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We describe and analyze in detail our recent theoretical proposal for the realization and manipulation of
anyons in a weakly interacting system consisting of a two-dimensional electron gas in the integer quantum Hall
regime adjacent to a type-II superconducting film with an artificial array of pinning sites. The anyon is realized
in response to a defect in the pinned vortex lattice and carries a charge of �e /2 and has a statistical angle of
� /4. We establish this result, both analytically and numerically, in three complementary approaches: �i� a
continuum model of two-dimensional electrons in the vortex lattice of the superconducting film; �ii� a minimal
tight-binding lattice model that captures the essential features of the system; and �iii� an effective theory of the
superconducting vortex lattice superposed on the integer quantum Hall state. We propose a method for mea-
suring the fractional charge directly in a bulk transport experiment and an all-electric setup for an “anyon
shuttle” implementing the braiding operations. We briefly discuss conditions for fabricating the system in the
laboratory and its potential applications in quantum information processing with non-Abelian anyons.
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I. INTRODUCTION

In two dimensions the wave function of indistinguishable
particles can have exotic exchange properties: upon the ex-
change of two particles known as “anyons”1 it acquires a
phase factor of exp�i����1 with an arbitrary statistical
angle �. This is in contrast to the situation in higher dimen-
sions where �=0 or � corresponds to bosons or fermions,
respectively. The reason for this departure from the usual
quantum statistics arises from the unique topological proper-
ties of two-dimensional �2D� systems.2 If the ground state of
such identical particles is degenerate, the exchange opera-
tions can be described by matrices in the degenerate sub-
space, which are generically non-Abelian. Such particles are
referred to as non-Abelian anyons. It is also known that par-
ticles with fractional charge may arise, regardless of dimen-
sionality, as the collective response of a many-body system
to topologically nontrivial background fields.3–5

The interest in anyons is not merely academic. The topo-
logical character of anyons means that local perturbations
alter their properties exponentially weakly with a character-
istic length on the order of the separation between anyons.
�For a single anyon this length scale is replaced by the sys-
tem size.� This “topological protection” has been argued to
be useful for fault-tolerant quantum information processing.6

If the anyons have a rich enough non-Abelian structure, one
may realize a universal quantum computer, in which compu-
tations are performed by braiding anyons.7 Otherwise, topo-
logical protection for a nonuniversal subset of operations
may be obtained. In any case, the system can be considered,
at least, as a topologically protected quantum memory. How-
ever, the insensitivity to local perturbations also poses a
problem for manipulating anyons, which is necessary for
braiding operations, and for the storage and retrieval of in-
formation from the quantum memory.

How could anyons be realized in nature? Of course, the
first condition is the restriction to two spatial dimensions.

The fact that the world is three dimensional �3D� immedi-
ately implies that anyons can only be realized as collective
excitations of a many-body system whose constituent par-
ticles are necessarily fermions or bosons. The emergence of
such excitations constitutes the phenomenon of fractionaliza-
tion in condensed-matter systems.

Wilczek8 proposed a simple model of an anyon as a
bound state of a charge q and magnetic flux �, in which
either the charge or the flux, or both, has a fractional value in
units of the electron charge e and flux quantum �0=hc /e,
respectively. A closely related state is realized in a two-
dimensional electron gas �2DEG� in a perpendicular mag-
netic field in the fractional quantum Hall �FQH� regime, de-
scribed by the filling factor �. When 1 /� is an odd integer the
excitations carry a fractional charge of �e �Ref. 9� and have
a statistical angle of ��.10 FQH physics is the canonical ex-
ample of fractionalization. The Coulomb interaction is un-
derstood to play an important role in stabilizing the FQH
states, which may be considered strongly correlated in the
sense that they cannot be described by filling a set of single-
particle states.

One may naturally ask, then, if this is a necessary condi-
tion of fractionalization. It has been known for a long time
that strong correlations are not necessary for fractionalization
of charge in one and three dimensions,3–5 where exchange
statistics is trivial. In two dimensions, fractional charge and
statistics have recently been argued to arise in certain lattice
models11–14 that preserve time-reversal symmetry and can be
considered weakly interacting. Furthermore, we proposed15 a
weakly interacting system in which to realize anyons that can
be described by a Slater determinant of single-particle states.
This proposal has the potential to be useful for manipulating
anyons. Unlike some other proposals it also has a realistic
chance to be fabricated in the laboratory.

The system consists of a 2DEG in the integer quantum
Hall state adjacent to a thin slab of a type-II superconductor.
The idea is to employ the quantization of flux by the super-
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conductor in units of 1
2�0, i.e., half the natural quantum of

flux of the 2DEG, as well as the quantization of Hall con-
ductance in the quantum Hall state of the 2DEG. A sketch of
a possible arrangement is shown in Fig. 1. We have chosen a
symmetric placement of superconducting films around the
2DEG in order to minimize the spread and the in-plane com-
ponent of the vortex magnetic field at the 2DEG. This is not
necessary if similar conditions can be obtained in a different
geometry. Both of these systems admit an effective single-
particle description. The integer quantum Hall state can be
understood as a full Landau level of essentially free elec-
trons. The superconductor may be described as a condensate
of Cooper pairs. It is then interesting that the proximity of
these two weakly interacting systems results in the fraction-
alization of charge and statistics. Anyons are formed in re-
sponse to defects in a pinned Abrikosov vortex lattice in the
superconducting film. Such defects may be detected and ma-
nipulated by scanning superconducting quantum interference
devices �SQUIDs� and Hall bar probes or magnetic tips in
magnetic force microscopy that have been developed over
the years.16–20 Therefore, our anyons have the additional po-
tential of being manipulated despite their topological protec-
tion. As we shall describe in Sec. VII a similar setup with the
FQH state at �=5 /2 should realize, and allow for the ma-
nipulation of, non-Abelian anyons. These anyons are robust
as long as the spread of the vortex-lattice defect, controlled
by the superconducting penetration depth and the distance
between the two layers, is small relative to the distance be-
tween the defects.

In the present paper, in addition to providing the details
and some extensions of our previous analysis,15 we present
new analytical and numerical work from alternative starting
points that shed light on different aspects of the system.
Moreover, we present a concrete method for measuring the
fractional charge of anyons in a bulk transport experiment
that utilizes the vortices in the superconducting film. We also
describe an idea for the “anyon shuttle,” a system in which to
manipulate anyons bound to the flux defects by purely elec-
trical means.

The rest of the paper is organized as follows. In Sec. II we
describe the system and provide a general argument for our
findings. In Sec. III we discuss a continuum approach to the
electrodynamic response of the 2DEG to the vortex lattice
and its defects, employing various simplifying assumptions
and a combination of analytical and numerical methods. In

Sec. IV we formulate and study a minimal lattice model of
the system by exact diagonalization numerically as well as in
the continuum limit analytically. In Sec. V we study an ef-
fective theory of the system, which is expressed as a Chern-
Simons-Maxwell theory that we use to study the interplay of
the superconducting and the topological orders in the system.
Given the interesting physics predicted here and the potential
application of the system in manipulating anyons, we believe
it is important to make an effort to fabricate it in the labora-
tory. Section VI contains our proposal to measure the frac-
tional charge and a description of the anyon shuttle. Finally,
we conclude in Sec. VII by discussing the conditions for the
experimental realization of the system. Details of some cal-
culations as well as the derivation of some known results are
given in Appendixes A–C in order to make the paper self-
contained.

II. SYSTEM

The proposed system has two components: a layer hosting
a 2DEG in an integer quantum Hall state and a film of
type-II superconductor. The purpose of the superconducting
film is to quantize the magnetic flux into an Abrikosov vor-
tex lattice, where each vortex carries a flux of 1

2�0, which
plays a central role in the physics we describe. Cooper pair
condensation in the superconducting film ensures that this
quantization is extremely precise.

As mentioned above, the anyon is to be realized in the
2DEG in response to a defect, i.e., an extra or missing 1

2�0
flux in the vortex lattice. However, a naturally formed Abri-
kosov lattice is �almost� incompressible.21 This means that if
defects are to be created by moving one of the vortices, the
vortex lattice will rearrange itself in such a way as to com-
pensate for the additional or missing flux in the correspond-
ing regions. Thus, in order to allow for the creation of such
defects, we propose to artificially imprint an array of pinning
sites on the superconducting film. The pinning sites are re-
gions where superconducting order is weakened and can be
created in a variety of ways.22 They attract and pin supercon-
ducting vortices, thereby preventing the incompressible rear-
rangement of vortices in response to a defect. At the match-
ing field BM the number of vortices equals the number of
pinning sites. An increase �decrease� in the field away from
BM will induce a corresponding number of interstitial �va-
cancy� defects in the pinned vortex lattice with a surplus
�deficit� flux of 1

2�0. The interstitials can then be manipu-
lated by a magnetic tip.20

What is the response of the 2DEG system to a flux defect
in the superconducting vortex lattice? To answer this ques-
tion we will make two working assumptions. The first one is
that the 2DEG is indeed in the integer quantum Hall state. In
particular, we assume that the spatial variation in the field
does not destroy this state. Second, we assume that the en-
ergetics of the system is dominated by the superconducting
film. Importantly, this means that the quantization of flux by
Cooper pairs remains valid and exact. We shall discuss the
conditions under which these assumptions hold true in Sec.
VII. Consequently, the question is reduced to: what is the

FIG. 1. �Color online� The schematic diagram of the proposed
device. A 2D electron gas is sandwiched between two type-II su-
perconducting films.

ROSENBERG et al. PHYSICAL REVIEW B 79, 205102 �2009�

205102-2



response of the integer quantum Hall state in 2DEG to a
surplus/deficit flux of 1

2�0?
The answer is found by a thought experiment in which we

slowly turn on the extra flux ��t� in time t from zero to ��0,
with �=� 1

2 . The total charge accumulated at the position of
the defect is

�Q = −� dt�
C

je · ndl , �1�

where C is a contour in the plane containing the defect, n is
a unit vector normal to it, and dl is an element of length of C.
In this process an electric field is induced in the plane by
Faraday’s law, �CE ·dl=−d� /cdt. An electric field in the
quantum Hall state with filling factor � results in a transverse
electric current je=�HE	 ẑ, where ẑ is the normal to the
plane and �H=�e2 /h is the quantized Hall conductance. Al-
together, we find from Eq. �1�

�Q = ��e . �2�

We note that for this result to be valid, the size of C needs to
be much larger than both the size of the flux defect and the
size of the smallest Landau orbit. The former is determined
by the penetration depth 
L in the superconducting film,
which comes in through the use of Faraday’s law. We shall
see its role more clearly in Secs. III C and V. The latter is on
the order of the magnetic length �B=��c /eB and is implied
by the physics of the quantum Hall state, as will be discussed
in Sec. III.

Thus, at �=1, we have uncovered a bound state of charge
q=�e and flux �=��0. This is an almost literal realization
of Wilczek’s model of an anyon.8 However, based on an
analogy with the FQH quasiparticles, we expect a statistical
angle �=�2�=� /4, as opposed to the 2�2�=� /2 that
would follow from Aharonov-Bohm phases. That this is the
correct result can be affirmed by using the fusion rule:23 the
statistical angle of a composite of n anyons with statistical
angle � is n2�. Putting two bound states �q ,�� together we
must obtain an electron, a fermion: 4��� mod 2�. This is
consistent with �=� /4. In effect, the anyon carries the
memory of its fermionic past. These general findings will be
confirmed by our detailed studies in the rest of the paper.

III. CONTINUUM MODEL

As a first concrete model of our system, we will study a
continuum model of noninteracting electrons in the 2DEG
layer in magnetic field at filling factor �=1. In a uniform
magnetic field the energy levels are organized in Landau
levels with a degeneracy N�=� /�0 per spin, the total num-
ber of flux quanta in the plane. The ultimate goal of this
study is to find the levels in the periodic magnetic field gen-
erated by the Abrikosov lattice of vortices in the supercon-
ducting film and in the presence of vacancies and interstitial
defects. Not surprisingly, the full solution can only be ob-
tained numerically, but we will find analytical solutions for
simpler cases. Especially, we will use the general solution for
the ground states of a 2DEG in an arbitrary magnetic field,
due to Aharonov and Casher,24 in the special case of “Pauli”

electrons, i.e., free electrons with the gyromagnetic ratio g
=2.

A. Spin-polarized electrons

We do not know the general form of the wave functions
for other values of 0�g�2, but for large enough g1, the
Zeeman coupling can be replaced with the condition that all
electrons are in a single spin state, aligned with the magnetic
field. We can then find the single-particle spectrum in the
simple case of a uniform background field with vacancy and
interstitial defects modeled by a �-function profile. The
single-particle Hamiltonian is

Hpol =
1

2me
�p −

e

c
A	2

, �3�

where p and A are the momentum and the vector potential
operators.

We shall work in the dimensionless polar coordinate
�r cos � ,r sin ��=x /�2�B. The magnetic field is B�x�
= 
B0+��0��x��ẑ. The vector potential is given, in the sym-
metric gauge, by

A =
1
�2

�0

2��B
�r +

�

r
	�̂ , �4�

where �=� 1
2 is the fraction of the flux quantum carried by

the defect.
The Schrödinger equation H�=E� is solved in Appen-

dix A. From Eq. �A5�, the states in the lowest Landau level
�LLL� are given by

�l
����z� � �z�−�zle−�1/2��z�2, �5�

with the complex coordinate z=rei�. When �=0, the LLL
contains Ne=N� states. For a vacancy, ��0, the orbital
quantum number k=0, and the angular momentum
l=0,1 , . . .. All the states are pushed away from the center, so
we still have Ne=N� states in the LLL and a charge deficit at
the center. For an interstitial, ��0, on the other hand, k=0,
and l=1,2 , . . .. All the states are pulled in toward the center,
so we lose the innermost state with l=0, whose energy is
pushed up into the gap. Therefore, the LLL now contains
Ne=N�−1 states. The many-body ground state of the filled
LLL is given by

�����zi� �
i=1

Ne

�zi�−�
i�j

�zi − zj�exp�−
1

2�
i

�zi�2	 . �6�

For further use, we also note a different form of this
wave function in the “string gauge” where the vector
potential of the additional �-function flux is given by
�A= ��2�Br�−1��0�����̂. This gauge can be obtained from
the symmetric gauge in Eq. �4� by a gauge transformation
A→A−��, with �= ���0 /2���. The single-particle wave
functions transform as �→�s=� exp�−i 2�

�0
��=�e−i��.

The effect of this gauge transformation is to send �zi�→zi in
Eq. �6�,

�s
����zi� �

i=1

N

zi
−�

i�j

�zi − zj�exp�−
1

2�
i

�zi�2	 . �7�
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1. Fractional charge

Using results from Sec. III A, we have for the charge
density in the thermodynamic limit

���r� = e�������
i

��x − xi������� �8�

=e�
l

��l
����x��2 =

e

2��B
2 F��r2� , �9�

where

F���� = e−��
l=0

�
��l−��

��1 + �l − ���
. �10�

The charge displacement due to additional flux can be calcu-
lated as �Q�=Q�−Q0, where Q�=����x�dx=e�0

�F���d�.
Note that F0=1.

For a vacancy, ��0,

F���� = 1 −
��− �,��
��− ��

, �11�

where ��a ,��=��
�sa−1e−sds is the incomplete gamma func-

tion. For an interstitial, ��0,

F���� = 1 −
��1 − �,��
��1 − ��

+
��e−�

��1 + ��
. �12�

In both cases, F����→1 for �1, that is, the length scale for
the extra charge at the center is ��B. Thus,

�Q� = e�
0

�


F���� − F0����d� = �e , �13�

where we have used the identity �0
���a ,��d�=��a+1�. This

confirms the value of the fractional charge we found by our
general argument in Sec. II and clarifies the role of the mag-
netic length scale.

2. Fractional statistics

In order to find the statistics of the fractionally charged
defects we calculate the Berry phase,10 defined as the phase
accumulated by a state �w as a parameter w is taken around
a contour C,

�B = i�
C

��w��w��w�dw + i�
C

��w��w̄��w�dw̄ � �B,w + �B,w̄.

�14�

Here we have allowed for the possibility that �w is not an
entire function of w �so it may depend on the complex con-
jugate w̄, too�. When w parametrizes the encircling of one
particle around the other, this is equal to twice the statistical
angle.

For a particle of charge q encircling an area with magnetic
flux �, the Berry phase is the same as the Aharonov-Bohm
phase, �AB=2��q /e��� /�0�. This property can be used to
confirm the value of the charge we obtained above. The
ground state in the string gauge for an extra flux of ��0 at a

position with complex coordinate w is given by Eq. �7� with
the replacement zi

−�→ �zi−w�−�. In a large system of size L
this is justified as long as �w��L /�B. A stronger argument
will be given in the special case discussed in Sec. III B.
Denoting the ground state when �=0 as �0�zi�, we have

�w � �s
����zi,w� �

i

�zi − w�−��0�zi� . �15�

So,

�w�w = − ��w�
i

1

w − zi
, �16�

and �w̄�w=0. When w is taken around a contour C=�S this
gives

�B = − i�� d2z�
C

��w��
i

��z − zi���w�

w − z
dw

= −
i�

e
� d2z�

C

���z − w�
w − z

dw , �17�

where we have used definition �9� for the charge density.
Writing ��=�0+��� we observe that the second term’s con-
tribution vanishes as R−2 with the size R of contour C �in
units of �B�. For the first term’s contribution, we note that the
contour integral evaluates to 2�i when z�S and is 0 other-
wise; thus

�B = 2��
�S

�0
+ O�R−2� , �18�

where we have used the relationship between the charge and
the magnetic flux in S, �S, for the �=1 integer quantum Hall
state. Comparing with �AB we find the charge carried by the
defects to be �Q=�e, as before.

The form of the wave function in Eq. �15� suggests that
we may write the wave function with two defects located at
w and v as

�w,v�zi� �
i

�zi − w�−��zi − v�−��0�zi� . �19�

We will justify this form more strongly in Sec. III B. With
this choice we may now compute the Berry phase again,
when w is taken around a contour C=�S encircling v. The
algebra is completely analogous to the previous case and,
when R− �v�1, we find

�B =
2��

e
�

S

���z�d2z , �20�

where the charge �e of the defect at v must now also be
taken into account in ��. This gives �B=2����S /�0+��
with the additional phase 2�,

� = �2� , �21�

being twice the statistical angle, as expected.

B. Pauli electrons

Electrons carry a magnetic moment
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� = g
e�

mec

1

2
� , �22�

where � is a vector of Pauli matrices, and couple to the
magnetic field by a Zeeman interaction term, −� ·B. For free
electrons the gyromagnetic ratio g=2 with a very high pre-
cision. In a solid this value is renormalized and can be much
higher. When g=2 there is a powerful method due to Aha-
ronov and Casher,24 which gives the ground states of the free
Pauli electrons moving in a general profile of a perpendicular
magnetic field.

The Hamiltonian for electrons in a perpendicular mag-
netic field is

Hfree =
1

2me
�p −

e

c
A	2

− �zB . �23�

The ground states can be found for an arbitrary space-
dependent applied magnetic field B�x� as �0�z�= f�z�e−�,
where f�z� is an entire function of the �dimensionless� com-
plex coordinate z and �2�=2�B /�0. For the sake of com-
pleteness the derivation of this result is outlined in Appendix
B.

We will now add a flux defect with a general profile to the
uniform background B0, given by �B�x�=��0���x�, where
�� is a general function that vanishes over a characteristic
length � �in units of �B� and with unit weight ����x�d2x=1.
Then, switching to the dimensionless complex coordinate
representation, we may write ��z�= 1

2 �z�2+����z�, where

�2���z� = 2����z� , �24�

with the solution given, using the Laplacian Green’s function
�2��−1ln�r�, as

���z� =� ln�z − v����v�d2v . �25�

For illustration, we note that when we take the limit �→0 we
must have ���z�→��z� and ���z�→ ln�z�, which reproduces
the results of Sec. III A. This provides further justification
for Eqs. �15� and �19�.

Transforming to the string gauge, the many-body ground
state with a defect at position w is then

�w�zi� �
i

�zi − w�−�

�zi − w�−�
e−����zi−w��0�zi� , �26�

where �0 refers to the ground state in the absence of the
defect ��=0� as before. Thus,

�w�w = − ��w�
i
��w���zi − w� +

1

2

1

w − zi
� , �27�

�w̄�w = − ��w�
i
��w̄���zi − w� −

1

2

1

w̄ − zi
� . �28�

Using expression �25�,

�w���z − w� =
1

2
� ���u�

u − �z − w�
d2u . �29�

Similarly, �w̄�� is found by w→ w̄. Hence, following similar
manipulations as in Sec. III A, the Berry phase for transport-
ing the defect around a contour C=�S is found to be

�B,w = −
i�

2e
� d2zd2u�

C

���z − w;��
���u� + ��u��
w − �z − u�

dw .

�30�

Note that the second term in the square brackets is exactly
half of the result found in Sec. III A for �=0. Similarly, �B,w̄
is found by w→ w̄ and with 
���u�−��u�� in the numerator.

Writing ��=�0+��� we see again that the correction
from the second term in �B,w is O�max
� ,1� /R�2,
whereas the first term contributes exactly as before since
�d2u���u�=�d2u��u�=1. The latter also means that the lead-
ing contribution to �B,w̄ vanishes. Thus,

�B = 2��
�S

�0
+ O�max
�,1�

R
	2

, �31�

confirming the value of fractional charge �e, as well as il-
lustrating the role of the size � of the defect.

The statistical angle is calculated similarly from �B by
taking a defect at w around another defect fixed at v. The
many-body wave function in the string gauge is given by

�w,v�zi� �
i

�zi − w�−�

�zi − w�−�
e−����zi−w��v�zi� . �32�

The algebra is the same as before, but now �� contains the
charge of the defect at v so the leading contribution, when
R− �v�max
� ,1�, is given by 2���S /�0+2�,

� = �2� . �33�

As an example, let us consider a widened flux tube, with
a size � in units of �2�B, given by

���z� =
1

�

�2

��z�2 + �2�2 , �34�

which correctly tends to ��z� as �→0. Then,

���z� = ln��z�2 + �2, �35�

which can be obtained directly from Eq. �24�. Thus the
many-body wave function in the string gauge for a flux tube
at w is found to be

�w �
i

�zi − w�−��1 +
�2

�zi − w�2	
−�/2

�0. �36�

The derivatives needed for the Berry phase calculation are

�w�w = −
�

2
�w�

i

�w
ln��zi − w�2 + �2� + ln�zi − w�� ,

�37�

and similarly for �w̄�w. These are the same as Eqs. �27� and
�28�. Finally, the Berry phase is
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�B = − i
�

2e
� d2z�

C

dw����z − w�
w − z�

+
���z − w�

w − z
� , �38�

where z��z−�2 / �w̄− z̄�. Therefore, when ��R, the size of
C=�S, both terms in Eq. �38� have the same contribution
2�i�Sd2z��=2�ie�S /�0+O�1 /R2� to the integrals and we
obtain �B=2���S /�0. The Berry phase resulting from
transporting one flux tube around the other can be calculated
similarly to be 2����S /�0+�� as long as max
� ,1��R.

We have calculated the charge density and the accumu-
lated charge in the vicinity of the widened flux tube numeri-
cally. The results are summarized in Fig. 2, which once again
confirms that the accumulated charge is exactly 1

2e and is
drawn from the edge of the system.

C. Pauli electrons in Abrikosov lattice

We will now use this general method to study the more
realistic situation of defects in a pinned Abrikosov lattice,
which we take to be square. Vortices are then separated
by ���B, so that the flux through a unit cell �containing
a vortex� is 1

2�0. The average magnetic field is
B0= ��0 /2��B

2��1−�d�, where �d is the density of defects.
The total field is obtained from the London equation


L
2�2B − B = −

1

2
�0�

i

��0
�x − xi� , �39�

where xi denotes the position of vortices, �0 is the coherence
length, 
L is the penetration depth, and ��0

is the profile of a
single vortex in the plane. In the pure London model this
would be a delta function resulting from the phase singular-
ity at the vortex center. A more realistic approach takes into
account the finite vortex core size �0 which leads to a broad-
ening of the delta function. The form that is easy to imple-
ment in calculations and also gives good agreement with the
experimentally observed field distribution is given by a
Gaussian25

��0
�x� =

1

2��0
2exp�−

�x�2

2�0
2	 . �40�

If we let �0→0 we recover the �-function vortices studied in
Sec. III A.

We decompose the field B=B0+�B+�Bd, where �B is the
periodic modulation by the Abrikosov lattice and �Bd is the
field produced by defects. We choose to work in the
Landau gauge where �=y2 /2�B

2 from Eq. �B6�. We have
returned to the dimensionful quantities for clarity. This cor-
responds to periodic boundary conditions in the x direction.
Accordingly we choose the complete set of entire functions,
f l�z�=exp
−2�il�x+ iy� /Lx�, where l�N and Lx is the size of
the system in the x direction. The �un-normalized� single-
particle ground-state wave functions are then given by

�l��x� = e�2�/Lx�l�y−ix�e−��e−��de−�1/2��y/�B�2
, �41�

where �2��= 2�
�0
�B and �2��d= 2�

�0
�Bd.

Using the periodicity of the system we have
�B�x�=

�0

2��B
2 �G�0�BGeiG·x,

�BG =
e−�1/2��0

2G2

1 + 
L
2G2 . �42�

Here G is a reciprocal-lattice vector. The G=0 is excluded
since the average extra flux ��BdS=0. Figure 3 shows the
magnetic field, from Eq. �42�, in the pinned Abrikosov lattice
when �0�
L��B. This is the limit we are interested in: the
first part ensuring that the superconductor is a strong type-II
one and the vortex core is small, and the second part ensur-
ing that the vortices are well separated and defects are well
localized. The result is a strongly modulated magnetic field.

Laplace equation �B2� can be solved in the reciprocal
space, ���x�=�G�0��GeiG·x,

��G = −
1

�B
2G2�BG = −

1

�B
2G2

e−�1/2��0
2G2

1 + 
L
2G2 . �43�

We define a supercell of Nd cells of the original lattice that
contains one defect; thus, �d=1 /Nd

2. This superlattice of de-
fects has a corresponding reciprocal superlattice, whose vec-
tors we denote by Gd. Now,

��d�x� = �d �
Gd�0

��Gd
eiGd·x. �44�

FIG. 2. �Color online� �a� Charge densities in units of e /2��B
2 in

a system with Ne=100 electrons without �dashed blue line� and with
�solid black line� a defect ��=− 1

2 � of the widened flux tube with
�=0.5�B. �b� The difference in density −���=�0−��. The inset
shows the accumulated integrated charge �Q�r�=−����dx in units
of e.

FIG. 3. �Color online� Magnetic fields �in units of �0 /��B
2� of

the pinned Abrikosov lattice, �a� without and �b� with a vacancy
defect. The plots are a partial view of the larger system with 64
pinning sites, 
L=0.2, and �0=0.01 in units of vortex separation,
���B.
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Eigenfunctions �l��x� in Eq. �41� are linearly independent
but in general do not form an orthonormal set. This compli-
cates computation of observables. In the next step we thus
map the states in Eq. �41� to an orthonormal basis by diago-
nalizing the overlap matrix

Alk = ��l���k�� . �45�

Denoting the orthogonal matrix that does so by U,
�U†AU�lk=al�lk with eigenvalues al, the orthonormal basis is
given by

��l� =
1

�al
�

k

Ukl��k�� . �46�

Then, we may easily obtain the charge density in the many-
body ground state,

��x� = e�
l

��l�x��2. �47�

We have employed fast Fourier transform methods26 to
obtain the charge density in the system when defects are
introduced in the vortex lattice. In Fig. 4 we show our results
for the charge density. In the regular pinned vortex lattice,
the electrons are mostly uniformly spread on the plane with
regular peaks bound to the vortices. At �=1, the average
density is half an electron per vortex. A vacancy depletes the
charge from around the vacant site, with an integrated charge
deficiency which is exactly 1

2e. This result allows us to con-
clude that a vortex defect binds exactly quantized fractional
charge even when the periodic structure of the underlying
magnetic field is taken into consideration.

IV. LATTICE MODEL

In this section we consider a lattice model to study the
response of the 2DEG layer to the arrangement of vortices in
the superconducting film. The continuum model in Sec. III
and the lattice model in this section can be thought of as the
same system for different realizations of the gyromagnetic
ratio. For large values of g we can think of electrons as
tightly bound to vortices.27 In this limit we can model the
2DEG with a tight-binding Hamiltonian for spin-polarized
fermions on a square lattice where each plaquette is threaded
with half a flux quantum, 1

2�0.
The Hamiltonian is

Hlatt = �
ij

tije
i�ijci

†cj + �
i

�ici
†ci, �48�

where ci annihilates an electron at site xi, �i is an on-site
chemical potential, and ei�ij are �gauge-dependent� Peierls
factors incorporating the magnetic flux:

�ij =
2�

�0
�

xi

xj

A · dx , �49�

with A as the vector potential. The simplest model that pro-
duces the integer quantum Hall state is one with nearest- and
next-nearest-neighbor hoppings t and t�, respectively. The
next-nearest-neighbor hopping is needed to break the time-

reversal symmetry. When t�=0 the smallest flux an electron
sees is 1

2�0 through a plaquette, which is changed under
time-reversal operation by �0. Therefore, the Hamiltonian is
time-reversal invariant when t�=0 and the Hall conductance
vanishes.

For a flux 1
2�0 uniformly distributed over a plaquette the

vector potential in the Landau gauge is given by
A= 1

2sgn�B��0�0,x�, where B is the field perpendicular to the
plane. The Peierls factors are then given by

�i,i+x̂ = 0, �i,i+ŷ = �ix, �50�

�i,i+x̂+ŷ = �i+x̂,i+ŷ = �
ix + 1
2sgn�B�� . �51�

These Peierls factors are pictured in Fig. 5�a�. We may
then choose a two-site unit cell �i , i+ x̂� and form the
spinor field �i= �ci ,ci+x̂�T. For a uniform on-site potential
�i=�, the Hamiltonian can be written compactly in the
reciprocal space, with the reduced Brillouin zone
�k : �kx��� /2, �ky����, as Hlatt=�k�k

†��−2tHk��k, where

FIG. 4. �Color online� The electronic densities �in units of e� in
the Abrikosov lattice 
�a� and �c�� without and 
�b� and �d�� with
defects. Panels �c� and �d� are zooms on �a� and �b� where a va-
cancy is introduced. The difference between �a� and �b� is shown in
�e�, and that between �c� and �d� is in �f�. The system has 64 pinning
sites, 
L=0.2, and �0=0.01 in units of vortex separation, ���B.
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Hk = − h�k��z + Re D�k��x + Im D�k��y . �52�

Here �x,y,z are the Pauli matrices, and

h�k� = cos ky ,

D�k� = eikx�cos kx − im sin kx sin ky� , �53�

where we have introduced the “mass” m=2 sgn�B�t� / t. The
energy spectrum is then given by

E�k� = � � 2t�cos2 kx + cos2 ky + m2 sin2 kx sin2 ky ,

�54�

which is symmetric around � and has a gap 8t� at the two
independent “nodes” K�= ��2 ,� �

2 �. The symmetry of the
spectrum is a general property of Eq. �52�, since

�yHk
��y = − Hk. �55�

Therefore, �y�E
� is an eigenstate of energy �−E, if �E is one

with energy �+E. The spectrum and the corresponding den-
sity of states are shown in Figs. 6�a�–6�d�.

A defect is introduced by an additional ��0 flux through
one of the plaquettes. This will alter the Peierls factors by
��ij, so that �� ij��ij �� mod 2�around a closed loop con-
taining the defect, and is zero otherwise. We choose to work
in the string gauge specified by a string originating from the
defect and ending at a boundary: ���ij�=2�� if the string
cuts the bond x j −xi, and zero otherwise. This is shown in
Fig. 5�b�. Two different choices of the string are related by a
gauge transformation. It is important to note that our lattice
formulation does not distinguish between an interstitial
��= + 1

2 � and a vacancy ��=− 1
2 �, since the difference in flux

is a full flux quantum through the smallest loop of the lattice
�i.e., half a plaquette�. As already mentioned above lattice
electrons cannot distinguish such fluxes.

A. Hall conductance

At half filling and for t��0 the lattice model exhibits
precisely quantized Hall conductance �H=� �e2 /h�. To see
this we employ the Thouless-Kohmoto-Nightingale-Nija
�TKNN� formula28 which gives �H=K�e2 /h� in terms of the
integer topological invariant

K =
1

2�
�

�BZ
dk · Ak, �56�

with

Ak = �
s

���sk�i�k�sk� . �57�

Here �sk are eigenstates of Hk with band index s and the sum
is over occupied bands.

The integral in Eq. �56� represents the total Berry flux
through the Brillouin zone. The largest contribution comes
from the vicinity of the nodal points and it is easiest to evalu-
ate K by first linearizing Hk near the nodes and then com-
puting their contributions separately. As shown below in Sec.
IV D the linearized Hamiltonian near the node at K� has the
generic Dirac form

(a) (b)

FIG. 5. �Color online� �a� The Peierls factors ei�ij in the Landau
gauge: �green� dashed links are −1, �black� solid links are +1, and
�blue� diagonal links are +i in the direction of the arrow. �b� The
string gauge for a defect �black disk�: every link that intersects the
string �dashed wiggly line� acquires an extra −1.

(a) (b)

E
t

kx ky kx ky
(c) (d)
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FIG. 6. �Color online� The spectra of the lattice model �a� with-
out a gap, t�=0, and �b� with a gap t� / t=0.1. The densities of states
in the �c� gapless and �d� gapped systems. In all cases �=0 is as-
sumed. Charge densities for �e� a single defect and �f� two defects in
a 36	36 system and t� / t=0.3. �g� The integrated charge in a 40
	40 system with open boundary conditions. �h� The energy split-
ting of zero modes of two defects vs their separation in a 164
	10 system with periodic boundary conditions.
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hp = px�x + py�y + m�z, �58�

with the spectrum Ep=��p2+m2 and p is the momentum
relative to the nodal point. A quick analysis of Eq. �53� re-
veals that the mass terms at the two nodes are equal. A
straightforward calculation summarized in Appendix C
yields

K� = 1
2sgn�m� . �59�

Adding the two contributions, we thus find

�H = sgn�B�
e2

h
, �60�

as expected. This type of calculation is valid for any system
with Dirac nodes. In graphene, for example, the mass terms
created by a simple charge density wave have opposite signs
and the Hall conductance vanishes, consistent with the fact
that the system is time-reversal invariant in zero applied
field.

B. Exact diagonalization

We have performed exact diagonalizations of lattice
Hamiltonian �48� on lattice sizes of up to 50	50 in various
settings. The system with a single defect and open boundary
conditions supports a zero-energy bound state. Since the
spectrum remains symmetric, standard arguments29 then
show that the charge bound to the defect must be � 1

2e at half
filling depending on whether the zero mode is filled or
empty. As seen in Fig. 6�g� the charge bound to a defect
indeed integrates to 1

2e with a numerical precision within
machine accuracy. The charge density profile in the ground
state is shown in Figs. 6�e� and 6�f�. The extra charge is
localized around the defect center within a length scale of
�m−1. For two defects, the two zero modes are slightly split
due to tunneling between them with the energy splitting that
decays exponentially with the defect separation. This split-
ting is plotted in Fig. 6�h�. The effects of disorder in the
on-site potential �i were discussed in Ref. 15. Specifically,
we found that precisely quantized fractional charge persists
even in the presence of disorder, as long as it is weak in
comparison to the excitation gap.

C. Lattice Berry phase

Since we have the complete spectrum of the lattice
Hamiltonian, we can also calculate the Berry phase accumu-
lated by the ground state of the system with two defects as
one is taken around the other. Consider the ground state �w�
with two defects, one placed at a fixed position and the other
at w. As we take the second defect around the first one
through the positions w1 ,w2 , . . . ,wN�w1, we may calculate
the accumulated phase at step n though a generalized Barga-
mann invariant30–32

�B,n = arg�w1�w2��w2�w3� ¯ �wn−1�wn��wn�w1� . �61�

In each step the phase of the overlap changes by an incre-
mental amount; the phase of the product of overlaps is then
equal to the sum of all such incremental changes. Of course

�w� is defined up to an arbitrary phase. The product in Eq.
�61� is independent of this phase for all states. Especially, the
last overlap �wn �w1� is included to make the product inde-
pendent of the arbitrary phase of the initial and final states as
well.

There is also a local gauge freedom in Hamiltonian �48�
and thus in �w�. Therefore, the overlaps �wr �ws� in Eq. �61�
are gauge dependent. This can be avoided by choosing to
work with a gauge-invariant overlap,

�wr�ws�inv = �wr�e−i�̂0,rs�ws� , �62�

where �0,rs�xi�= 2�c
�0

�tr
tsA0�t ,xi�dt, t is time, and A0 is the elec-

tromagnetic scalar potential in the chosen gauge. Basically,
�0,rs�xi� is the temporal Peierls factor at site xi.

The significance of �̂0 can be understood by thinking
about the dimensionless gauge-invariant flux ��C�
=�CA� ·dx� for a temporal loop Cij,rs= �tr ,xi�→ �ts ,xi�
→ �ts ,x j�→ �tr ,x j�→ �tr ,xi�. On the one hand,

��Cij,rs� =
�0

2�

�0,rs�x j� − �0,rs�xi� + �ij�ts� − �ij�tr�� .

�63�

On the other hand,

��Cij,rs� = �
tr

ts

dt�
xi

xj

E · dx , �64�

where E=−�A0− 1
c �tA is the in-plane electric field. This is

simply the total integrated electromotive force along the line
connecting xi to x j. For each flux quantum crossing x j −xi in
the time interval ts− tr, we see from Eq. �64� that ��Cij,rs�
changes by �2�, coming from the electric field induced by
the motion of the flux. Therefore, �̂0 in Eq. �63� ensures that
this induced field is correctly taken into account.

We shall work in the temporal gauge where A0�0, where
the gauge-invariant overlap is the same as the regular over-
lap. For a moving defect in the string gauge, this is satisfied
when we extend the Dirac string exactly along the path of the
defect. This can be seen by focusing on a primitive temporal
plaquette, �=C�ij�,�rs�. If the defect crosses the spatial side of
�, ����=��. Since the Dirac string trails along the path of
the defect, it also crosses the same spatial side of �, contrib-
uting exactly �� to ���� through the spatial Peierls factors
in Eq. �63�. Thus,  0,�rs��xi�= 0,�rs��x j�=0. If the defect does
not cross �, nor does the Dirac string. This is depicted in Fig.
7. The same conclusion can be drawn in the continuum for-
mulation. In the string gauge A is perpendicular to the Dirac
string. Therefore in order that A0=A ·v /c=0, the velocity v
of the defect must be tangent to the string; i.e., the Dirac
string should be extended along the path of the defect.

Figure 8 summarizes our numerical calculation of the
Berry phase. When a single defect is taken around a loop
C=�S, the net effect can be understood as the Aharonov-
Bohm phase of transporting the flux of the defect ����0

around the total charge inside the loop e
2NS, where NS is the

number of sites enclosed by C. Hence, �B= �
2 �NS mod 2�.

This even-odd effect is seen in Figs. 8�a� and 8�b�. When a
second defect is introduced inside the loop C, the charge is
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reduced by e
2 , which is equivalent in effect to reducing the

number of sites by 1. Thus the even-odd effect must switch,
as depicted in Figs. 8�c� and 8�d�. The statistical angle can be
inferred from the difference in the Berry phase with and
without the second defect, giving 2�=� /2 as expected.

D. Low-energy limit

Fractional charge and statistics can also be found analyti-
cally by studying Hamiltonian �48� at low energies. This will
give us a continuum description of the lattice model valid for
the long-distance, collective behavior of the system.

At half filling the low-energy spectrum is dominated by
quasiparticles around the two nodes K�. Expanding around
the nodes, k=K�+p, the low-energy Hamiltonian is found
to be Hlatt→�p!p

†Hp!p, with !p= ��K++p ,�K−+p�, and

Hp =  1px +  2py + im 1 2, �65�

where  = � 1 , 2�=−�1 ��y ,�z ��z�. Since these matrices
are diagonal in the nodal index, the two nodes are decoupled
in the low-energy approximation. Moreover, by a rotation
S=exp�i�1 ��z /4�exp�i1 ��x /4��1 ��x� we find Hp
→S†HpS=1 � hp, where hp is given by Eq. �58�.

The effect of additional flux is to shift the momenta p
→p− e

c�A, where �A is the vector potential of the additional
field. For an additional flux of ��0 in the symmetric gauge,
�A= ���0 /2�r��̂. In real space, then,

H =  · �p̂ −
e

c
�A	 + im 1 2, �66�

where now p̂=−i�� is the momentum operator.
The problem is reduced to Dirac fermions interacting with

a �vanishingly thin� solenoid with flux of ��0. It is known
that the spectrum of this problem is not completely specified
without extra boundary conditions at the origin.33 Math-
ematically, this is related to having more than one self-
adjoint extension of Hamiltonian �66�. These self-adjoint ex-
tensions can be parametrized by a pair of angular variables
��adj

+ ,�adj
− �, one for each node. For � /2��adj

� �3� /2 there is
a bound state for the � node with energy �E��m at any
value of �. When �adj

� =� the bound state at �=� 1
2 has zero

energy. The bound-state wave function in each case is square
integrable but diverges at the origin. We also note that with-
out fixing �adj

� one actually finds a continuum of bound states.
This is due to the scale invariance of Hamiltonian �66�,
which means that by scaling the distance r→
r we can go
from a bound state �b�r� of energy E to another one �b�
r�
with energy E /
. This anomalous bound-state spectrum col-
lapses onto a single bound-state energy by properly regular-
izing the problem at short distances. The self-adjoint param-
etrization provides such a regularization procedure.

The lattice itself provides a natural short-scale regulariza-
tion, and our numerical results above show that indeed we
have a single zero mode for each value of ���= 1

2 . Standard
arguments29 then lead to a fractional charge �Q=�e. The
sign is determined by noting33 that the bound-state energy
tends to zero from negative �positive� values when � is tuned
from 0 to + 1

2 �− 1
2 � and therefore is to be included �excluded�

in the ground state at half filling.
To find the statistics we must go beyond the spectral prop-

erties of the low-energy theory to an effective field-theory
description. This can be done in a path-integral formulation
where � takes on the role of a dynamical field coupled to the

electromagnetic gauge field �A� = ��A0 ,�A� of the defects.
The mass term im 1 2 breaks the time-reversal and parity
symmetries in the Dirac Lagrangian. Integrating out fermi-
onic field ! at the one-loop order straightforwardly, we ob-

tain the effective action S
�A� �=�dtdxLCS+¯, where

LCS =
sgn�m�

4�
� "
�A �"�A
, �67�

is the Chern-Simons �CS� Lagrangian describing the topo-
logical sector of the effective theory and the dots indicate the
remaining �nontopological part� of the theory. Of course, it is

FIG. 7. �Color online� The temporal string gauge. The vertical
direction represents the time and style and color are as in Fig. 5. As
the defect is moved from a plaquette to the neighboring one, it
threads the shaded temporal plaquettes, thus inducing an electric
field. In the next time step the string is extended along the defect’s
path, which accounts for the induced electric field. The Peierls fac-
tors in the vertical direction remain equal to +1.

FIG. 8. The Berry phase �B /� and “even-odd effect.” In �a� and
�b� there is a single defect in the system that is taken around a loop
with �a� an even or �b� an odd number of sites. In �c� and �d� the
system contains two defects, of which one is taken around the other
on a loop containing �c� an even or �d� an odd number of sites.
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well known that a CS term describes the topological aspects
of quantum Hall effect �QHE�. The only difference here with

the usual CS theory of QHE is that since the gauge field �A�

describes the dynamics of defects in the �pinned� supercon-
ducting vortex lattice, it carries a magnetic flux quantized in
units of 1

2�0 instead of �0. The charge and statistics of a
defect carrying flux of ��0 can now be calculated in the
standard way34 �see also Sec. V� from the CS theory, yield-
ing the charge �Q=�e and the statistical angle �=�2�, as
obtained previously.

V. EFFECTIVE THEORY

In this section we formulate an effective theory to de-
scribe the proposed system and the interaction between the
2DEG and the superconducting film. Using standard duality
mappings, we show that the topological properties of the
system in the vortex-lattice phase are described by a Chern-
Simons-Maxwell theory. Using this effective theory we de-
rive the fractional charge and statistics of its excitations.

Our notation in this section is as follows: the space-time
vector is denoted by x� = �x0 ,x1 ,x2�, with x= �x1 ,x2� as the
spatial part and x0=ct as the temporal part. We use the rela-
tivistic notation in Minkowski space-time u� ·v� =u�v�

=g��u
�v� and ���	u���=���
��u
, where g=diag�−1,1 ,1� is

the Minkowski metric.

A. Formulation

The 2DEG at odd inverse filling factor 1 /� is described
by the Chern-Simons effective action34

SCS =� d3x�−
1

4��
a� · ��� 	 a�� +

e

2�
a� · ��� 	 A� �� . �68�

We remind the reader that the topological gauge field a�

couples to the electromagnetic gauge field A� in just the right

way as to lock the electromagnetic field ��	A� to the elec-

tronic current j�e=�SCS /�A� = e
2� ���	a��:

�SCS

�a�
= 0 ⇒ j�e = �e�� 	 A� . �69�

In particular, the electron density je
0=�eB.

We shall describe the superconducting film at zero tem-
perature by the action Spin+SXY, where Spin represents the
effects of the lattice of pinning sites and SXY is the 3D XY
model, which we first write on the discretized Euclidean
space-time,

SXY = − #0� � cos���$ − �e�A� � . �70�

Here, #0 is the superconducting phase stiffness, $ is the su-

perconducting phase, e�=2e is the Cooper pair charge, �� is
the lattice difference operator, and the sum is over the points
of a space-time cubic lattice with the spacing � explicitly
included to make the transition to the continuum limit trans-
parent. This action describes the phase ordering of the super-
conducting transition in a magnetic field with the London

penetration depth 
L=1 /�4�#0e�
2. In the continuum limit it

could be obtained from the Ginzburg-Landau theory by tak-
ing the amplitude of the superconducting order parameter to
be constant. Using the Villain approximation and standard
duality mappings35,36 we may rewrite the 3D XY action in
Minkowski space-time continuum in the “current representa-
tion,”

SXY =� d3x�−
1

2#0
��� 	 s��2 − e���� 	 A� � · s� + 2�j�v · s�� ,

�71�

where s is the dual vortex field and j�v is the conserved vortex
current, �� · j�v=0.

In the following we shall take the main effect of Spin to be
the pinning of the background vortex lattice and to provide a
one-body potential for the defects that preferentially posi-
tions them at the interstitial locations. Therefore we will drop
this term from the dynamics with no change in topological
properties.

B. Phases of the system

3D XY action �71� has two phases: �1� a vortex-lattice
phase, where �s�2�=0 in the dual or �ei$��0 in the original
problem; and �2� a vortex-liquid phase, where �s�2��0 in the
dual or �ei$�=0. We will now derive the effective action of
the combined system,

S = SCS + SXY , �72�

in each of these two phases.
�1� In the vortex-lattice phase we may integrate out the

dual vortex field s� by noting that if we write the conserved
current j�v= 1

2���	�� , where �� is a hydrodynamic flux vari-
able, we have

SXY =� d3x�−
1

2#0
��� 	 s��2 + ��� − e�A� � · ��� 	 s��� .

�73�

Since �s�2�=0 we may integrate s� out to find

SXY →
#0

2
� d3x��� − e�A� ��

2 , �74�

where the subscript � indicates that only the transverse parts
of the fields enter this term. At this point we separate the

static and dynamic parts of A� and � coming from, respec-
tively, the pinned background vortex lattice and the defects:

A� =A� 0+�A� and �� =�� 0+��� . Then we may shift the electro-

magnetic gauge field of defects �A� →�A� +��� /e� and then

integrate out �A� to find the Chern-Simons-Maxwell form

Seff =� d3x� e

e�

j�v · a� −
1

4��
a� · ��� 	 a�� −

1

2#
��� 	 a��2� ,

�75�

where #= �2�e� /e�2#0 and j�v is the total vortex current of
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the pinned lattice and defects. We shall study the topological
properties of this action shortly.

�2� In the vortex-liquid phase, the dual field s� acquires a
mass and the Maxwell term is replaced with a mass term,

SXY →� d3x��0

2
s�2 + s� · �� 	 ��� − e�A� �� �76�

→−
1

2�0
� d3x
�� 	 ��� − e�A� ��2, �77�

after integrating s� out. Shifting and integrating out �A� as
before we now find a mass for a�:

Seff� =� d3x� e

e�

j�v · a� −
1

4��
a� · ��� 	 a�� +

�

2
a� t

2� , �78�

where �= �e /2�e��2�0. Thus in the vortex-liquid phase the
gauge field a� is gapped and its topological effects are absent.

C. Fractional charge and statistics

The fractional charge of defects in the vortex-lattice
phase, i.e., Chern-Simons-Maxwell effective theory �75�, is
found as follows. From Eq. �75� we find that �Seff /�a� =0
gives

j�e − ��� 	 j�e − ����ej�v = 0, �79�

where j�e= e
2���	a� , ����e /e�= 1

2 , and ��2��#−1 is the co-
herence length. This modifies Eq. �69�, reflecting the effect
of the superconducting film. After a Fourier transform we
find

j�e�k�� =
����e

1 − �2k�2

j�v + i�k� 	 j�v − �2�k� · j�v�k�� . �80�

So, the excess charge density vanishes exponentially over a
distance �, which is basically the size of the defect. The total
charge Q�t�=�dxj0�t ,x�= je

0�t ,k=0�, which by Eq. �80� is

Q�t� = ����ejv
0�t,k = 0� = ����e� d2x

2�
��� 	�� �0, �81�

and we have used the definition of the vortex current in terms
of the flux variable �� . The integral here is nothing but the
total vorticity �the winding number� of the lattice, a topologi-
cal invariant. Introducing an interstitial �vacancy� at the ori-
gin changes the vorticity by +1 �−1�. Thus, defining the sign
of � to be the same as the vorticity, the charge bound to a
defect is found to be

�Q = ��e . �82�

The fractional statistics can be established by a Berry
phase calculation in the effective theory. To this end let us
write the vortex current in Eq. �75� as j�v= j�0+�j�1+�j�2, where
j�0 is the vortex current of the background-pinned lattice and
�js

��t ,x�= �dxs
� /dt�vs�
x−xs�t�� is the vortex current for de-

fects s=1,2, with world lines x�s= �ct ,xs� and vorticity vs
=�1. We take a contour �2 for x2�t� that encircles the sta-

tionary position x1=0 and ask what is the Berry phase con-
tribution from the cross terms of �j�1 and �j�2.

By integrating out the Chern-Simons field we find

Seff → �����2� d3k� jv
��− k��M��

−1�k��jv
��k�� , �83�

where

M�� = ��k�k� − g��k�
2� + i��� k . �84�

By substituting the vortex current terms in Eq. �83� we find
the exchange Berry phase

�B = �����2� d3k��j1
��− k��M��

−1�k���j2
��k�� . �85�

In order to invert the matrix M in Eq. �84�, we need to fix the
gauge for a� . We do this by adding a term M�

�→M�
�+%k�k�.

In general % can also be k� dependent, producing a nonlocal
gauge fixing term. The result is

M��
−1 =

�

1 − �2k�2�g�� +
i

�k�2
��� k � + � 1

%k�2
−

�

1 − �2k�2	k̂�k̂�.

�86�

By current conservation, �� · j�s=0, the term �k̂�k̂� does not
contribute to �B, as required by gauge invariance. After some
tedious but ultimately standard calculation we find �B=�dyn
+�top, where the topological �dynamical� phase is contributed
by the off-diagonal �diagonal� part of M−1 in Eq. �86�. The
topological phase is twice the statistical angle, �top=2�.

The dynamical phase

�dyn = ��1�2
c

�
�

0

T

dtK0� �x2�t��
�

	 , �87�

where �s= ���vs and K0 is the modified Bessel function, and
we have used the fact that

� d2q

2�

eiq·r

q2 + 1
= K0��r�� . �88�

It depends on the encircling time T and the shape of the
contour �2. For a circular contour of radius R the integral
evaluates to TK0�R /��. For a large enough contour, then,
�dyn→0 exponentially over a distance �.

By contrast the topological phase

�top = ��1�2�
�2

� �

�x�
− K1� �x�

�
	�x 	 dx

��x�
�89�

does not depend on the encircling time T. For a circular
contour of radius R, the integral evaluates to 2�
1
− �R /��K1�R /���. So, for large R

� = ���1�2, �90�

with an exponentially vanishing correction over a distance �.

VI. EXPERIMENTAL SIGNATURES

Fractional charge has been unambiguously detected in
FQH systems using a quantum antidot electrometer37 and
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shot-noise analysis.38,39 In other systems, such as the dimer-
ized polyacetylene chain,4 the experimental detection pre-
sents a greater challenge and the interpretation of the results
is less straightforward.40 Experimental detection of the frac-
tional statistics in FQH systems to date remains elusive. Al-
though the claim has been made to as to the detection of the
�Abelian� fractional statistics in a Laughlin state,41 the inter-
pretation of these results remains controversial. It appears
difficult to disentangle the effects of fractional charge from
the statistics, these being, in essence, two complementary
manifestations of the same underlying many-body wave
function. It has been pointed out42,43 that the detection of the
non-Abelian exchange structure expected to occur in the
Moore-Read Pfaffian state could be in fact more straightfor-
ward, as this effect is not directly tied to fractional charge. In
general, unambiguous detection of the fractional statistics in
any physical system remains an unsolved problem and a
challenge.

Against this backdrop we now discuss possible experi-
mental signatures of the fractional charge and statistics in our
proposed system. We outline a concrete experimental setup
for probing the fractional charge bound to the vortex defect
and show how it can be measured directly in a bulk transport
measurement. In fact this measurement appears to us more
straightforward than any other scheme for fractional charge
detection discussed in the existing literature. This simplicity
arises from the fact that the number of vortices traversing the
width of the system can be counted precisely through the
Josephson relation, a fundamental property of the supercon-
ductor. The charge bound to these vortices, on the other
hand, can be measured accurately owing to the precisely
quantized Hall conductance, a fundamental property of the
2DEG.

Similar considerations allow for controlled manipulation
of vortex defects. This opens up the possibility of moving
them, in principle at least, along any desired trajectory in the
system. We describe below an idea for the anyon shuttle, an
all-electric system for anyon manipulation. The ability to
move anyons in a controlled fashion should aid the future
experiments aimed at probing their exchange phase, although
drawing on the experience with FQH systems we expect this
to present a significant experimental challenge.

A. Fractional charge

The setup geometry is shown in Fig. 9. The system is
subject to a perpendicular magnetic field �B�&BM, the
matching field, which produces weakly pinned vortices in
interstitial positions. In the 2DEG a charge �Q=e /2 is bound
to such defects. A supercurrent JSC is induced in the super-
conducting film, producing a Magnus force FM =JSC	B /c
on the vortices. The current density is largest in the constric-
tion. By suitably tuning the magnitude of the current one
could arrange for the force only to affect the interstitial vor-
tices, generating a vortex current Jv in the film along with an
electric current Je in the 2DEG as fractional charges bound
to defects cross the constriction. The vortex and electric cur-
rents result in, respectively, a voltage drop VSC across the
superconducting film and a Hall voltage V2DEG across the

2DEG. As we demonstrate below the ratio of these two volt-
ages provides a direct measure of the fractional charge.

The superconducting phase difference �$ across the film
has a time dependence given by the Josephson relation

d�$

dt
=

2e

�
VSC. �91�

When a vortex crosses the constriction it accounts for a
change of 2� in the phase �$; therefore

�Jv� =
1

2�

d�$

dt
=

2e

h
VSC. �92�

The corresponding electric current in the 2DEG is simply
Je=�QJv. The Hall voltage is therefore found to be

V2DEG =
1

�H
�Je� =

2�Q

�e
VSC, �93�

where we have used the quantized value �H=�e2 /h in the
quantum Hall state. So, we arrive at a particularly simple
relation for the fractional charge of defects, namely,

�Q =
V2DEG

2VSC
�e . �94�

The fractional charge bound to the vortex is thus simply
related to the ratio of two experimentally measurable volt-
ages. It is worth emphasizing that Eq. �94� is an exact rela-
tion whose validity relies only on the fundamental properties
of a superconductor and a 2DEG in the quantum Hall regime
at filling fraction �.

B. Anyon shuttle and interference measurements

Observing fractional statistics is a much more difficult
feat requiring precise interference experiments. However, in

FIG. 9. �Color online� Experimental setup for measuring the
fractional charge. A supercurrent JSC is induced in the supercon-
ducting film, which causes a vortex flow Jv of unpinned defects
�white circles� on the background of pinned vortex lattice �black
circles� across the constriction along with a corresponding electric
current Je in the 2DEG. A Hall voltage V2DEG is generated in the
2DEG and a voltage drop VSC develops across the superconductor.
This measures the fractional charge �Q= �V2DEG /2VSC�e. The small
arrows show the chiral edge current in the 2DEG and the thick
�green� lines show the wires that carry the electric current in 2DEG.
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our system, the fact that the anyons have a physical flux
attached to them might prove useful. For instance, it is pos-
sible to perform bulk, as opposed to edge, measurements on
the system. Bulk sources and drains of fractional particles
may be created by building sources and sinks of flux tubes.
Explicitly, we will in the following lay out an all-electrical
scheme for shuttling fractional particles around along any
desired path of a superlattice of holes drilled in both the
layers of the system. A sketch of one such design is shown in
Fig. 10.

An array of holes drilled through both the superconduct-
ing film and the 2DEG layer provides the sources and drains
of anyons through a supply of superconducting vortices
trapped in the holes. The hole diameter D and spacing d
between them are both much larger than the penetration
depth 
L. In equilibrium the magnetic flux through each hole
will be quantized in units of �0 /2. In the 2DEG each hole
has a set of low-energy chiral edge states with discrete spec-
trum due to the finite hole size. These edge states can accom-
modate extra charge which is crucial for the functioning of
the anyon shuttle.

Now imagine we attach wires to the superconducting film
at the centers of the square leads as indicated in Fig. 10.
Through these wires we can feed appropriate supercurrents.
When the current is sufficiently strong the resulting Magnus
force FM moves the vortices. If the geometry is right vortices
will move from one hole to another, carrying fractional
charge with them. As before, the number of vortices travers-
ing between the holes can be determined from the voltage
drop via the Josephson relation 
Eq. �92��. Using a suitable
sequence of current pulses it is possible to shuttle vortices
along any desired path in the device, effectively braiding
them as required in various quantum computation schemes.
An important feature of this scheme is its being completely
electrical, foregoing the need for any moving parts. We be-
lieve this is a major advantage especially in view of possible
applications of non-Abelian anyons in quantum computation
as briefly discussed in Sec. VII.

Using this shuttling scheme it should also be possible to
perform bulk interference measurements to measure the frac-
tional statistics of the anyons. A variety of such measure-
ments exist, especially in the context of FQH physics. As-

sessing the merits of any of these setups in the current
system, however, requires a detailed study and is beyond the
scope of this work. We shall only note that an important
condition for such interference experiments is the quantum
coherence of the fractional bound states at least over the
distance they move and the period of observation. While we
do not see a general reason forbidding this coherence, attain-
ing it in a real system will present a significant experimental
challenge.

VII. CONCLUSION

We showed in detail that the proximity of two well-
understood weakly interacting systems can result in some
very interesting phenomena. Neither the superconductor nor
the integer quantum Hall state in the 2DEG supports frac-
tionally charged quasiparticles. Their ground states can be
understood by filling a set of single-particle states. However,
when brought together, they give rise to excitations that carry
fractional charge and obey fractional statistics. This result
rests on the following general conditions: �i� the exact quan-
tization of flux by the superconducting film in integer mul-
tiples of 1

2�0, half the natural flux quantum of the 2DEG; �ii�
the incompressibility of the quantum Hall state of the 2DEG;
and �iii� the pinning of the background Abrikosov vortex
lattice by the artificial array of pinning sites. Conditions �i�
and �ii� are manifestations of gauge invariance and are hence
robust against weak perturbation �hence, disorder� in the sys-
tem. Condition �iii� is necessary to keep the vortex lattice
from adjusting itself when a quantized flux moves, basically
allowing defects to be created. Otherwise, the incompressible
vortex lattice will rearrange and thus screen any excess
charge from accumulating in the 2DEG.

This general basis is what connects our different studies in
Secs. III–VI. The tight-binding model is relevant for strong
Zeeman coupling due to large values of the gyromagnetic
ratio.27 The continuum model of spin-polarized electrons
with uniform background field is relevant for large values of
penetration depth, �B�
L, whereas the intermediate regime
was explored by the continuum model of Pauli electrons with
g=2. Finally, the effective theory formulation allowed us to
properly account for the role of the superconductor and
clarify the origin of the length scales � and �0 in Sec. III.

A conceptual subtlety must be noted in our usage of the
terms “quasiparticle” and “excitation” for the bound states
produced by the vortex-lattice defects. These bound states
are clearly not excitations of the 2DEG in isolation. Indeed,
inserting a flux of �

1
2�0 changes the Hamiltonian, and

hence the energy spectrum, of the 2DEG. A true excitation of
the isolated 2DEG is only found by inserting a flux of ��0,
the natural flux quantum for unpaired electrons. However,
these bound states are true excitations of the system as a
whole in much the same way as the fractionally charged
domain walls of the polyacetylene chain are true excitations
of the one-dimensional �1D� electron-phonon system.4 In
both cases, the electronic system in the 2DEG or 1D chain
responds to defects in an ordered state arising from external
interactions, in our case in the superconducting film and in
the polyacetylene case in the ionic system. This is also

FIG. 10. �Color online� The anyon shuttle. A superlattice of
holes with diameter D and separation d, both 
L, is used as source
and sink of anyons. The arrows on the lower left hole shows the
chiral edge currents concealed on other holes for clarity. The black
squares are the leads on the superconducting film.
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clearly seen in the effective theory formulation of Sec. V: a
vortex defect in the vortex-lattice phase is a finite-energy
excitation of the whole system, shown to have fractional
charge and statistics.

We briefly comment on the range of parameters necessary
to realize our proposed system in the laboratory. Several
length scales must be considered: the penetration depth 
L,
the coherence length �0, the magnetic length �B, the thick-
ness d of the superconducting film, the separation w between
the superconductor and the 2DEG, and the size L of the
system. A natural order between some of these scales must
exist in order to realize the physics discussed in this paper.
Specifically, we need �0�d'
L�L. The requirement �0
�
L ensures that the superconductor is a strong type-II one
with high enough Hc2B external field needed to realize the
quantum Hall state in the 2DEG. In high-temperature cuprate
superconductors 
L�1000 Å and �0�10 Å and Hc2 can go
beyond 100 T.44 Typical values of B are 5–15 T in semicon-
ductor heterostructures.45 This corresponds to �B�150 Å,
which determines the average spacing of the artificial lattice
of pinning sites. This value is not too far from what is
achievable in today’s artificial structures22,46 and can be in-
creased if lower values of B are possible. Also, one could
partially pin only a subset of the Abrikosov lattice using a
larger lattice spacing with a specially engineered shape. For a
large enough subset and the right shape, the rest of the vortex
lattice will be pinned by vortex-vortex interactions. Defects
may be created and moved the easiest when d→0. However,
the bulk penetration depth is modified in a thin film, given by
the effective Pearl penetration depth 
eff=
L

2 /d, and diverges
as d→0. This would destroy the bound state. Therefore the
optimal conditions that allow the creation and motion of de-
fects as well as the corresponding bound states are found
when d'
L. We also require the size of the system to be
larger than all other length scales to enhance the 2D nature of
the system and minimize any field leakage from the edges of
the system. Ideally, the separation w�
L so that most of the
field that exists at the surface of the superconductor enters
the 2DEG. However, we expect our conclusions to stand
with minor corrections up to w'
L.

The free electrons with gyromagnetic ratio g=2 consid-
ered in Sec. III B may not be just a theoretically convenient
limit. Such electrons are realized on the surface of liquid
helium and have been under investigation for some time.47

The typical electron density and mobility have so far been
generally smaller than those in the semiconductor hetero-
structures and, to the best of our knowledge, a quantum Hall
state has not been obtained yet.

Finally, we note that the same setup can be used with the
fractional quantum Hall states of the 2DEG. For instance,
when �=5 /2, by the same general argument leading to Eq.
�2� we find

�Q5/2 =
e

4
. �95�

This is the same charge carried by the true excitations of the
Moore-Read state,48,49 thought to describe the ground state at
�=5 /2. This is consistent with the fact that the Moore-Read
state can be thought of as a paired state of electrons �corre-

sponding to a p+ ip superconductor with a fixed particle
number�, which implies that the natural flux quantum in this
state is indeed 1

2�0. We then predict that the bound states
found in such a setup will behave as non-Abelian anyons.50

If so, our proposals for detecting the fractional charge and
the all-electric anyon shuttle in Sec. VI gain new signifi-
cance, as they can now be used to measure the fractional
charge e /4 and braid non-Abelian anyons.
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APPENDIX A: SCHRÖDINGER EQUATION WITH
�-FUNCTION FLUX

The Schrödinger equation Hpol�=E� for Eq. �3� is
solved by a wave function �=eil�R�r� in the dimensionless
polar coordinate introduced in Sec. III A. In terms of the
dimensionless energy �=2E /�(, where (=eB0 /mec is the
cyclotron frequency �me�B

2(=��, we find

R� +
1

r
R� − � �l − ��2

r2 − r2 + 2�� + l − ���R = 0. �A1�

Then by the usual Frobenius series expansion we can find the
energy levels to be

�k,l
��� = 2k + �l − �� − �l − �� + 1, �A2�

with the corresponding normalizable eigenstate

Rk,l
����r� = r�l−��e−r2/2�

j=0

k

C2j
���r2j , �A3�

and the coefficients

C2j
��� = C0

���
s=0

j−1
2�s − k�

�s + 1��2s + 2�l − �� + 3�
. �A4�

So for l)� we find the levels Ek,l
���=�(�k+ 1

2 �, which are
the usual Landau levels. But for l�� we have Ek,l

���=�(�k
− l+ 1

2 �+��(, which are located inside the gaps between the
Landau levels with a degeneracy k− l+1. These states carry
an angular momentum opposite to that of the usual Landau
levels. This pushes their energy up but in the presence of the
fractional extra flux this increase is not a whole integer mul-
tiple of the level spacing �(. We recover the full Landau-
level structure when �=0 or 1.

The normalized states in the LLL are given by

�l
����z� =

�z�−�zle−�1/2��z�2

�2��B
2��1 + l − ��

, �A5�

where the complex coordinate z=rei�.

CREATION AND MANIPULATION OF ANYONS IN A… PHYSICAL REVIEW B 79, 205102 �2009�

205102-15



APPENDIX B: AHARONOV-CASHER SOLUTION

Hamiltonian �23� can be written as

Hfree =
1

2me
��x*x + �y*y�2, �B1�

where *=p− e
cA is the dynamical momentum operator, and

we have used the commutation relation 
*x ,*y�= ie�B /c.
The ground states are zero-energy states, Hfree�0=0, found
by solving ��x*x+�y*y��0=0. Obviously �0 must be an
eigenstate of �z. Renormalizable solutions only exist when
the spin is aligned with the magnetic field, i.e., �z�0=�0, as
physically expected. In the Coulomb gauge � ·A=0, we
may write the vector potential in terms of a scalar �,
A=

�0

2� �−�y� ,�x��, which satisfies

�2� =
2�

�0
B . �B2�

The zero-mode equation takes the form

d�0

dz̄
+

d�

dz̄
�0 = 0, �B3�

where z=x+ iy is the �dimensionful� complex coordinate and
z̄ is the complex conjugate. This can be solved by

�0 = f�z�e−�, �B4�

where f is an entire function of z, df /dz̄=0.
For a uniform field, we have

� =
1

4�B
2 �z�2 �symmetric gauge� , �B5�

� =
1

2�B
2 �y2 or x2� �Landau gauge� . �B6�

Choosing f�z�=zl in the symmetric gauge, we find at once
the LLL states ��=0 in Appendix A�, where l=0,1 , . . . in-
dexes the angular momentum.

APPENDIX C: TKNN INVARIANT FOR THE DIRAC
HAMILTONIAN

The negative-energy eigenstate of massive Dirac Hamil-
tonian �58� can be written as

�p =
1
�2
�− �p

�1 − m/Ep

�1 + m/Ep
	 , �C1�

where �p= �px− ipy� / �p�. Explicit computation using Eq. �57�
gives

Ap =
1

2

ẑ 	 p

Ep�m + Ep�
. �C2�

It is easiest to evaluate Eq. �56� using the Stokes theorem,

K� =
1

2�
�

BZ
d2p��p 	Ap� · ẑ =

1

2�
�

BZ
d2p

m

2Ep
3 =

1

2
sgn�m� ,

�C3�

where, in the last step, we have extended the upper bound of
the integral to infinity. The latter approximation is accurate
as long as �m��W �the bandwidth�, and becomes exact in the
limit m→0 when the Berry flux becomes a delta function at
the node. Since K is a topological invariant, constrained to
be an integer, it cannot change as m is varied as long as the
gap remains open. The above calculation thus gives the exact
result.
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