PHYSICAL REVIEW B 79, 205305 (2009)

Anisotropic plasmons in a two-dimensional electron gas with spin-orbit interaction
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Spin-orbit coupling-induced anisotropies of plasmon dynamics are investigated in two-dimensional semi-
conductor structures. The interplay of the linear Bychkov-Rashba and Dresselhaus spin-orbit interactions
drastically affects the plasmon spectrum: the dynamical structure factor exhibits variations over several de-
cades, prohibiting plasmon propagation in specific directions. While this plasmon filtering makes the presence
of spin-orbit coupling in plasmon dynamics observable, it also offers a control tool for plasmonic devices.
Remarkably, if the strengths of the two interactions are equal, not only the anisotropy but all the traces of the
linear spin-orbit coupling in the collective response disappear.
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Spin-orbit coupling in semiconductor heterostructures has
received wide attention recently—it has been investigated as
a source of new fundamental spin physics as well as a con-
trol interaction in spintronics applications.!> Two spin-orbit
terms are relevant in zinc-blende systems exemplified by
two-dimensional GaAs or InAs electron gases: the
Bychkov-Rashba?® interaction (coupling constant ) which is
due to the structure inversion asymmetry and the Dressel-
haus interaction*> (coupling constant 8) which is due to the
bulk inversion asymmetry.”> Alone these interactions lead to
an isotropic single particle and plasmon spectrum. Taken to-
gether, they imprint the underlying heterostructure aniso-
tropy onto the single- and many-particle properties. Most
studies of the spin-orbit coupling effects have been on the
single-particle level. While the presence of spin-orbit cou-
pling leads to such notorious effects as spin relaxation? or
spin Hall currents,®” fascinating phenomena originate from
the interplay of the Bychkov-Rashba and Dresselhaus terms.
The interplay often leads to pronounced anisotropies,®'* but
this is not a rule."”

Recently several many-body effects important for spin
properties of semiconductor nanosystems have been studied
in two-dimensional electron system (2DES).'-!8 One of the
key phenomena due to spin-orbit interaction (SOI) in many-
spin systems is the generation of the interchirality subband
electron-hole continuum. However, the dispersive and dissi-
pative modifications induced by individual (Bychkov-Rashba
or Dresselhaus) SOI are difficult to observe in experiment—
their effect is isotropic and proportional to the small SOI
coupling.!®26 In real samples the interplay of different SOI
mechanisms takes place and as we show here, it results in the
striking anisotropy effect on the spectral properties of collec-
tive excitations in 2DES. This qualitatively strong effect can
serve as a valuable tool to facilitate the observation and ex-
ploitation of usually weak SOI effects on many-body prop-
erties of 2DES.

An important outcome of our theory is the prediction of
plasmon directional filtering: the interplay of the spin-orbit
couplings leads to plasmon overdamping (blocking) in cer-
tain special directions of propagation and for certain magni-
tudes of the wave vector. This may be surprising at first
sight, given that the spin-orbit effects on the plasmon disper-
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sion and on the electron-hole excitation energies are in them-
selves quite small. However even small energy shifts are
sufficient, at these special wave vectors, to move the plas-
mon in or out of resonance with electron-hole excitations,
thus producing a large effect on the plasmon damping. By
scanning for plasmons in different directions, this distinct
absence of propagation in certain directions should be ex-
perimentally verifiable since the dynamical structure factor
varies by orders of magnitude as a function of the propaga-
tion angle. In addition to making the spin-orbit presence ex-
perimentally visible, the anisotropy is attractive for plasmon-
ics designs as a substitute for surface patterning to achieve
directional plasmon propagation.”’ This prospect is enforced
by the possibility to control—even turn on and off—plasmon
propagation: both @ and B can be tuned by external gates'
(see also Refs. 28 and 29) allowing for the anisotropy to be
tailored. In fact, the anisotropy vanishes (filtering turned off)
for @=* B. More surprising, in this case the (linear) spin-
orbit couplings play no role in plasmon dynamics—the iso-
tropic contributions by the individual spin-orbit terms cancel
each other.

We calculate the effect of joint Bychkov-Rashba and
Dresselhaus SOI on the propagation of plasmons in the (001)
plane of a zinc-blende semiconductor heterostructure. We
consider samples at low temperatures with high-density
2DES where the kinetic energy of electrons dominates the
Coulomb potential energy. In this regime it is legitimate to
neglect the effect of exchange and correlations in treating
plasmon excitations. We use the random-phase approxima-
tion (RPA) (Ref. 30) and calculate the anisotropic Lindhard
polarization function for a given wave vector q and fre-
quency . The space in which the imaginary part of the
Lindhard function differs from zero is known as the electron-
hole continuum (EHC) (Ref. 30) for it describes the spec-
trum of electron-hole excitations. The interplay of the
Bychkov-Rashba and Dresselhaus SOI leads to the appear-
ance of several subregions of the EHC separated by bound-
aries across which the imaginary part of the dielectric func-
tion exhibits sharp variations. An interesting effect arises
when the frequency of a plasmon of a given ¢ but variable
propagation direction crosses these boundaries: the sudden
rise in the density of electron-hole excitations causes strong
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FIG. 1. (Color online) Fermi contours in the momentum plane
(ky,ky) for a spin-orbit interaction of the form given in Eq. (1): (a)
a# B and (b) a=p. The arrows indicate the spin direction.

Landau damping, actually overdamping the plasmons over a
range of wave-vector orientations. This anisotropy of the
plasmon spectrum should be observable through the pro-
nounced anisotropy of the dynamical structure factor, as
shown below.

Our spin-orbit interaction Hamiltonian is?

HSOI = a(&xky - é-ykx) + B(&xkx - &yky)9 (1)
where &, , are the Pauli matrices, k is the inplane electron
momentum with magnitude k, and polar angle ¢y. The eigen-
vectors of the Hamiltonian H=H,+Hgo with Hy=k>/2m"

(m™ is the electron effective mass and i=1) are

1 [iei® eil?f
V()= —( )—, @
. \E M \"Z

corresponding to the single-particle spin-split branches of the
electron energy

E, (k)= {[kwg(p,e H)P - Ep. 0.5 (3)

labeled by the chirality w= *1; A is the area of 2DES. The
phase of the spinor in Eq. (2) is o(a,B, ¢)=Arg e
+ifBe”'*] and the angle dependent Rashba-Dresselhaus mo-
mentum is

&(p, 0, ) = p\1 + sin(26)sin(2¢by.) )

with amplitude p=m*\a?+ 3. The angle parameter 6, de-
fined as tan 6=p/a, describes the relative strength of the
Bychkov-Rashba and Dresselhaus SOI. The Fermi momenta
of the subbands Eq. (3) are also angle dependent,

k%(p, 9’ ¢k) = \’/szF + f(P’ 07 ¢k)2 - Iu’g(p7 9’ ¢k) 5 (5)

where the total carrier density n determines the Fermi energy,
Ep=(mn—p*)/m*. Figure 1 illustrates the energy spectrum of
the chirality subbands and the anisotropy of the Fermi con-
tour (note that the Fermi energy can be negative).

The Lindhard polarization function®® in the presence of
SOI is defined as a sum over chirality indices II(q,w)
=E/.L,V=i1H,U,V(‘;9w) with

PHYSICAL REVIEW B 79, 205305 (2009)

( )fdk AE, (k)] - fIE,(k+q)]
e (2m)? E(k) E(k+§)+ w+i0

Fulkk+q), (6)

where flE #(12)] is the Fermi distribution function. The form
factors F,,(k,k+q) are given by

]:M,,(lg,lg+ q) = l[1 + v cos(Agy)], (7)

l\.)

where we define Ag,=¢(a,B, dy)—¢(a, B, Py.q). Notice
that in contrast to the case of pure Bychkov-Rashba or pure
Dresselhaus SOI, here the polarization function depends both
on the magnitude, ¢, and orientation, d)q, of the wave vector
. Making the replacement k— —k—¢ in the term of Eq. (7)

with f[E,(k+¢)] and regrouping, we can represent the polar-
ization function in the compact form II(g,w)
=E,L,u,>\:t1H;:,y(67» w), where

G )J ME(1F (kK + §)
’”q’ Q2m) E,,(k) Ev(k+§)+>\(w+i0)'

(8)

Exploiting further the symmetry of the problem in the limit
of zero temperature we reduce the polarization function to
the following expression

21 VF —d
MGo=23| da f dp— a0
47T,u,)\ 0 0 a,u(v - U,u,}\)(v - U,u,,)\)
)

Here we have defined the dimensionless Fermi wave vector
= =(-b
U,u,)\_(_ [0

Upu= V1-#2 +§k ,u§k and the functions

* b,uJ\ —4a,cy)/2a, with

a, = x cos(dy = pg)lx cos(dy— ) — &l (10)

by =—x{[r"+2(\y - x*)Jcos(y — )
+ 77 sin(20)sin( gy + By)} + w(hy —x)&,, (11)

o =0\y-x)’-x&, (12)
dMEXCOS(st—(]sq)—,LLEk, (13)

2

e =Ny -2+ ?[cos(q&k — bg) + sin(ghy + by )sin(26) .
k

(14)

Here g=m"/2 is the density of states at the Fermi level and
we have introduced the dimensionless quantities x=q/2kp,
y=(w+i0)/4ep, v=klkp, r=plkp, and &=&p,0,dy)/ kp
with ep=k%/2m"* and kp=\2m"*Ep+p’. The integration over
v can be done analytically, yielding
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e
UV —Ufp '

The integration over ¢ is performed numerically. The
derived formula (15) is exact. In the limit of #=0 (pure
Bychkov-Rashba SOI) we recover the previous results by
Pletyukhov and Gritsev'? and in the limit of r=0 (no SOI)
we recover the classic result by Stern.?!

For the actual calculations we use materials parameters
suitable for InAs quantum wells with realistic values of the
SOI parameters, r=0.1 and #=m/8 corresponding to the ra-
tio of SOI strengths a/B=2.4 from Ref. 29. We take the
electron density n=2.55X 10" cm™2 (E;~302 K) and the
effective transverse width of the quantum well d=15 nm.

Figure 2(a) shows the EHC regions and the plasmon dis-
persions for different values of the angle ¢,. The anisotropy
of the intrachirality EHC (the dense-hatched region) and of
the plasmon dispersions is a small effect and hardly seen on
the scale of figure. Meantime, the inferchirality EHC is
strongly anisotropic (in the long-wavelength limit the aniso-
tropy vanishes). Figure 2(b) shows the imaginary part of the
dielectric function vs energy for the fixed momentum mag-
nitude and different orientations. As seen, not only the
boundaries of EHC but also the dissipation properties within
EHC are strongly anisotropic. In the region near the plasmon
energy, w/4E;=0.1 for ¢g=0.15kp, the imaginary part for
¢q=3/4 is strongly suppressed with respect to its value for
Pg=/2.

To calculate the plasmon dispersion we solve for zeros of
the real part of the RPA dielectric function

e(gw)=1-v(g) I (G, o),

where v(g)=2me*/(kyq)F(qd) is the bare Coulomb interac-

tion with ky=14.55, the static dielectric constant of InAs. For
the form factor F(qd) we use the formula

Fl) = 8w +37 327 (1-¢7)

T eop) P

which takes into account the transverse width d of the quan-

tum well but its asymmetric shape. The form factor has a

(16)

(17)

sponds to small g, the areas of inter- and intrachirality sub-
band transitions are well separated. The plasmon energy is
located within the gap between these EHC regions: these
plasmons are not damped. The plasmons here exhibit only a
SOI induced dispersion as a function of its propagation ori-
entation. At such small g, however, the anisotropy is not
significant and eventually vanishes in the long-wavelength
limit.

At larger values of ¢, in the region IIT in Fig. 2(a), the
plasmon dispersion enters EHC, triggering the phenomenon
known as Landau damping, i.e., decay into electron-hole
pairs. In this regime the EHC is made up of several overlap-
ping subregions (associated with the discrete quantum indi-
ces u and \) separated by sharp boundaries. The imaginary
part of the dielectric function (proportional to the spectral
density of electron-hole pairs) exhibits sharp variations
across these boundaries, resulting in unexpectedly strong an-
gular dependence of plasmon damping. In Fig. 3 we follow
the evolution of the plasmon frequency as a function of the
angle ¢, from 0 to  for g=0.15kg. A sharp boundary be-
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FIG. 3. (Color online) The SOI induced energy dispersion of the
plasmon vs its propagation direction for ¢g=0.15kg (the left axis and
square symbols). The parts of the spectrum which do not represent
plasmon excitations (see text) are shown as triangle symbols. The
dashed line plots the imaginary part of the dielectric function (the
right axis) for ¢=0.15k; and Aw=w-wy=1.2 K where w,
~(0.45Ep.
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FIG. 4. (Color online) The dynamical structure factor vs g for
q=0.15kg. The solid and dashed lines correspond, respectively, to
the local maximum at Aw=0.5 K and minimum at Aw=1.1 K of
the plasmon spectrum (cf. Fig. 3) and show the single-peak behav-
ior of S(¢, w). The dashed-dot-dot and dashed-dot lines illustrate the
splitting of the structure factor peaks for Aw=0.25 and 1.5 K. The
inset shows the asymmetric double-peak structure of the structure
factor for Aw=0.7 K.

tween two subregions of the EHC is crossed at ¢,=m/2.
Entering the new region, the plasmon becomes overdamped,
concurrent with the sharp rise of Im &(¢g, w), which we plot
in the same figure on the right axis. Figure 3 shows that there
are two ranges of directions 7/2=<¢,<5m/8 and 7Tm/8
=< ¢,= m in which the plasmon cannot propagate due to ex-
cessive Landau damping. On the other hand, the plasmon is
well defined around the angles ¢q: 7r/4 and 37r/4, where the
imaginary part of &(g,®) is small. These are the principal
directions of the underlying structural C,, symmetry. Finally,
in the intermediate II region in Fig. 2, the intra- and inter-
chirality subbands either overlap or not so that the plasmon
is being either damped or not depending on its propagation
direction.

In Fig. 4 we plot the dynamical structure factor S(g, )
=-Im[1/&(q,w)] as a function of ¢, for w corresponding to
the local maximum and minimum of the plasmon energy
dispersion. In both cases S(¢, ) shows a dominant peak as a
function of ¢,. As expected, the peak occurs at ¢q=m/4 for
0=0min(¢q) (dashed line) and at ¢,=37/4 for w=wn.(q)
(solid line). These peaks represent lightly Landau damped
plasmons (the plasmon at ¢,=37/4 is less damped than the
one at ¢,=m/4 and therefore produces a stronger peak). The
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preferential role of these two directions comes from the C,,
symmetry of the problem, clearly seen from the plot of the
Fermi surface in Fig. 1. Notice that for a given w there are
two additional angles at which Re (g, ) shows zeros. The
structure factor, however, does not exhibit peaks at these
angles since the large density of electron-hole pairs reflected
in the large value of Im &(g,w) overdamps the plasmons in
these directions. These “overdamped plasmons” are repre-
sented by the triangle symbols in Fig. 3.

In the range ., (q) <o <wpi,(¢) between the extrema
of the plasmon spectrum, the height and the width of the
peaks of S(g,w) vs ¢, show a smooth evolution: with in-
creasing o one peak diminishes, the other grows, and vice
versa. Thus, in this intermediate region the structure factor
has two peaks located at ¢q=77/ 4 and 37/4, which consti-
tute an asymmetric doublet, shown in the inset of Fig. 4. In
the energy regions above the minimum or below the maxi-
mum of the plasmon spectrum at given g [i.e., for w
> Win(q) or ©<w4,,(9)], Re (g, ®) Vs ¢y shows two zeros
around 7/4 or 37/4 so that each peak of S(g,w) splits into
two peaks located symmetrically above and below the angle
¢q=/4 (the dash-dot line) or 377/4 (the dash-dot-dot line).

In the case of a==* B [see Fig. 1(b)] the linear spin-orbit
couplings do not affect the plasmon spectrum: the plasmon
damping vanishes and the structure factor is a delta function
for all momentum orientations. For this special case there is
a global spin-quantization axis—one of the principal C,,
axes—so that the electron gas is split into two uncoupled
spin components whose circular Fermi contours are shifted
from the origin in opposite directions. Each component gives
an isotropic collective response, as guaranteed by Galilean
invariance. Cubic spin-orbit terms which spoil this effect are
typically much weaker in quantum wells.

In conclusion, we have shown that plasmon dynamics
(spectrum and damping) is strongly anisotropic in realistic
zinc-blende quantum wells due to the interplay of two differ-
ent forms of spin-orbit interaction. Experimental observation
of this anisotropy would be of fundamental interest and
could open the way to new techniques for controlled direc-
tional plasmon filtering, potentially useful for both spintronic
and plasmonic devices.
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