2�� .

�34�

Similar collapsing behavior of Fano profiles has also been
found to occur elsewhere; for example, when varying the
size of a square-well impurity6 in a straight quantum wave-
guide, and also when varying the position of a point impurity
placed in one arm of a 1D mesoscopic ring.15,41

The upward and the subsequent downward shifting in en-
ergy of the first transmission zero is a consequence of the
competition between the interaction �11 of the second mode
with the impurity and the Stark shift of the energy threshold
E1. This can be seen explicitly from the expression of the
bound-state energy,

Ẽ1 =
1

2
��0 −

q2F2

2m�0
2 −

�2�2�11
2

8m
. �35�

While the Stark shift �second term� continuously increases
with increasing field strength, the interaction �11 �third term�
initially decreases until it becomes zero. The decrease in the
third term, however, is faster than the increase in the Stark

shift, resulting in the upward displacement of Ẽ1 and, there-
fore, in the upward shifting of the transmission zero. After
the node of the second mode passes through the impurity
center �where �11→0�, the third term starts increasing. This

results in the decrease in Ẽ1 and, therefore, in the downward
shifting of the transmission zero.

On the other hand, the equation for the energy Ẽ2 of the
second bound state is similar in form to Eq. �35� with
�1 /2���0 and �11 replaced by �3 /2���0 and �22, respectively.
For the range of values of the parameter � that we use here,
the electric field-induced shift of the third mode leads only to
an increase in �22, which results in a continuous decrease in

Ẽ2. Thus, the second transmission zero shifts only toward
lower energy values.

The influence of an electric field on the resonant behavior
of the transmission probability can further be described by
the pole structure of the transmission amplitude in the com-
plex energy plane. In fact the imaginary part of a pole �which
determines the resonance width � j� is related to the time an
electron spends in the quasibound state, namely, � j /� is the
probability per unit time of an electron in a quasibound state

to leave this state. The poles are given by the zeros of the
denominator of the transmission amplitude Eq. �30�, i.e., by
the solutions of

�E − Ẽ1 −
�2�2�01

2 �01t
bg

4ikm
��E − Ẽ2 −

�2�2�02
2 �02t

bg

4ikm
�

− W12
2 = 0. �36�

In Figs. 5�b� and 5�c� the trajectories of the poles corre-
sponding to the first and second Fano resonances, respec-
tively, are plotted as a function of �, for various values of the
decay length �. The �=0.6L0 poles correspond to the reso-
nances shown in Fig. 5�a�. The arrows point in the direction
of increasing �, where 0���0.8. As � increases from zero,
we note in Fig. 5�b� that the pole moves toward the real axis
and, exactly at �=0.4, its imaginary part vanishes, resulting
in the collapse of the first Fano profile as discussed above.
As � increases further, the pole moves away from the real
axis, acquiring again an imaginary part. Note also that for a
specific value of �, the real part of the pole shifts toward
larger values as � increases from zero, but just before the
resonance ���0.4� it starts decreasing. This implies that the
resonance occurs at higher energies, which is consistent with
the upward shifting of the transmission zero discussed in the
context of Eq. �35�.

The value of � at which the imaginary part of the pole
vanishes �EI→0� is independent of the lateral extent � of the
impurity. That is, all three poles shown in Fig. 5�b� are on the
real axis when �=0.4. However, for 0���0.4, decreasing �
�i.e., making the impurity sharper in the transverse dimen-
sion� causes displacement of the pole to the right �see curves
for �=0.5L0 and 0.4L0�. This is due to the gradually weaker
interaction �11, which results in a decrease in the binding
energy Eb= Ẽ1−E1 �see Eq. �35��, and in a corresponding
shifting of the resonance toward the energy threshold E1.
Furthermore, smaller values of � lead to narrower resonances
as reflected in the smaller imaginary parts. This is due to the
weaker coupling to the quasibound level.

The trajectory of the pole corresponding to the second
Fano resonance �shown in Fig. 5�c�� exhibits exactly oppo-
site behavior to that of the first resonance. The pole initially
moves deeper into the complex plane with increasing �, and
when �=0.4 it starts moving back toward the real axis. This
is of course consistent with the observed variation in �2 in
Fig. 5�a�, i.e., �2 first increases and then decreases. In addi-
tion, the real part moves only toward lower energy values,
giving rise to the downward shift of the resonance as noted
in Fig. 5�a�. Note also that the pole is much more sensitive to
the variations in � than that of the first resonance, namely, as
� decreases the imaginary part is drastically reduced.

As mentioned above, the poles corresponding to the two
resonances show opposite behavior. In particular, we observe
�and verified numerically� that the sum of the two resonance
widths remains approximately unchanged as � varies. That
is, as the imaginary part of the first pole increases with in-
creasing �, that of the second one decreases so that their sum
remains approximately constant.

B. Electric field in the positive direction

The interaction �02 between the second bound state and
the continuum can also vanish for appropriate values of the
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field strength. In particular, this interaction becomes zero for
two values of the field strength, in contrast to the case dis-
cussed in Fig. 5 where the vanishing of �01 occurs only when
l=yi. This can be seen explicitly from the expression of �02,

�02 =
�

�2m�0�2

− 1 − ��/m�0�2� + �2�yi − l�2/�2�
�1 + ��/m�0�2��5/2

�exp� − �yi − l�2/�2

1 + ��/m�0�2�� . �37�

In terms of the parameter �, the above expression vanishes
when �= �yi /L0�
 �1 /L0���� /2m�0�+ ��2 /2��1/2. For these
two values the resonance width �2 shrinks to zero, resulting
in the collapse of the second Fano profile. Note, however,
that these values of � depend on � and, therefore, when the
collapse occurs the nodes of the third channel mode do not
necessarily coincide with the impurity center. If �→0 �i.e., a
� function in the transverse dimension� then the two nodes
would coincide with the resulting point impurity. Using the
same values for the impurity parameters as those in Fig. 5�a�,
we find that the collapsing behavior of the second resonance
occurs for �=−0.69 and 1.48. The value �=1.48 can be
achieved if the field strength increases beyond the range con-
sidered in Fig. 5. However, this case might not be physically
relevant since, for this value of �, the impurity comes close
to the “wall” of the channel. We, therefore, focus on the
negative value of �, which corresponds to an electric field
pointing in the positive direction.

In Fig. 6�a� the transmission probability through the wire
is plotted versus the incident electron energy, for negative
values of � �i.e., for �=0, −0.3, −0.69, and −1.1�. The values
of the impurity parameters are the same as those used in Fig.
5�a�. We note that for �=−0.3 the width �2 of the second
Fano resonance has been substantially decreased and for �
=−0.69 the Fano profile collapses �i.e., �2→0�. Further in-
creasing the field strength to �=−1.1 the Fano structure is
recovered but it has been almost transformed into a Breit-
Wigner dip with vanishingly small width and infinitesimal
Fano parameter.40 At the same time, it has been shifted
downward, indicating larger interaction �22 of the third mode
with the impurity and, consequently, larger binding energy.
On the other hand, the first transmission zero is also seen to
move downward but much faster, while the resonance width
�1 greatly increases. As already mentioned, the displacement
of the transmission zeros originates from the electric field-
induced shift of the modes.

In Figs. 6�b� and 6�c� the trajectories of the poles corre-
sponding to the first and second Fano resonances, respec-
tively, are plotted as a function of �, for various values of �.
The �=0.6L0 poles correspond to the resonances shown in
Fig. 6�a�. In this calculation we have used the range −1.2
���0, and the arrows point in the direction of increasing
���. We note in Fig. 6�b� that increasing ��� from zero causes
the pole to move lower in the complex plane, acquiring
larger imaginary part. This is reflected in the progressively
broader first Fano resonance shown in Fig. 6�a�. At the same
time, the real part moves fast toward lower energies, yielding
the fast shifting of the transmission zero, which is also ob-
served in Fig. 6�a�. Note also that decreasing � causes sig-

nificant reduction in the imaginary part. However, the effect
of � on the pole structure is seen to be negligible for small
values of �.

On the other hand, the pole corresponding to the second
resonance moves toward the real axis with increasing ���, and
its imaginary part vanishes at �=−0.69, resulting in the col-
lapse of the Fano line shape. Beyond this value, it moves
slowly away from the real axis, acquiring a very small imagi-
nary part, which corresponds to the vanishingly small reso-
nance width in Fig. 6�a�.

As mentioned above, the value of � for which the collapse
of the second Fano profile occurs depends on the lateral ex-
tent � of the impurity. Indeed, the pole touches the real axis
for the values �=−0.66 and −0.639 when �=0.5L0 and 0.4L0,
respectively. Furthermore, after the collapsing behavior, the
effect of � on the motion of the poles is negligible �that is,
the locations of the three poles actually coincide�. Before the
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FIG. 6. �Color online� �a� Transmission probability T through
the wire vs incident electron energy �E, in units of 
0�, plotted for
various negative values of �. The values of the impurity parameters
are the same as those used in Fig. 5�a�. Note that for �=−0.69 the
Fano resonance in the second subband collapses. �b� Poles of the
transmission amplitude �near the first resonance� in the complex
energy plane, as a function of �. The energies ER and EI are in units
of 
0 and the values of the impurity parameters are those used in
�a�. The arrows point in the direction of increasing �. �c� Poles of
the transmission amplitude �near the second Fano resonance� in the
complex energy plane, as a function of �. Note that the poles are on
the real axis �EI→0� for �=−0.639, −0.66, and −0.69 when �
=0.4L0, 0.5L0, and 0.6L0, respectively.
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collapsing behavior, it is seen that the imaginary part be-
comes gradually smaller as � decreases.

C. Transmission phase

Further insight into the resonance structure and the col-
lapsing behavior discussed above is provided by the phase of
the transmission amplitude given as

tan � =
Im�t�
Re�t�

. �38�

For an isolated resonance it may be written as tan � j

=� j / �ER
�j�−E�, where j=1,2. The phase is expected to be

almost constant away from a resonance and to change by �
as the energy of the incident electron is being scanned
through a quasibound level.42 However, the quasibound
states are proportional to the coupling strengths �through the
matrix elements 
�	k

−���V0j��0j� of Eq. �24�� and, therefore,
vanish whenever these couplings become zero �i.e., when the
Fano profiles collapse�. When this happens, there is no reso-
nant level to interfere with the background and no � phase
change is expected.

In Fig. 7�a� the phase is plotted versus the incident elec-
tron energy, for three positive values of �. The values of the
impurity parameters are the same as those used in Fig. 5�a�.
We first note that away from the resonant levels the phase

remains zero, but it increases rapidly to � /2 as the energy
approaches a resonance from below. At resonance, the phase
changes abruptly to −� /2 and as soon as the energy has
crossed the resonance, it rapidly becomes zero again. The
phase change is more abrupt for the first �narrower� reso-
nance, while it is smoother for the second �broader� reso-
nance �see also Fig. 5�a��. At �=0.4, for which the collapse
of the first resonance in Fig. 5�a� occurs, we note that there is
no � phase change. In fact, since the derivative of the phase
with respect to energy,

d� j

dE
=

� j

�E − ER
�j��2 + � j

2 �39�

has a maximum at the resonance energy ER
�j�, where the width

can alternatively be defined as

� j
−1 = �d� j

dE
�

E=ER
�j�

. �40�

Then, the constancy of the phase with respect to energy is
seen to be a consequence of the vanishing resonance width.
Similar behavior of the transmission phase has also been
found in the case of a square-well impurity.6 The constancy
of the phase with respect to energy is also related to the
absence of resonant space charge in the local electron
density.43

In Fig. 7�b� the phase is plotted versus the incident elec-
tron energy, for negative values of �. The values of the im-
purity parameters are the same as those used in Fig. 6�a�.
Note that the phase undergoes a very smooth change of � as
the energy scans the first resonant level, while it changes
abruptly through the second resonant level. At �=−0.69, for
which the collapse of the second Fano resonance occurs �see
Fig. 6�a��, we note again that the phase is constant.

To this end we emphasize that the collapsing behavior of
the Fano structure and the underlying physics as described in
this section would also occur for a finite-size impurity. How-
ever, an extended impurity potential would introduce unnec-
essary computational complexities on the problem, while the
physical picture would remain qualitatively the same. Fur-
thermore, we point out that these findings may prove experi-
mentally useful for controlling the Fano line shapes in elec-
tronic ballistic transport through quantum channels.

V. SUMMARY

We have attempted to shed light on various features of
Fano resonances that occur in different subbands in uniform
quantum wires with impurities. A systematic analysis was
performed by employing the Feshbach approach �in the
three-channel approximation� to a simple model impurity.
Comparison with the two-channel approximation was made.

The analysis we carried out revealed significant effects of
the impurity parameters on the line shapes. These effects
stem mainly from: �i� the difference in the coupling strengths
to the two quasibound levels and �ii� the strength of the
interaction of the channel modes with the impurity. As a
consequence, the behavior of a Fano resonance when varying
the impurity parameters depends on the subband it occurs.
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FIG. 7. �Color online�. Phase of the transmission amplitude vs
incident electron energy �E, in units of 
0�, plotted for positive and
negative values of � shown in �a� and �b�, respectively. The values
of the impurity parameters are the same as those used in Figs. 5�a�
and 6�a�. Note in �a� that at �=0.4 �for which the first Fano profile
collapses�, the phase is constant as the energy crosses the first qua-
sibound level. In �b�, at �=−0.69 �for which the second Fano profile
collapses�, the phase is constant as the energy crosses the second
quasibound level. Note also that the � phase change is more abrupt
if the resonance is narrower, while it is smoother if the resonance is
broader �see also Figs. 5�a� and 6�a��.
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The comparison with the two-channel approximation showed
that the effect of the third channel becomes progressively
negligible as: �i� the impurity strength becomes smaller and
�ii� as the impurity center approaches the symmetry axis of
the wire.

The effect of temperature on those resonances was also
demonstrated. A Fano resonance in the first subband may
diminish for relatively low temperatures ��2.5 K�, while it
may persist in the second subband even at much higher tem-
peratures. This of course depends on the resonance width.

The presence of an electric field influences the resonance
energies and widths in a significant manner, namely, varying
the field strength one can change the position and type of a
resonance. Our analysis also demonstrated a collapsing be-
havior of the Fano line shapes as the field strength varies. It
was shown that the collapse of a line shape in a particular
subband depends on the electric field direction.

The transmission phase was also examined. It was shown
that the usual � phase change when the energy crosses a
resonant level is absent �i.e., the phase is constant� when the
Fano structure collapses.

APPENDIX A: EVALUATION OF MATRIX ELEMENTS

In this appendix we present briefly the evaluation of the
matrix elements in the wave function of Eq. �24� for the
impurity potential given by Eq. �25�. First, the retarded
Green’s function in 1D can be expressed in terms of the
scattering states as

G0�x,x�� =
m

i�2ktbg		k
+�x�	k

−�x�� , �x � x��
	k

+�x��	k
−�x� , �x � x�� ,


 �A1�

where 	k

�x� are the solutions of Eq. �7�. Using this repre-

sentation of G0�x ,x��, the explicit expression of the poten-
tials V0j given by Eq. �26�, and the bound states �0j, we then
get


�	k
−���V0j��0j� = −

�2�

2m
�0j�

−�

�

dx�e−ikx

+ r−
bgeikx���x���0je

−�0j�x�

= −
�2�

2m
�0j

��0jt
bg, �A2�

where j=1,2. We have also used the fact that 1+r−
bg= tbg. For

Wj0 we obtain

Wj0 = 
�0j�Vj0�	k
+� = −

�2�

2m
� j0�

−�

�

dx��0je
−�0j�x���x�tbgeikx

= −
�2�

2m
� j0

��0jt
bg, �A3�

where j=1,2. For the evaluation of the self-energy term in

 j, we use G0�x ,x�� from Eq. �A1� to rewrite this term in the
following form:


�0j�Vj0Ĝ0V0j��0j� =
m

i�2ktbg�
−�

�

dx�
−�

�

dx��0j�x�Vj0�x��0j�x��Vj0�x��	k
−�x�	k

+�x��

+
m

i�2ktbg�
−�

�

dx�
−�

x

dx��0j�x�Vj0�x��0j�x��Vj0�x���	k
+�x�	k

−�x�� − 	k
−�x�	k

+�x���

= I1 + I2. �A4�

Inserting the expressions for the bound states �0j, the coupling potentials Vj0, and the scattering states into I1, we get

I1 =
m

i�2ktbg��2�

2m
�2

�0j
2 �0j�

−�

�

dxe−�0j�x���x��e−ikx + r−
bgeikx��

−�

�

dx�e−�0j�x����x��tbgeikx� =
m

i�2k
��2�

2m
�2

�0j
2 �0jt

bg. �A5�

The expression in brackets in the second double integral of Eq. �A4� can be represented5,31 as follows:

	k
+�x�	k

−�x�� − 	k
−�x�	k

+�x�� =
1

�tbg��
�	k

+�x�	k
+�x��� − 	k

+�x��	k
+�x��� =

2i

�tbg��
Im�	k

+�x��	k
+�x��� = − 2itbg sin�k�x − x��� , �A6�

With the help of Eq. �A6�, the second double integral on the right-hand side of Eq. �A4� can then be shown to vanish,

I2 =
m

i�2ktbg��2�

2m
�2

�0j
2 �0j�

−�

�

dxe−�0j�x���x��
−�

x

dx�e−�0j�x����x���− 2i�tbg sin�k�x − x���

= − �1

k
�� �2

2m
��2�0j

2 �0j�
0

�

dxe−�0j�x���x�sin�kx���x� ,

=0, �A7�
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where ��x� is the unit step function. The self-energy term
Eq. �A4� is, therefore, given by the resulting expression Eq.
�A5�. The energies 
 j in Eq. �21� can thus be written as


 j = Ẽj +
m

i�2k
��2�

2m
�2

�0j
2 �0jt

bg. �A8�

Now, the evaluation of the first matrix element in Eq. �23�
can easily be done with the result


�01�V12��02� = −
�2�

2m
�12

��01
��02. �A9�

Furthermore, the evaluation of the second matrix element in
Eq. �23� is performed in a similar fashion as in Eq. �A4� with
the final result


�01�V10Ĝ0V02��02� =
m

i�2k
��2�

2m
�2

�01�02
��01

��02t
bg.

�A10�

Adding the last two equations will give us the result for the
indirect coupling W12 of the closed channels via the open
channel.

Substituting the expressions of the above matrix elements
in the wave function of Eq. �24� we finally get the transmis-
sion amplitude given by Eq. �30�.

APPENDIX B: RANGE OF VALIDITY
OF THE TWO-CHANNEL APPROACH

In this appendix we further discuss the effect of the third
�closed� channel on the Fano resonance that occurs in the
first subband. As mentioned in Sec. II A, the matrix element
W12 of Eq. �23� represents �i� the direct coupling of the two
closed channels �which are dominated by their bound states�
and �ii� the indirect coupling of these states via the con-
tinuum. As shown below, it turns out that the smallness of
�W12� with respect to �
1−
2� determines the extent to which
the two-channel model is valid.

First, let us recall from Eq. �21� that 
1 and 
2 are the
resonant energies as if there were no interaction between the
two closed channels. These can be written as


1 = Ẽ1 + �1 − i�1 = ER
�1� − i�1, �B1�


2 = Ẽ2 + �2 − i�2 = ER
�2� − i�2, �B2�

where �1, �2 and �1, �2 are the shifts and widths that the

original bound-state energies Ẽ1, Ẽ2 acquire. Now, in the
presence of interaction W12 between the two closed channels,
the resonant energies are modified. The degree of modifica-
tion depends, of course, on the strength of this interaction.
The modified resonant energies are determined by the poles
of the transmission amplitude, i.e., by the solutions of 1 / t
=0. The transmission amplitude can be extracted from Eq.
�24� as �0�x�= teikx, and, therefore, the poles are obtained as
solutions of

�E − 
1��E − 
2� − W12
2 = 0. �B3�

The solutions of Eq. �B3� are given as

Ep
�
� =


1 + 
2

2

��
1 − 
2�2

4
+ W12

2 . �B4�

The poles, Ep
�
�, represent the resonant energies in the pres-

ence of the interaction W12. Let us suppose that �W12� is small
compared with the relevant energy scale �i.e., the difference
�
1−
2� between the resonance energies of the “unperturbed”
�noninteracting� case�,

�W12� � �
1 − 
2� . �B5�

We can then expand the energies Ep
�
� to first order as

Ep
�+� = 
1 +

W12
2


1 − 
2
, �B6�

Ep
�−� = 
2 −

W12
2


1 − 
2
. �B7�

Due to the first-order corrections, 
W12
2 / �
1−
2�, the bound-

state energies Ẽ1 and Ẽ2 acquire additional �small� energy
shifts �1

�0�, �2
�0� and widths �1

�0�, �2
�0�, so that ��1� ,�2��= ��1

+�1
�0� ,�2+�2

�0�� and ��1� ,�2��= ��1+�1
�0� ,�2+�2

�0��.
Let us consider Ep

�+�, which corresponds to the first Fano
resonance. From the condition given in Eq. �B5�, it is seen
that

�W12�2

�
1 − 
2�
� �W12� . �B8�

This implies that the magnitude of the first-order correction
in Eq. �B6� is even smaller than �W12� and, consequently, it is
even much smaller than �
1−
2�. In this case, �1

�0���1 and
�1

�0���1, and one can assume that Ep
�+��
1 �that is, one can

assume that the shift �1� and width �1� in the presence of the
interaction are approximately equal to the shift �1 and width
�1 in the absence of interaction�. This means that the position
and width of the Fano resonance are unaffected by the pres-
ence of the third �closed� channel. Thus, we conclude that
under the condition given in Eq. �B5� one can use the two-
channel model to describe a Fano resonance in the first sub-
band.

In particular, as shown in Eq. �23�, the interaction �W12� of
the two closed channels depends on the impurity strength
and position through the coupling potentials Vnl, i.e., �W12�
��V12+ �V10V02 / �E1−E0���. Obviously, as the impurity
strength decreases, the interaction �W12� becomes gradually
weaker �since Vnl decrease�, thus, validating use of the two-
channel approach. For the model impurity of Eq. �25� this is
illustrated in Figs. 1�b� and 1�c�, where the two- and three-
channel models yield essentially identical results for small
impurity strengths. Furthermore, as the impurity position
shifts toward the symmetry axis of the wire, the potentials
V12 and V01 are gradually reduced �see discussion of Sec.
III B�. Consequently, �W12� is also reduced, thus, validating
again use of the two-channel model. This is illustrated in
Figs. 2�b� and 3�a� for the particular model impurity of Eq.
�25�. Note, however, that away from the wire’s axis the
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three-channel model yields an additional �small� contribution
to the width, which is reflected in the small deviations of �1
from that obtained with the two-channel approach �see Fig.
2�b��. There is also a small deviation in the shift of the bound
state, as shown in Fig. 3�a�.

The inclusion of even more channels can be done in a
similar way. However, it is expected that the two-channel
model will still remain valid at least in the regime of small
impurity strengths and when the impurity is close to the cen-
tral axis of the wire.
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