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We investigate the spin accumulation effect in eccentric semiconductor multichannel rings with Rashba
spin-orbit interaction and threaded by a magnetic flux. Due to the finite eccentricity, the spin polarization
induced at the borders of the sample is anisotropic and exhibits different patterns and intensities at specific
angular directions. This effect, reminiscent of the spin polarization drift induced by the application of an
in-plane electric field, could be used to manipulate and functionalize the spin polarization in electronic
nanorings.
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I. INTRODUCTION

The spin manipulation and detection in all electrical de-
vices have been the subjects of an impressive amount of
research in the last years.1 In particular semiconductors in
which the spin-orbit �SO� interaction plays a significant role
are the main candidates to accomplish such challenges.
Among them, ring shaped geometries are particularly attrac-
tive to analyze different interference phenomena in the pres-
ence of SO effects. As an example, Aharonov-Bohm �AB�
rings with uniform SO interaction have been proposed as
spin interference devices2 to explore the nontrivial spin-
dependent Aharonov-Casher �AC� phase.3–5 Indeed, in recent
years the AC effect has been measured in a series of trans-
port experiments on AB conductance oscillations performed
in semiconductor rings for different intensities of the SO
interaction.6–9

So far most of the theoretical analysis of SO effects in
quantum rings have been restricted to one-dimensional
geometries.10–17 However realistic rings have a multichannel
nature and many interesting phenomena rely on this fact. As
an example, in Ref. 18 it was shown that in a AB multichan-
nel ring with Rashba spin-orbit �RSO� coupling,19 a spin
accumulation effect develops at the borders of the sample.
Even though for an even number of electrons, a finite spin
polarization in the direction perpendicular to the plane of the
ring is generated and can be controlled with the magnetic
flux. This phenomenon, although sharing some analogies
with the intrinsic spin Hall effect studied in bar or strip ge-
ometries designed on 2DEG,20–22 does not require external
currents nor electric fields or voltage drops applied.23,24

Actually in real semiconductor quantum rings �QRs� im-
perfections of the structure often occurs. Micrograph views
of GaAs QRs suggest that real rings may present some de-
gree of eccentricity.25 In addition, recent advances in oxida-
tion lithography enable the fabrication of semiconductor QRs
�Ref. 26� in which nonperfect symmetric structures can be
constructed.

The effect of a finite eccentricity has been considered in
previous studies of energy spectrum and electric polarization
in QRs.27,28 However these works have not taken into ac-
count the SO interaction, which is particularly strong in most
of the QRs heterostructures.

The goal of the present work is to show that by a com-
bined effect of the Rashba SO interaction and the finite ec-

centricity, the spin accumulation develops anisotropic pat-
terns along the sample. This effect, which shall be described
in detail later on, will lead to different intensities of the total
spin polarization in the angular direction. The typical spatial
separation of the anisotropic patterns may render possible to
sense the effect employing usual magneto-optical detection
techniques.29

The paper is organized as follows. Section II introduces
the model Hamiltonian for the eccentric QR with Rashba SO
interaction. After giving some details of the calculations, the
energy spectrum and eigenfunctions are obtained for differ-
ent magnetic fluxes. These results are analyzed and com-
pared to the ones of the concentric QR. In Sec. III the spin
polarization is computed and the different anisotropic pat-
terns in the spin accumulation effect are analyzed in detailed.
The last Sec. IV is devoted to the conclusions and to elabo-
rate on the experimental feasibility to detect the anisotropic
profiles in the spin accumulation effect.

II. EIGENFUNCTIONS AND EIGENVALUES OF THE
ECCENTRIC QR WITH RASHBA SO INTERACTION

We start by considering a two-dimensional electron gas in
the xy plane confined to an annular region delimited by two
circles of radii a and b whose centers O and O� are separated
by a distance d�b−a, that defines the eccentricity of the
QR. A magnetic flux � threads the structure �see Fig. 1�.

The single-particle Hamiltonian describing an electron of
effective mass m� subjected to the RSO coupling reads

H =
p2

2m�
+ V +

�

�
�p � �̂� · ẑ , �1�

where � is the strength of the RSO coupling and the Pauli
matrices �̂ are defined as standard. Let the polar coordinates
be �� ,�� and ��� ,��� with respect to O and O�, respectively.
The confining potential defining the eccentric QR is
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V��,�� = �0 for a � � � �ext ��b2 + d2 − 2bd cos ��1 − �d

b
sin ��2

	 otherwise.
� �2�

The vector potential which is introduced in the Hamiltonian
via the substitution, p=�k=−i��− e

cA, is written in the axial

gauge as A= �� /2
���̂. Using �̂�=cos ��̂x+sin ��̂y and
�̂�=−sin ��̂x+cos ��̂y we can rewrite the Hamiltonian as

H = −
�2

2m�	1

�
������� −

1

�2 �i�� + ��2

+ i��̂��� −

�

�
�̂��i�� + �� , �3�

where �= �

�0
is the magnetic flux in units of the flux quantum

�0=hc /e.
In what follows it will be useful to define the dimension-

less coordinates �=� /b, ��=�� /b, the aspect ratio =b /a,
and

� =
2m�b2

�2 E �
E

E0
, � = 2

m��

�2 b . �4�

Due to the RSO, the bulk spectrum has two branches19

� = �bk�2 � ��bk� , �5�

and for a given value of � there are two nontrivial solutions
for the momentum k that we denote k+ and k−, respectively.

For the concentric ring �d=0�, the total angular momen-
tum Jz= lz+ 1

2��̂z is a constant of motion and j=m+ 1
2 is a

good quantum number even for finite RSO coupling. In Ref.
18 the complete set of eigenfunctions �eigenspinors labeled
by the quantum number j=m+1 /2� and eigenvalues have
been found for the concentric QR with RSO.

For a finite d�0, the angular momentum is no longer
conserved. In this case, we expand the solution of the Helm-
holtz equation associated to the Hamiltonian Eq. �3� in a
basis of eigenfunctions of the total angular momentum, ex-
pressed in polar coordinates �� ,�� referred to the origin O
�see Fig. 1�,

���,�� =� �
m=−	

	

eim��m−�
↑ ���

�
m=−	

	

ei�m+1���m−�+1
↓ ��� , , �6�

where �m−�
↑ ��� and �m−�+1

↓ ��� are linear combinations of
Bessel functions of first and second kind
Jm−��k+,−�� ,Jm−�+1�k+,−�� and Ym−��k+,−��, Ym−�+1�k+,−�� that
satisfy the boundary condition at the inner circle ���=a ,��
=0; ∀�, i.e.,

�m−�
↑ ��� = Am�Fm−�� Jm−��k+�� + Fm−�Ym−��k+�� + Jm−��k−���

+ Bm�Gm−�� Jm−��k+�� + Gm−�Ym−��k+��

+ Ym−��k−���

�m−�+1
↓ ��� = Am�Fm−�� Jm−�+1�k+�� + Fm−�Ym−�+1�k+��

− Jm−�+1�k−��� + Bm�Gm−�� Jm−�+1�k+��

+ Gm−�Ym−�+1�k+�� − Ym−�+1�k−��� , �7�

with the coefficients Fm−�, Fm−�� , Gm−�, and Gm−�� given by

Fm−� � D�Jm−�+1�k−a�Jm−��k+a� − Jm−��k−a�Jm−�+1�k+a�� ,

Fm−�� � D�Jm−�+1�k−a�Ym−��k+a� − Jm−��k−a�Ym−�+1�k+a�� ,

Gm−� � D�Ym−�+1�k−a�Jm−��k+a� − Ym−��k−a�Ym−�+1�k+a�� ,

Gm−�� � D�Ym−�+1�k+a�Ym−��k−a� − Ym−��k+a�Ym−�+1�k−a�� ,

D = �Jm−��k+a�Ym−�+1�k+a� − Jm−�+1�k+a�Ym−��k+a��−1.

�8�

The boundary condition ���ext ,��=0, ∀� leads to a very
complicated set of equation for determining the eigenvalues.
One way to tackle this problem is to start by expanding the
function ��� ,�� into a Fourier series in ��;

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
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FIG. 1. Schematic of the annular cavity with RSO threaded by a
finite flux �, where a and b are the internal and external radii,
respectively, and d the eccentricity. ����� ,����� are the polar coor-
dinates referred to the origin O�O��.
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���,�� =� �
n=−	

	

�
m=−	

	

Qmn
↑ ein��

�
n=−	

	

�
m=−	

	

Qmn
↓ ein�� ,

where the matrices Qmn
↑ and Qmn

↓ are defined as

Qmn
↑ =

1



�

−





�m−�
↑ ���eim�e−in��d��

Qmn
↓ =

1



�

−





�m−�+1
↓ ���ei�m+1��e−in��d��. �9�

The full calculations of the above integrals are rather
cumbersome since � and � are functions of �� ,��. To evalu-
ate Eq. �9� at the external boundary �=�ext, i.e., ��=b, we
employ addition theorems of Bessel functions30 and solve the
integrals analytically by means of a perturbative expansion
to order O�2� in the parameter � ��1 ���d /b�. After a
lengthy derivation, we arrive at the following set of equa-
tions:

�
n

�
m

Q̂mn
↑ = 0,

�
n

�
m

Q̂mn
↓ = 0, �10�

where it is understood that −	�n ,m�	 being

Q̂mn
↑ = Am�Fm−�� Zmn�k+,J� + Fm−�Zmn�k+,Y� + Zmn�k−,J��

+ Bm�Gm−�� Zmn�k+,J� + Gm−�Zmn�k+,Y� + Zmn�k−,Y�� ,

Q̂mn
↓ = Am�Fm−�� Wmn�k+,J� + Fm−�Wmn�k+,Y� − Wmn�k−,J��

+ Bm�Gm−�� Wmn�k+,J� + Wm−�Zmn�k+,Y� − Wmn�k−,Y�� ,

�11�

with the functions Zmn�k� ,C� and Wmn�k� ,C� defined as

Zmn�k�,C� = a1Cn−��k�b�Jn−m�k�d�

− a2Cn−�+1�k�b�Jn−m+1�k�d�

+ a2Cn−�−1�k�b�Jn−m−1�k�d�

+ a3Cn−�+2�k�b�Jn−m+2�k�d�

+ a4Cn−�−2�k�b�Jn−m−2��k�d�� ,

Wmn�k�,C� = a1Cn−��k�b�Jn−m−1�k�d�

− a2Cn−�+1�k�b�Jn−m�k�d�

+ a2Cn−�−1�k�b�Jn−m−2�k�d�

+ a3Cn−�+2�k�b�Jn−m+1�k�d�

+ a4Cn−�−2�k�b�Jn−m−3��k�d�� . �12�

In the last set of equation we denote k�=k+ ,k− and the coef-
ficients ai , i=1,2 ,3 ,4 are a1=2− ����2

2 , a2=��, a3= ��2

2 � �
2 −1�,

and a4= ��2

2 � �
2 +1�. C�J ,Y is a Bessel function of first or

second kind whenever it corresponds.
For a given set of parameters �,  and �, we solve Eqs.

�10�–�12� for different values of the flux �. The number of
equations �defined by the maximum values of m ,n� is in-
creased until convergence in the solution is reached. The
�dimensionless� energies ��k+ ,k−� are found by the bisection
method with a precision �10−10. We denote by ��i

the asso-
ciated eigenspinor built with the expansion coefficients
�Am ,Bm� that solve Eq. �10� for a given �i.

In order to fix numerical estimates for the parameters we
consider characteristic values extracted from experiments.
Rings with external radius b�400–500 nm and an aspect
ratio �2 have been recently employed as devices.7 Typical
values for the Fermi wavelength are F�40–50 nm that
give kF�0.1 nm−1. For an effective mass m��0.042 me, a
Rashba coupling constant �=8 meV nm and b�400 nm
we obtain ��4. These parameters characterize the sample S
studied in the present work.

In the case of concentric QRs �d=0�, the total angular
momentum J is a constant of motion but the SO interaction
breaks the degeneracy between states differing in one unit of
j. The finite magnetic flux � removes the degeneracy in en-
ergy between states with opposite values of j �i.e., time re-
versal symmetry is broken� and a charge persistent current
I��Egs /��, where Egs is the ground state energy, is
originated.31,32 The energy spectrum exhibits a structure of
level crossings as a function of �, which is a signature of the
Aharonov-Casher phase generated by the RSO coupling.18

For d�0 the total angular momentum is no longer con-
served due to the lost of rotational symmetry induced by the
finite eccentricity. As a consequence, the quantum spectrum
exhibits avoided crossings that are the manifestation of the
dynamical tunneling between formerly degenerated states.27

We display in Fig. 2 the energy spectrum as a function of
the flux � for dimensionless eccentricity �=0.05 �black filled
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FIG. 2. �Color online� Dimensionless energies � as a function of
the magnetic flux � for the annular cavity S with RSO coupling
defined in the text. The spectrum for the concentric ring �=0 is
plotted by turquoise open circles and for the eccentric QR, �
=0.05, by black dotted lines. Left panel: lowest eigenvalues. Cen-
tral panel: intermediate energy eigenvalues displaying avoided
crossings for �=0.05. The regions inside the red boxes a ,b ,c are
enlarged in the right panels to show details of the avoided crossings.
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circles�. This value of � is chosen to emphasize that a rather
small eccentricity �d�20 nm for the sample S� is enough to
generate qualitative changes in the quantum spectrum and its
associated eigenfunctions, as we will show below. For com-
parison we show the spectrum for �=0 �turquoise empty
circles�, already studied in Ref. 18.

The left panel of Fig. 2 shows the lowest eigenvalues of
the QR S. Only the first transverse mode is active in this
region and the spectrum shares some characteristics with the
one of a 1D ring �due to the symmetry respect to �=0.5 the
spectrum is shown for 0���0.5�. However, for �=0.05 the
lower levels are almost flat as a function of the flux, with
associated eigenfunctions that are highly localized in one
side of the QR. They are formed mainly by contributions
from low angular momentum eigenstates of the concentric
ring, being these states highly affected by the finite eccen-
tricity. In Fig. 3�a� we plot a contour plot of the probability
amplitude of the ground state ���1

�2 at �=0.2, which it is
mostly concentrated around �=
. Notice that the finite ec-
centricity produces a similar effect than an in-plane electric
field, although it does not depend on the charge of the
particle.28

The other type of levels which lay higher in the spectrum
have a finite slope ��i /�� �current carrying states� and re-
semble the ones of the unperturbed ring with higher values
of the total angular momentum j. However, due to the finite
eccentricity, energy splittings and avoided crossings appear
at ��0. A blow up image of one of these avoided crossings
is displayed in Fig. 2 in the box labeled �a�. Regarding the
associated eigenfunctions, they are mainly generated by
combination of whispering gallery modes of the concentric
ring27 and therefore are not much affected by the finite ec-
centricity. In Fig. 3�b� we display for �=0.2 a contour plot of
the probability amplitude for one of these states ��=49.11�
which is quite homogeneously distributed in the angular di-
rection.

When higher transverse channels are active,33 the spec-
trum for the eccentric QR is more involved. It displays ad-
ditional avoided crossings generated by the mixing of levels
that for d=0 were degenerated belonging to different trans-
verse channels. Two detailed images of these avoided cross-
ings are displayed in the right panel of Fig. 2 in boxes b and
c.

Again, localized �flat levels� and current carrying states
coexist in this region of the spectrum. As an example, in Fig.
3�c� we plot for �=0.2 a contour plot of the probability am-
plitude for one of the angular localized states with �
=164.97. In displays maxima and minima along the radial
direction which are the fingerprint of basis states belonging
to the second transverse channel of the concentric QR.

Taking into account that a given eigenspinor ��i
is an

expansion in a basis of functions of total angular momentum,
its probability amplitude has an angular profile which origi-
nates in the interference terms ��m,m���m−�

↑ �m�−�
↑

+�m−�+1
↓ �m�−�+1

↓ �cos�m−m��� �see Eq. �6��. As we have
shown in Fig. 3, the angular profile depends on the specific
eigenstate. This effect will also influence the spin accumula-
tion describe in the next section.

III. SPIN ACCUMULATION EFFECT

As a result of the RSO interaction, the spin projection is
not a good quantum number. Given an eigenspinor ��i

whose
general form is given by Eq. �6� the mean value of the z
projection of the spin density is proportional to

�z��,�� � ��i

† �̂z��i

= �
m=−M

M

���m−�
i,↑ �2 − ��m−�+1

i,↓ �2�

+ 2 �
m=−M

M

�
m�=m+1

M

��m−�
i,↑ �m�−�

i,↑

− �m−�+1
i,↓ �m�−�+1

i,↓ �cos��m − m���� , �13�

where we have included a supraindex i in the functions �’s
associated to the eigenspinor ��i

to stress that the energy �i

=��k+,i ,k−,i� is determined by the values of �k+,i ,k−,i� ob-
tained after solving Eqs. �10�–�12�. In addition we used the
fact that the radial part of the up and down components of an
eigenspinor are real functions and thus the products
�m−�

i,↑,↓�m�−�
i,↑,↓ are even under the interchange m↔m�. The sum

is for −M �m�M, where M is given by the cutoff in the
expansion in the basis of total angular momentum eigens-
pinors.
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FIG. 3. �Color online� Contour plots of the probability amplitudes in the sample S for �=0.2 and an eccentricity �=0.05. �a� Ground state
with �=26.96, �b� eigenstate with �=49.11, and �c� eigenstate with �=164.97. The values of � are given at �=0.
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In Ref. 18 it has been shown that in a multichannel con-
centric QR with RSO interaction, a spin accumulation effect
�SAE� develops for finite values of the magnetic flux �. The
SAE is the tendency of the total spin density for N particles,
�z��N�z, to be different from zero, positive on one border
of the sample and negative on the other one.23

In the concentric geometry and for �=0, states with op-
posite value of j have opposite values of �z�0 and then for
even number of particles N=2p, is �z=0. A finite ��0
breaks the spatial symmetry between single-particle states
with opposite value of j. This can be understood in terms of
the effective orbital index of the Bessel functions meff�m
−� �Ref. 18� which turns to be m−� and −m−1−� for j1
=m+1 /2 and j2=−j1, respectively. Thus the modulus of meff
decreases for j1 and increases for j2. As a consequence �z is
“pushed” toward the internal �external� boundary of the
sample for the state label by j1�j2�. This is the main ingredi-
ent that contributes to generate the SAE in the concentric
QRs,18 i.e., a total spin polarization �z that has opposite
signs on each border of the sample S. However neither �z nor
�z depend on the angle �.

In the eccentric QR, the SAE develops an anisotropic an-
gular profile due to the interference �last� term in Eq. �13�.
The particular profile depends on the specific eigenspinor,
exhibiting different characteristics for localized or current
carrying states. As an example in Fig. 4, we plot the contours
plots of �z�� ,�� calculated for the three eigenspinors ana-
lyzed in Sec. II. The anisotropic angular pattern is clearly
observed for the two localized states �a� and �c�, where it is
almost uniform for the current carrying state �b�.

As the particle number N is increased to relevant experi-
mental values, transverse channels are activated and the de-
scription of the effect becomes more involved. Nevertheless,
mainly due to the existence of localized states along all en-
ergy ranges, the anisotropy in the SAE is a generic feature of

the eccentric QR pierced by a magnetic flux. As an illustra-
tion, in the left panels of Fig. 5 we show the contour plots of
the total spin density �z�� ,����N�z for N=100 particles
and for two different values of the magnetic flux �
=0.2,0.45.

The sensitivity of the SAE to the value of the magnetic
flux � is due to the qualitative changes that the eigenspinors
experience at the avoided crossings in the flux-energy land-
scape. For this particular filling, the anisotropy in the SAE is
more pronounced for �=0.2 than for �=0.45.

Besides the accumulation effect, the total spin density per
unit area Mz is different from zero and its value depends on
�. Let the differential area be dA= �b2−a2�d� �A=0.75
b2 is
the area of sample S�. It is easy to verify that Mz���
= 4

3�.5
1 �z�� ,���d�. Taking b=0.4 �m and for N=100 par-

ticles, Mz ranges from Mz��=0�=−0.37 �m−2 to Mz��
=100°�=0.43 �m−2 for �=0.2. For �=0.45, Mz is generally
smaller, but the differences are still important and maxima
between Mz��=0�=1.23�10−3 �m−2 and Mz��=180°�
=0.046 �m−2. Thus, Mz experiences important changes and
even reverses it sign on distances of the order 1 �m. This is
sketched in the right panels of Fig. 5, where we show �z vs
� for the two angular directions � especially selected to stress
the anisotropy.

IV. DISCUSSION AND SUMMARY

We have shown that a finite magnetic flux in an eccentric
multichannel QR with SO interaction induces a SAE that
exhibits an anisotropic profile in the angular direction. The
effect, which is reminiscent of the drift of the spin polariza-
tion induced by the application of an in-plane electric field,
remains appreciable for filling numbers �N�100� which are
experimentally realized in actual semiconductor QRs.

The spatial structure of the SAE, which can be �1 �m in
the sample S �see Fig. 5�, is not far from the sensitivity of
detection methods based on scanning Kerr microscopy,
which has been recently employed to image spin polarization
in semiconductor channels.20,29 In addition, the total spin
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density per unit area Mz reaches at some angular directions
values �0.5 �m−2. These values are comparable to the spin
densities measured so far in the spin Hall effect in semicon-
ductor channels.20

In the presence of an external magnetic field perturbation,
the spin magnetization should be proportional to Mz. With
the help of new experimental techniques based on
microresonators32 or scanning magnetic force microscopes
that can reach resolutions of �10 nm �Ref. 34�, it should be
feasible to sense differences in the values of Mz between
sample regions separated 1 �m.

Besides the finite eccentricity considered in the present
work, other types of broken symmetry irregularities such as
surface roughness or single impurities15,35 could be realized

in quantum semiconductor rings with SOI. It should be in-
structive to analyze the strength and profile of the SAE in
these additional realistic situations. We believe that our re-
sults could help to manipulate and functionalize the spin po-
larization in QRs with SO interaction, without using applied
electric fields or external currents.
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