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We suggest a possible mechanism for bipolar switching in a Pt /TiO2 /Pt resistive switching cell in terms of
electrochemical reactions involving oxygen ions/vacancies. The electrochemical reactions are considered to
take place at an interface between Pt and TiO2 solid electrolyte, and they modulate the Schottky barrier height
at the interface. Calculation results using this proposed mechanism can explain a bipolar switching behavior
and semiquantitatively describe experimental data.
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I. INTRODUCTION

Recently, bipolar switching in oxide materials such as
TiO2 �Refs. 1–3�, and SrTiO3 �Refs. 4 and 5� has been vig-
orously investigated for application to resistive random ac-
cess memory �RRAM� devices. The possible application of
the oxide materials has attracted interest in an increased da-
tabase as well as a mechanism for the bipolar switching. For
TiO2, experiments reveal several evidence about possible
mechanisms of electroforming and bipolar switching, but
there has been no theoretical description about them. Be-
cause of the dependence of bipolar switching on the polarity
of electroforming voltage,6 it is usually assumed that bipolar
switching involves the migration of charged particles, most
probably ions. Furthermore, the evolution of gas bubbles at
the anode of a Pt /TiO2 /Pt switching cell was observed dur-
ing electroforming, possibly indicating the electrochemical
formation of oxygen gas. Therefore, bipolar switching in
TiO2 has been categorized as anion �or anion vacancy�-
migration-induced switching.7 In spite of this categorization,
the role of oxygen ions/vacancies in bipolar switching
mechanism needs more elaboration.

TiO2 is regarded as solid electrolyte8 so that defective
TiO2−x is believed to show a higher ionic contribution to the
electrical current compared to stoichiometric TiO2. It has
been reported that oxygen vacancies in TiO2 give rise to
delocalized conduction electrons rather than localized in-gap
states9,10 so that all the oxygen vacancies in TiO2−x are ion-
ized and can serve as mobile space charges. Due to their low
diffusivity or mobility, a quasistatic approximation cannot be
applied to the calculation of oxygen-vacancy distribution so
that one should evaluate the distribution in a time domain.
The applied voltage is an important factor leading to the
redistribution of oxygen vacancies, and thus the distribution
needs to be determined in a time domain at various voltages.
According to the Poisson equation, the time-dependent redis-
tribution of oxygen vacancies under a certain voltage leads to
a change in the voltage distribution in TiO2−x, implying a
change in the profile of the conduction and valence bands.
And the change might vary electron-transport behavior in
turn, giving rise to a change in the resistance with respect to
time. It is therefore necessary for the understanding of the
time-dependent bipolar switching behavior to look into the
time-dependent distribution of oxygen vacancies and elec-
trons.

When the interface between metal and electrolyte is dealt
with, the Helmholtz layer should be taken into account. The
Helmholtz layer is formed due to the separation of two op-
positely charged layers, one is on the metal side and the other
on the electrolyte side at the interface.11 Considering high
electron density in the metal, electric field screening length is
estimated to be very short. Furthermore, the size of an elec-
tron is very small compared with ions so that a charged layer
on the metal side must be placed only at the interface without
remarkable electric field penetration into the metal. However,
the ions taking part in electric field screening in the electro-
lyte have a finite size, and thus the distance between the
charged layer on the metal side and the center of the ions is
at least the radius of the ions. The plane passing through the
centers of the ions nearest to the interface is termed the
Helmholtz plane and the layer between the interface and the
Helmholtz plane is termed the Helmholtz layer.

In fact, in metal/electrolyte junction not only the Helm-
holtz layer but also the Gouy-Chapman �diffuse� layer is in
charge of electric field screening on the electrolyte side.11

The Gouy-Chapman layer is composed of the ions screening
the electric field penetrating into the electrolyte. It is formed
behind the Helmholtz layer. However, it is not necessarily
formed in solid electrolyte because of the low diffusivity of
ions in solid electrolyte.

In this paper, we suggest a mechanism for bipolar switch-
ing in Pt /TiO2 /Pt in terms of the modulation of the Schottky
barrier height �SBH� at one interface due to the voltage- and
time-dependent variation in space charges composed of oxy-
gen vacancies and electrons close to the interface. As a mat-
ter of fact, a change in the SBH of metal-oxide junction due
to oxygen vacancies has been demonstrated using first-
principles calculations.12 Electrochemical reactions involv-
ing oxygen vacancies at a Pt /TiO2−x interface are defined by
taking into account the Helmholtz layer at the interface. Due
to a large voltage drop in the Helmholtz layer and under the
assumption that the Helmholtz layer is thin enough to be
transparent for electrons, we can describe the modulation of
the SBH in terms of the variation in the internal electric field
in the Helmholtz layer. Electrons injected from the cathode
see a reduced SBH which is the energy difference between
the work function of the cathode and the conduction-band
minimum of TiO2−x at the Helmholtz layer/TiO2−x interface.

The time-dependent distribution of oxygen vacancies can
be obtained by solving the drift-diffusion equation and Fick’s
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second law using proper boundary conditions. For simplicity,
the entire calculation in this paper is performed on a simpli-
fied one-dimensional Pt /TiO2−x /Pt junction without taking
into account a real three-dimensional configuration of a
TiO2−x phase in TiO2. The Pt /TiO2−x /Pt system is assumed
to be isolated from the ambient atmosphere so that no ex-
change of oxygen is considered. This deviation from the re-
ality might hinder accounting for many experimental obser-
vations such as long data retention, endurance, switching
speed. Nevertheless, the mechanism suggested in this paper
is very meaningful as a prototype of an anion-reaction-
induced bipolar switching mechanism. The calculation is
performed using a finite difference method.

II. MODELING OF BIPOLAR SWITCHING BEHAVIOR

A. Electrochemical reaction through the Helmholtz
layer

The Helmholtz layer is supposed to be formed at a
Pt /TiO2−x interface due to the separation of two oppositely
charged layers, one is on the Pt side and the other is on the
TiO2−x side. Electroforming has been found to lead to the
incorporation of oxygen into the Pt electrode,6 most probably
at grain boundaries in Pt by chemisorption or physisorption.
It can be speculated that oxygen atoms in Pt can take part in
the voltage-controlled electrochemical reaction of the forma-
tion and annihilation of oxygen vacancies at a Pt /TiO2−x
interface. In this study, the oxygen ions are assumed to have
a charge of −2 in Pt. Since now we describe all the electro-
chemical reactions using the Kröger-Vink notation represent-
ing relative charges. With the Kröger-Vink notation, an
oxygen-vacancy annihilation reaction on the TiO2−x side of
the interface is given by

OO
��Pt� + VO

••�TiO2−x� → VO
••�Pt�+ OO

��TiO2−x� , �1a�

where Pt and TiO2−x in the parentheses indicate where the
given relative charges are present. The reverse of Eq. �1a�
indicates an oxygen-vacancy formation reaction on the
TiO2−x side. Concerning the formation free energy of Eq.
�1a�, the reaction can be divided into three reactions.

OO
��Pt� → VO

••�Pt� + 2e−�Pt� + 1/2O2�g�, �1b�

1/2O2�g� + VO
••�TiO2−x� + 2e−�TiO2−x� → OO

��TiO2−x� ,

�1c�

and

e−�Pt� → e−�TiO2−x� . �1d�

Free electrons in Pt should be distinguished from those in
TiO2−x because of the difference of the work functions of Pt
and TiO2−x. A first-principles study on oxygen chemisorption
at a Pt surface has shown that the formation energy of oxy-
gen chemisorption per oxygen atom is −1.57 eV.13 There-
fore, a change in the energy of Eq. �1b� is considered to be
1.57 eV. A free-energy change of Eq. �1c� in TiO2 has been
frequently evaluated by measuring a conductivity change
with respect to temperature. Balachandra et al.14 have evalu-
ated a energy change in Eq. �1c� in nonstoichiometric TiO2−x,
which is approximately −2.1 eV. A change in energy of Eq.
�1d� can be determined from the work-function difference
between Pt and TiO2−x. Due to electroforming-induced heavy
self-doping with oxygen vacancies, the Fermi energy of
TiO2−x is believed to be very close to the conduction-band
minimum, thus the work-function difference between Pt and
TiO2−x is approximately �m−�TiO2−x

, where �m and �TiO2−x
are the work function of Pt and the electron affinity of
TiO2−x, respectively. Therefore, the energy for Eq. �1d� is
equal to �m−�TiO2−x

.
Figure 1�a� depicts the configuration of a Pt /TiO2 /Pt

switching cell including a conduction path composed of a
TiO2−x phase in insulating matrix, TiO2. As will be discussed
in Sec. II D, the cross section of the conduction path shown
in Fig. 1�a� is estimated to be approximately a few tens �m2.
The interface reaction �Eq. �1a�� at one of the two interface
of the Pt /TiO2 /Pt cell will be dominant, which then is
termed the active interface determined by the polarity of
electroforming voltage.6 A free-energy diagram of the as-
sumed reaction is depicted in Fig. 1�b�. As shown, the ener-
gies of oxygen ions and vacancies at a Pt /TiO2−x interface
rely on the applied voltage so that the applied voltage varies
the activation energies for the oxygen-vacancy formation and
annihilation reactions. Consequently, the reaction-rate con-
stant of the forward and reverse reactions is given by a func-

FIG. 1. �Color online� �a� Configuration of a TiO2 switching cell. �b� Free-energy diagram of Eq. �1a� with respect to a reaction
coordinate. The lower and upper lines denote diagrams at applied voltages of V0 �reference voltage� and V �=V0+�V�, respectively. ��− and
��+ are energy barrier heights for the forward and the reverse reactions, respectively. � means the asymmetry factor.
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tion of the applied voltage. The formation free energy of Eq.
�1a� is expressed as

�� = ��0 + kBT ln
c̄O�TiO2−x�c̄V�Pt�

c̄V�TiO2−x�c̄O�Pt�
, �2�

where

��0 = �O�TiO2−x�
0 + �V�Pt�

0 − �V�TiO2−x�
0 − �O�Pt�

0 = �h − T�s .

�3�

kB and T are the Boltzmann constant and temperature,
respectively. �i

0, where i� �O�TiO2−x� ,O�Pt� ,V�TiO2−x� ,
V�Pt��, denotes the standard chemical potential of OO

� and
VO

•• placed in TiO2−x and Pt. �h and �s denote changes in the
enthalpy and entropy, respectively, for the reaction in Eq.
�1a�. c̄i, where i� �O�TiO2−x� ,O�Pt� ,V�TiO2−x� ,V�Pt��, is a
ratio of concentration ci to ci

0 in the standard state, ci /ci
0. The

standard state means a pure state so that cO
0 is equal to cV

0 .
Therefore, the ratio c̄O�TiO2−x�c̄V�Pt� / c̄V�TiO2−x�c̄O�Pt� can be re-
written by

c̄O�TiO2−x�c̄V�Pt�

c̄V�TiO2−x�c̄O�Pt�
=

�cO�Pt�
0 − cO�Pt���cO�TiO2−x�

0 − cV�TiO2−x��

cV�TiO2−x�cO�Pt�
.

�4�

Consequently, the Nernst potential Vn of Eq. �1a� is given by

Vn =
1

n
��h − T�s�

+
kBT

n
ln

�cO�Pt�
0 − cO�Pt���cO�TiO2−x�

0 − cV�TiO2−x��

cV�TiO2−x�cO�Pt�
, �5�

where n means the ionization number of O.
Concerning the kinetics of Eq. �1a�, the variation in the

activation energies depicted in Fig. 1�b� with respect to the
applied voltage can be explained as follows: the energy bar-
rier per oxygen, O, for the reverse reaction of Eq. �1a� with a
voltage at d1 �V�d1�� is written by �+�V�d1��. The difference
in energy barrier height for the reverse reaction at two dif-
ferent voltages at d1, V�d1�, and V0�d1�, is expressed as

��+�V�d1�� − ��+�V0�d1�� = − �1 − ��n�V , �6�

where �V is equal to V�d1�−V0�d1�. Similarly, the difference
in energy barrier heights for the forward reaction at V�d1�
and V0�d1� is expressed as

��−�V�d1�� − ��−�V0�d1�� = �n�V . �7�

Therefore, the flux equation of O undergoing the forward and
the reverse reactions at the left electrode �LE�/TiO2−x inter-
face, i.e., J−L

0 and J+L
0 , are described by

J−L
O = k−cO�Pt�cV�TiO2−x� exp�− �n�V

kBT
� , �8�

and

J+L
O = k+cO�TiO2−x�cV�Pt� exp	 �1 − ��n�V

kBT

 , �9�

respectively. k− and k+ are the rates of the forward and the
reverse reactions, respectively. The overall flux equation of
oxygen, JL

O, is the summation of Eqs. �8� and �9�.

JL
O = k−cO�Pt�cV�TiO2−x� exp�− �n�V

kBT
�

− k+cO�TiO2−x�cV�Pt� exp	 �1 − ��n�V

kBT

 . �10�

By taking V0�d1�=0 as a reference voltage and using k−
0 and

k+
0, the forward and the reverse reaction-rate constants at the

reference voltage, Eq. �10� can be rewritten by

JL
O = k−

0cO�Pt�cV�TiO2−x� exp	− �nV�d1�
kBT



− k+

0cO�TiO2−x�cV�Pt� exp	 �1 − ��nV�d1�
kBT


 . �11�

In equilibrium, J−L
0 is equal to J+L

0 , so that the net flux is
zero. The voltage at d1 in equilibrium is defined as the Nernst
potential Vn. Vn can therefore be given by

Vn =
kBT

n
ln

k+
0

k−
0 +

kBT

n
ln

cO�TiO2−x�cV�Pt�

cO�Pt�cV�TiO2−x�
. �12�

Comparing Eq. �12� with Eq. �5� gives the ratio k+
0 /k−

0 as

k+
0

k−
0 = exp�− �s

kB
�exp� �h

kBT
� . �13�

The flux equation of the forward/reverse reaction at Vn �J0�
can be obtained by entering Eq. �13� into Eq. �11�, giving the
following equation:

J0 = k−
0� k+

0

k−
0�� �cO�TiO2−x�cV�Pt���

�cO�Pt�cV�TiO2−x���−1 . �14�

Therefore, the net flux equation for oxygen, O, can be writ-
ten by a form of the Butler-Volmer equation,9

JL
O = J0	1 − exp�n�V�d1� + Vn�

kBT
�
exp�− �n�V�d1� − Vn�

kBT
� .

�15�

For the Helmholtz layer at the TiO2−x/right electrode �RE�
interface an oxygen ion flux equation JR

O can be derived us-
ing the same procedure as used for the JL

O, and is given by

JR
O = J0	1 − exp�−

n�Vap − V�d1 + d2� − Vn�
kBT

�

�exp��n�Vap − V�d1 + d2� − Vn�

kBT
� . �16�

Equations �15� and �16� will serve as boundary conditions
for the calculation of the time-dependent distribution of oxy-
gen vacancies.
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B. Drift diffusion of oxygen vacancies and electrons in TiO2−x

TiO2−x is estimated to be n-type semiconductor as electro-
forming is expected to introduce a large amount of oxygen
vacancies in TiO2−x. Electrons and oxygen vacancies are re-
garded as majority charged particles in TiO2−x. The one-
dimensional time-dependent distribution of oxygen vacan-
cies and electrons can be determined by solving the one-
dimensional drift diffusion equation, given by

JDD
i = zici�iE − Di

�ci

�x
, i � �e,VO� , �17�

where zi, �i, and Di mean the charge number, the mobility,
and the diffusivity of particle i, respectively. Equation �17�
describes the flux of charged particle i due to drift and dif-
fusion, whose driving forces are the electric field E and the
concentration gradient of particle i, respectively. The electric
field is attributed to the applied voltage and the internal elec-
tric field. By introducing the Fermi energy �F �electrochemi-
cal potential� into Eq. �17�, the equation for electrons is re-
written by

JDD
e = − ce�e

d�F

dx
. �18�

Fick’s second law is expressed as

�ci

�t
= −

�JDD
i

�x
. �19�

Entering Eq. �17� into Eq. �19� results in

�ci

�t
= − zici�i

�E

�x
− zi�iE

�ci

�x
+ Di

�2ci

�x2 . �20�

In order to solve Eq. �20�, one should evaluate E as a func-
tion of x. E is obtained by solving the Poisson equation with
proper boundary conditions, which is given by dE /dx
=q	 /�r�0, where q, �r, and �0 are the elementary charge, the
dielectric constant of TiO2−x, and the permittivity of vacuum,
respectively. 	 is equal to izici, where i� �e ,VO�. By inte-
grating the Poisson equation over the range d1
x
d1+d2,
E and V at x=d1+d2 can be calculated as the following equa-
tions:

E�d1 + d2� = E�d1� +
q

�r�0
�

d1

d1+d2

	�x�dx , �21�

and

V�d1 + d2� = V�d1� − E�d1�d2 −
q

�r�0
�

d1

d1+d2 �
d1

x

	�x��dx�dx .

�22�

On the assumption that electric field penetration depth
�screening length� in Pt is very small so that a voltage drop
in Pt is negligible, the applied voltage Vap is equal to the
summation of voltage drops in the left Helmholtz layer,
TiO2−x, and the right Helmholtz layer �V1 ,V2 ,V3�. Using the
continuity equation, V1 and V3 can be expressed as
−d1�rE�d1� /�rH and −d3�rE�d1+d2� /�rH, respectively. �rH

means the dielectric constant of the Helmholtz layer. Vap is
therefore written by

Vap = −
d1�r

�rH
E�d1� −

d3�r

�rH
E�d1 + d2� + V�d1 + d2� − V�d1� .

�23�

Arranging Eq. �23� after entering Eqs. �21� and �22� into Eq.
�23� gives E�d1� as expressed as

E�d1� = −
1

d1�r/�rH + d2 + d3�r/�rH

�	Vap +
qd3

�rH�0
�

d1

d1+d2

	�x�dx

+
q

�r�0
�

d1

d1+d2 �
d1

x

	�x��dx�dx
 . �24�

Since V�x� for d1
x
d1+d2 is given by

V�x� = V�d1� − E�d1�d2 −
q

�r�0
�

d1

x �
d1

x�
	�x��dx�dx�,

�25�

V�x� can be evaluated by entering Eq. �24� into Eq. �25�.
The calculation of the quasistatic distribution of electrons

at given distribution of oxygen vacancies in a time domain
can be performed with the voltage distribution along the
TiO2−x conduction path, determined from Eq. �25�. The qua-
sistatic calculation of the electron distribution will be veri-
fied to be reasonable in Sec. II C. As shown in Eq. �25�, V is
given by a function of 	. Considering the electron contribu-
tion to 	, where electrons satisfy the Fermi-Dirac statistics, 	
is a function of V. That is, Eq. �25� is a self-consistent equa-
tion so that solving the equation gives both V and 	.

However, 	 is given by a function of V as well as the
Fermi energy �F, namely, there are two variables in Eq. �25�.
One more equation for V and 	 therefore needs to be solved
to evaluate their distribution. Equation �18� with proper
boundary conditions can be that equation. As mentioned ear-
lier, the electron concentration ce in Eq. �18� is a function
based on the Fermi-Dirac statistics, in which V and �F are the
only variables. In a quasistatic state, electronic current den-
sity JDD

e is constant along the direction x through the conduc-
tion path. Therefore, if JDD

e at x=d1, serving as a boundary
condition, is known, ce�ed�F /dx along the direction x can be
evaluated. Therefore, Eq. �18� serves as the other equation
for V and 	 so that the distribution of V and 	 is evaluated by
solving the two simultaneous equations, Eqs. �18� and �25�.
However, it turns out that solving Eqs. �18� and �25� is im-
possible using an analytical calculation. Therefore, the finite
difference method will be used to calculate the time-
dependent distribution of electrons and oxygen vacancies,
which will be explained in Sec. II C.

Proper boundary conditions are necessary to solve Eq.
�18�. For the calculation of the oxygen-vacancy distribution,
the flux of oxygen vacancies at the LE /TiO2−x and the
TiO2−x /RE interfaces �JL

V and JR
V� serve as the boundary con-

ditions. Since JL
V is equal to −JL

O, the negative of Eqs. �15�
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and �16� can be taken as boundary conditions. For the calcu-
lation of electron distribution, electronic current densities at
the LE /TiO2−x and the TiO2−x /RE interfaces �JL

e and JR
e � are

used as the boundary conditions. To calculate JL
e , the current

densities due to electron transfers LE→TiO2−x �JLT
e � and

TiO2−x→LE �JTL
e � should be evaluated. JLT

e can be expressed
in terms of the SBH at the LE /TiO2−x interface ��b

L� by
integrating the product of the density of electrons at a given
energy in the LE and the corresponding velocity over the
energy higher than �b

L. The density of electrons is expressed
as the density of states of the LE multiplied by the Fermi-
Dirac distribution function.15

JLT
e =

A�T2

Nc
�

�c�d1�

� Nc���

1 + exp�� − �Fm

kBT
�d�; Nc� =

�2me
3/2

�32 ,

�26�

where Nc is the effective density of states for electrons,
which is given by 2�2mekBT /h2�3/2. A�, �c�d1�, �c�d�, and
�Fm denote the effective Richardson constant, the
conduction-band edge energies at d1 and d, and the Fermi
energy of the LE, respectively. In a similar way, JTL

e is given
by a function similar to Eq. �26�.

JTL
e = qvTL�

�c�d1�

� Nc��� − �c�d1�

1 + exp	� − �F�d1�
kBT


d� , �27�

where �F�d1� and vTL are the Fermi energy at d1 and velocity
of the electron transfer TiO2−x→LE, respectively. By putting
together Eqs. �26� and �27� JL

e can be written by

JL
e = −

A�T2Nc�

Nc
�

�c�d1�

� ��

1 + exp�� − �Fm

kBT
�d�

+ qvTLNc��
�c�d1�

� �� − �c�d1�

1 + exp	� − �F�d1�
kBT


d� . �28�

Concerning JR
e , the electron transfers, RE→TiO2−x and

TiO2−x→RE, contribute to JRT
e and JTR

e , respectively. Using
the same procedure as for the derivation of JL

e , JR
e can be

obtained as

JR
e = − qvTRNc��

�c�d1+d2�

� �� − �c�d1 + d2�

1 + exp	� − �F�d1 + d2�
kBT


d�

+
A�T2Nc�

Nc
�

�c�d1+d2�

� ��

1 + exp�� − �Fm − qVap

kBT
�d� ,

�29�

where vTR means velocity of the electron transfer TiO2−x
→RE. �c�d1+d2� and �F�d1+d2� denote conduction-band
edge energies and the Fermi energy at d1+d2, respectively.

C. Finite difference method for the calculation

The explicit finite difference method �FDM� �Ref. 16� was
chosen for the calculation of the drift-diffusion of oxygen
vacancies and electrons in TiO2−x and the formation and an-
nihilation reactions of oxygen vacancies at the Helmholtz
layer. Writing and compiling the code for this calculation
were done using MATLAB™.

In the explicit FDM, Eq. �19� is given by the following
equation:

ct,x
i − ct−1,x

i

�t
=

1

�x
�jt−1,x−1/2

i − jt−1,x+1/2
i � , �30�

where ct,x
i denotes the concentration of particle i at time t and

spatial point x and Di its diffusivity. The configuration of the
nodes in Pt /TiO2−x /Pt is depicted in Fig. 2. Along the axis x,
NE, N2, and NE nodes are assigned to the LE, the TiO2−x film,
and the RE, respectively. dE, d1, d2, and d3 are the thick-
nesses of the LE �RE�, the left Helmholtz layer, the TiO2−x
film, and the right Helmholtz layer, respectively. Therefore,
the distance between neighboring nodes in the LE �RE� is
dE / �NE−1� and that in TiO2−x is d2 / �N2−1�. Along the axis
t, Nt nodes are located with a distance between neighboring
nodes of �t. Let us start dealing with the drift diffusion of
oxygen ions in the LE. Using the configuration of the nodes,
Fick’s second law of oxygen ions can be described as

ct+1,n
O�L� − ct,n

O�L�

�t
=

NE − 1

dE
�jt,n−1/2

O�L� − jt,n+1/2
O�L� � , �31�

where ct,n
O�L� is the concentration of oxygen ions at node �t ,n�

in the LE. Since an electric field is not present in metal, the
drift of oxygen ions in the electrode can be ignored so that
the oxygen ion flux equation due to only their diffusion at
nodes �t ,n−1 /2� and �t ,n+1 /2� can be expressed as

Jt,n−1/2
O�L� = −

DONE

dE
�ct,n

O�L� − ct,n−1
O�L� � , �32�

and

Jt,n+1/2
O�L� = −

DONE

dE
�ct,n+1

O�L� − ct,n
O�L�� , �33�

respectively. Entering Eqs. �32� and �33� into Eq. �31� leads
to the following equation:

FIG. 2. Configuration of the nodes of Pt /TiO2−x /Pt in two di-
mensions, time t and spatial coordinate x.
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ct+1,n
O�L� = ct,n

O�L� +
DO�NE − 1�2�t

dE
2 �ct,n+1

O�L� − 2ct,n
O�L� + ct,n−1

O�L� � .

�34�

Using Eq. �34�, ct+1,n
O�L� can be determined from ct,n−1

O�L� , ct,n
O�L�,

and ct,n+1
O�L� . Net oxygen ion flux at the left end of the LE is

assumed to be zero, implying oxygen ions coming into and
out of the LE are in equilibrium. Jt,1/2

O�L�=0 thus serves as a
boundary condition. The other boundary condition at NE
+1 /2 can be obtained from the net flux of the oxygen ions at
the left Helmholtz layer given by Eq. �11�. Therefore,
Jt,NE+1/2

O�L� is expressed as

Jt,NE+1/2
O�L� = k−

0ct,NE

O�L�ct,1
V exp�−

�nVt,1

kBT
� − k+

0�cOO
�

0 − ct,1
V �

��cO�L�
0 − ct,NE

O�L��exp	 �1 − ��nVt,1

kBT

 . �35�

cO�L�
0 means the concentration of oxygen ions in the electrode

in the standard state. A voltage at the node NE of the LE is
taken as a ground �zero�. Considering the very short electric
field screening length in metal, it is a reasonable assumption
to ignore a voltage drop in the LE. Numbering the nodes in
TiO2−x is started from one at the left end of TiO2−x without
including the number of the nodes in the LE. Vt,1 denotes a
voltage at �t ,1�, which is at the interface between the left
Helmholtz layer and TiO2−x. Vt,1 will be determined using an
iteration method for the calculation of electron concentration
distribution in TiO2−x. From the discrete diffusion equation
and the boundary conditions oxygen distribution in the LE at
each time node can be obtained with the proper initial distri-
bution of oxygen.

Oxygen distribution in the RE and oxygen flux at the left
and right ends are obtained using a similar derivation proce-
dure that used for the calculation on the LE. However,
boundary conditions at the left and right ends of the RE are
the other way than those in the LE because the configuration
of the RE is the mirror one of the LE. A boundary condition
at the left end of the RE is given by

Jt,1/2
O�R� = − k−

0ct,1
O�R�ct,N2

V exp	−
�n�Vap − Vt,N2

�

kBT



+ k+
0�cOO

�
0 − ct,N2

V ��cO�R�
0 − ct,1

O�R��

�exp	 �1 − ��n�Vap − Vt,N2
�

kBT

 �36�

Numbering the nodes in the RE is started from one at the
interface between the right Helmholtz layer and the RE.
Oxygen distribution in the RE can be obtained in the same
manner as that in the LE.

The calculation of oxygen-vacancy and electron distribu-
tion in TiO2−x is more complicated because both drift and
diffusion of oxygen vacancies and electrons must be taken
into account. The discrete drift-diffusion equation of particle
i where i� �e ,V� at nodes �t ,n+1 /2� and �t ,n−1 /2� can be
expressed as

Jt,n+1/2
i = −

1

2d2
zi�i�ct,n+1

i + ct,n
i ��N2 − 1��Vt,n+1 − Vt,n�

−
N2 − 1

d2
Di�ct,n+1

i − ct,n
i � �37�

and

Jt,n−1/2
i = −

1

2d2
zi�i�ct,n

i + ct,n−1
i ��N2 − 1��Vt,n − Vt,n−1�

−
N2 − 1

d2
Di�ct,n

i − ct,n−1
i � , �38�

respectively. By entering Eqs. �37� and �38� into Fick’s sec-
ond law, ct+1,n

i can be expressed as a function of ci and V at
the nodes �t ,n−1�, �t ,n�, and �t ,n+1�. A voltage at each
node can be evaluated by solving the Poisson equation,
which needs space-charge density at every node. Therefore,
ct,n

e and ct,n
V should be evaluated at all nodes n at time t.

Response of electrons to variations in the internal electric
field is very fast compared to oxygen vacancies due to the
higher mobility of the electrons. Therefore, very small time
steps ��1 ps� must be used to evaluate time-dependent be-
havior of electrons. However, the drift diffusion of oxygen
vacancies is very sluggish compared to electrons so that its
time constant would be higher than a few hundreds �s rely-
ing on the low mobility of oxygen vacancies. Using then
very small time steps ��1 ps� is not an efficient method
because a huge amount of data points in the time domain are
necessarily produced to calculate time-dependent drift diffu-
sion of oxygen vacancies. Therefore, it is reasonable to use a
more efficient quasistatic calculation for the evaluation of
electron distribution and adequate larger time steps for the
oxygen vacancies.

The calculated voltage distribution and electric field at the
interface between the left Helmholtz layer and TiO2−x in Eqs.
�25� and �24�, respectively, need to be written as proper
forms in a discrete system. Space charge density 	 is defined
as 	=2cV−ce. The integration �d1

x 	�x�dx can be written using
the trapezoidal rule17 by

�
d1

d1+d2�n−1�/N2−1

	�x��dx� �
d2

N2 − 1	
i=2

n−1

	�i� +
1

2
	�i = 1�

+
1

2
	�i = n�
 . �39�

By defining Eq. �39� as f�i=n� the double integral on the
right side of Eq. �25� can be replaced by

�
d1

d1+d2�n−1�/N2−1

f�x��dx� �
d2

N2 − 1	
i=2

n−1

f�i� +
1

2
f�i = 1�

+
1

2
f�i = n�
 . �40�

The double integral in Eq. �24� is determined from Eq. �40�
for n=N2. Therefore, voltages at all nodes at time t at the
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given distribution of space charges can be evaluated using
the FDM.

The thickness of TiO2−x �d2� was set 50 nm. The total
number of nodes in d2 was 272. The variation in internal
voltage and electron and oxygen-vacancy densities in the
vicinity of the LE /TiO2−x and TiO2−x /RE interfaces is dras-
tic compared with the bulk of the TiO2−x film, thus 36 nodes
were assigned to each near-interface region �within 2 nm
distance from each interface� whereas 200 nodes the bulk of
the film �46 nm�. On the other hand, a homogeneous distri-
bution of 199 nodes was given to each electrode because no
internal electric field is expected in the LE and RE due to
perfect electric field screening.

Since we deal with high electronic current density in the
electroformed TiO2−x, displacement current attributed to
space-charge redistribution in TiO2−x can be neglected.
Therefore, drift-diffusion current in Eq. �17� for electrons is
constant along the axis x at time t. In a discrete system Eq.
�18� is expressed as JDD

e =−ce
t,i�e�EF

t,i+1−EF
t,i� /�x, where the

superscripts t and i denote time and location �ith node�, re-
spectively. Therefore, EF

t,i+1 is determined from EF
t,i and ce

t,i

because JDD
e is constant at all the nodes, that is, EF

t,i+1 is a
dependent variable on EF

t,i and ce
t,i. Using the Newton

iteration17 the voltage distribution in TiO2−x as well as the
Fermi energy distribution in the Pt /TiO2−x /Pt configuration
�shown in Fig. 1�a�� at given voltage and time could be cal-
culated.

From the discussion up to now, the densities of oxygen
vacancies and electrons could be defined at all locations
�nodes n� at time t, thus time-dependent electronic and ionic
current can be evaluated.

D. Calculation results

The symmetry of electroforming in TiO2 is regarded to be
determined by the polarity of the applied voltage for
electroforming.6 During electroforming the following reac-
tion is expected to take place at the anode of Pt /TiO2 /Pt,
OO

�→VO
••+2e−+1 /2O2�g�, with introducing a large amount

of oxygen vacancies. In order to define an initial distribution
of oxygen vacancies for the bipolar switching calculation, it
was assumed that electroforming was performed by applying
a negative voltage to the RE so that oxygen vacancies
formed at the LE �anode�/TiO2−x interface migrated to the
RE and are accumulated. The accumulation of oxygen va-
cancies resulted in the growth of a conducting path com-
posed of an oxygen-deficient phase, thus the oxygen-vacancy
density profile after the electroforming process is qualita-
tively speculated to be like Fig. 3�a�. The densities at d1 and
d1+d2 in the initial density profile are 1021 and 2.66
�1021 cm−3, respectively. The corresponding band diagram
is shown in Fig. 3�b�.

Assuming a prior electroforming process, the LE /TiO2−x
interface was assumed as the active interface �anode during
the prior electroforming� for the electrochemical reaction
shown in Eq. �1a�, whereas the other interface was consid-
ered to be inactive with a low rate constant in Eq. �1a�. This
leads to a change in the oxygen-vacancy density at mainly
the LE /TiO2−x interface. The parameters used for the calcu-

lation of current density-voltage �J-V� curves are given in
Table I. The Helmholtz layer is believed to be similar to an
interfacial dipole layer in semiconductor physics.18 �rH was
assumed to be 7 as Black et al.19 suggested in their paper.
Regarding the thickness of the Helmholtz layer, it is ideally
equal to the radius of the ions taking part in electric field
screening. In this study, we regard oxygen vacancies to be in
charge of the screening so that the radius of oxygen vacan-
cies corresponds to the Helmholtz layer thickness. However,
it is difficult to define the size of oxygen vacancies because
they are effective ions rather than real ones. We thus assume
the thickness of the Helmholtz layer to be 0.2 nm, approxi-
mately half the a-axis lattice constant of anatase TiO2. As a
matter of fact, the Helmholtz layer thickness plays a crucial
role in the determination of the SBH. The SBH is determined
from a voltage drop in the Helmholtz layer that is propor-
tional to the Helmholtz layer thickness. The diffusivity of
oxygen vacancies was set 10−18 cm2 s−1. As a matter of fact,
the diffusivity at room temperature has been barely reported.
The diffusivity used for this calculation was extrapolated
from diffusivities measured at high temperatures

FIG. 3. �Color online� �a� Initial distribution of oxygen vacan-
cies and free electrons in TiO2−x between LE and RE. �b� Calcu-
lated band diagram of a Pt /TiO2−x /Pt junction. V�0� and V�d� de-
note voltage drops in the left and the right Helmholtz layers,
respectively.

TABLE I. Parameters for the bipolar switching simulation

Parameter Value Parameter Value

DV

10−18 cm2 s−1

�Ref. 20� � 0.45

DO

10−15 cm2 s−1

�Ref. 21� n −2

dE 70 nm �h 0.75 eV

d1 2 Å s 1.2 meV/K

d2 50 nm cOO
�

0 1023 cm−3

d3 2 Å �r 20 �Ref. 22�
NE 199 �rH 7 �Ref. 19�
N2 272 �b 0.5 eV

Nt 5 me 13 m0 �Ref. 23�

�t 20 ms A�

1.2�106 A m−2 K−2

�Ref. 24�
k−

0 at d1 10−36 cm4 s−1 T 298 K

k−
0 at d1+d2 10−62 cm4 s−1
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��1000 °C�.20 The diffusivity of oxygen in Pt was set to
10−15 cm2 s−1.21

Calculated J-V hysteresis with two cycles of the applied
voltage is plotted in Fig. 4�a�. The applied voltage cycle is
depicted in the inset of Fig. 4�a�. The delay time of each
voltage step was 0.1 s. Since the formation and the annihila-
tion of oxygen vacancies at LE /TiO2−x occur with applying a
negative and a positive voltage to the RE, respectively, thus
set and reset switching occur under negative and positive
voltage, respectively, as shown in Fig. 4�a�. The set switch-
ing in Fig. 4�a� is not very obvious because a gentle decrease
in resistance rather than an abrupt step takes place during the
set switching. The variation in oxygen-vacancy density at the
LE /TiO2−x is shown in Fig. 4�b�. The increase in oxygen-
vacancy density and thus space charge during the set switch-
ing leads to the reduction in the SBH so that current in-
creases with increasing oxygen-vacancy density at that
interface. The opposite happens during the reset switching
voltage region: Oxygen-vacancy density at the LE /TiO2−x
interface decreases giving rise to an increase in the SBH.
Therefore, the hysteretic J-V behavior is observed during the
reset switching.

In Fig. 4�b�, it can be noticed that oxygen-vacancy density
as a function of the applied voltage in the second cycle is not
completely identical to that in the first cycle, thus the BRS
curves in the first and second cycles show a slight difference
as shown in Fig. 4�a�. The difference of oxygen-vacancy
density relying on a cycle number is due to the variation in
the Nernst potential Vn of the oxygen-vacancy formation re-
action �Eq. �1a��. As given by Eq. �12�, Vn is a function of
the density of oxygen vacancies and oxygen ions in the LE.
Vn indicates equilibrium voltage. That is, when V�d1� is
equal to Vn, the system reaches equilibrium so that no further
changes in the density of the ionic species take place. As
V�d1� is �more� different from Vn in the positive �negative�
direction, the oxygen-vacancy annihilation �formation� reac-
tion, the forward �reverse� of Eq. �1a� becomes more accel-
erated. Therefore, oxygen-vacancy and ion density and Vn
influence each other and they show variation in each voltage
cycle so that the nonclosed loop of oxygen-vacancy density

with respect to the applied voltage shown in Fig. 4�b� was
obtained. The variation in oxygen-vacancy and ion densities
with respect to a cycle number could be a reason for fatigue
of bipolar switching.

The SBH at the interface between the cathode and TiO2−x
with respect to the applied voltage is shown in Fig. 5�a�. The
open symbols on the negative voltage side indicate the SBH
at the TiO2−x/RE�cathode� interface and the closed ones on
the positive side indicate the SBH at the LE�cathode�/TiO2−x
interface. The hysteretic SBH variation shown in Fig. 5�a�
plays an essential role in our model of bipolar switching.
Compared with the SBH at TiO2−x /RE in the second down-
ward sweep �dn2�, a decrease in the SBH in the second up-
ward sweep �up2� can be identified on the negative voltage
side of Fig. 5�a�. It can be noted that the SBH values under
the negative voltage are negative. In spite of the negative
SBH electrons depleted in the vicinity of the interface be-
tween TiO2−x and the cathode as can be seen near the
TiO2−x /LE and RE /TiO2−x interfaces in Figs. 5�b� and 5�c�,
respectively. That is, the interfaces still play a role in con-
trolling current flow through the cell so that J-V characteris-
tics do not show linear behavior meaning Ohm’s law. Com-
parison between the SBH during dn2 and up2 gives the
origin of the set switching. It turns out that after the set
switching the SBH becomes more negative so that the num-
ber of electrons in the cathode �LE� with energies above the
conduction-band minimum of TiO2−x increases. Conse-
quently, the set switching results in a decrease in resistance.
Under the positive voltage in up2 another hysteretic SBH at
LE /TiO2−x can be observed. Compared with the SBH under
the positive voltage during up2, the SBH during the third
downward sweep �dn3� is found to increase. The increase in
the SBH thus causes an increase in resistance �reset switch-
ing�.

The conduction-band edge and the Fermi energy profiles
at −0.5 V during dn2 and up2 and +0.5 V during up2 and
dn3 are plotted in Fig. 5�b�. The conduction-band profiles are
flat apart from the interface regions regardless of the applied
voltage and the resistance state. This is attributed to good
electric field screening within a short screening length by a

FIG. 4. �Color online� �a� Simulated J-V curves with the applied
voltage cycles shown in the inset and a voltage delay time of 0.1 s.
�b� Variation in oxygen-vacancy density on the TiO2−x side and
oxygen ion density on the LE side of the LE /TiO2−x interface with
respect to the applied voltage cycles. The mobility of oxygen va-
cancies was assumed to be 3.87�10−17 cm2 /V s corresponding to
a diffusivity of 10−18 cm2 /s �Ref. 20�. A voltage sweep rate was 0.5
V/s.

FIG. 5. �Color online� �a� Variation in the SBH at the interface
between the cathode and TiO2−x with respect to the applied voltage
in the second cycle depicted in the inset of Fig. 3�a�. �b� Simulated
profiles of the conduction-band edge and the Fermi energy at
−0.5 V during the second downward sweep �dn2�, at −0.5 and �c�
0.5 V during the second upward sweep �up2�, and at 0.5 V during
the third downward sweep �dn3� in the second cycle. The Fermi
energy of the LE is taken as a reference energy. Black and red lines
denote high and low resistance states, respectively.
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large amount of oxygen vacancies in the vicinity of the in-
terfaces so that a voltage is barely applied in the bulk of
TiO2−x. Regardless of the applied voltage the Fermi energy is
located above the conduction-band edge except for that in
the vicinity of the two interfaces, meaning the bulk of TiO2−x
has the much higher conductivity so that the bipolar switch-
ing is controlled by the interface properties.

The time-dependent variation in current density under a
constant voltage of 0.6 V is plotted in Fig. 6�a�. The param-
eters given in Table I were used for the calculation of the
current density-time �J-t� behavior. This voltage belongs to a
reset switching regime so that the current density decreases
with respect to time. Corresponding variation in the density
of oxygen vacancies in the vicinity of LE /TiO2−x at the same
voltage �0.6 V� as a function of time is plotted in Fig. 6�b�.
The annihilation of oxygen vacancies takes place, thus a
number of oxygen vacancies decrease with respect to time.
Figures 6�c� and 6�d� depict the conduction-band edge pro-
file and variations in electron density, respectively, with re-
spect to time at 0.6 V.

J-V curves calculated using three different formation en-
ergies �h �0.45, 0.75, and 0.9 eV� for the formation of oxy-
gen vacancies and the corresponding densities of them at
LE /TiO2−x are plotted in Figs. 7�a� and 7�b�, respectively.
The applied voltage cycle is depicted in the inset of Fig. 4�a�.
The formation energy �h determines set and reset voltage
regimes. By the comparison between the oxygen-vacancy
variation curves shown in Fig. 7�b� for 0.75 and 0.9 eV
cases, it can be concluded that a lower formation energy
shifts voltages for the activation of oxygen-vacancy forma-
tion and annihilation reactions to higher values. For the 0.45
eV case the switching voltage regimes are out of the applied
voltage range so that no bipolar switching was observed. An
increase in oxygen-vacancy density at the LE /TiO2−x inter-

face during the first downward sweep becomes less obvious
as the formation energy decreases as shown in Fig. 7�b�. A
low formation energy means the difference between the en-
ergies of the right and the left sides of Eq. �1a� is small.
Therefore, to accelerate the reverse reaction of Eq. �1a� for a
system with a low formation energy, namely, to increase the
energy difference, one should decrease the energy of the
right side of Eq. �1a� by applying a negative high voltage to
the LE compared with a higher formation case. In fact, for
the 0.45 eV case a voltage more negative than −0.8 V was
necessary for the activation of oxygen-vacancy formation.

For a comparison with experimental results bipolar
switching curves measured on a Pt�100 nm� /
TiO2�100 nm� /Pt�100 nm� cell is plotted in Fig. 8. A
sample fabrication procedure has been reported elsewhere.3

The switching curves undergo set and reset switching at
negative and positive voltage, respectively. From Figs. 4�a�
and 8 the total cross-sectional area of the conduction paths
can be roughly determined, where J-V and current-voltage
�I-V� curves are respectively plotted. A calculated cross-
sectional area is a few tens of �m2, as mentioned in Sec.
II A. As a matter of fact, this area is well consistent with a
value determined experimentally.6

The bipolar switching model described up to now leaves
many open questions. Concerning the electrochemical reac-
tion of Eq. �1a�, for instance, its kinetics has been hardly
clarified so that some parameters including k−

0 at both inter-
faces, �, and n were speculated. Those parameters should be

FIG. 6. �Color online� �a� J-t curve at an applied voltage of 0.6
V undergoing reset switching. �b� oxygen-vacancy density at the
LE /TiO2−x interface, �c� conduction-band minimum profile in
TiO2−x, �d� electron distribution profile as a function of a voltage
application time at an applied voltage of 0.6 V

FIG. 7. �Color online� �a� J-V curves calculated using a forma-
tion energy �h of 0.45, 0.75, and 0.9 eV. The inset depicts the
applied voltage cycle. �b� Corresponding densities of oxygen vacan-
cies at the LE /TiO2−x interface.

FIG. 8. Bipolar switching curves measured on a
Pt�100 nm� /TiO2�100 nm� /Pt�100 nm� switching cell.
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defined for a better description of bipolar switching. In addi-
tion, material properties such as �rH and �b are not still ob-
vious. More studies on properties of TiO2−x reduced by elec-
troforming should be carried out.

As mentioned in the introduction, the aim of this paper is
to propose a prototype of bipolar switching in TiO2 in terms
of oxygen-vacancy-related electrochemical reactions, and
thus we simplified our system by dealing with a one-
dimensional Pt /TiO2 /Pt junction. This proposed model itself
is barely able to explain many technical issues such as long
data retention, endurance, switching speed and so on. These
issues should be approached with taking into account the
three-dimensional distribution of conduction paths because
their properties are determined by three-dimensionally lo-
cated conduction paths. However, in this paper we only de-
scribe bipolar switching with one conduction path. There-
fore, the model needs to be elaborated in order to describe
the reality of RRAM devices.

III. CONCLUSIONS

A bipolar switching mechanism in a Pt /TiO2 /Pt switching
cell after asymmetric electroforming is suggested in terms of

oxygen-related electrochemical reactions, oxygen-vacancy
formation, and annihilation reactions at one of the Pt /TiO2

interfaces, which is activated by the polarity of the asymmet-
ric electroforming process. By taking into account the Helm-
holtz layer at the active interface the reaction constants for
the formation and the annihilation of oxygen vacancies are
expressed as a function of the applied voltage, thus the den-
sity of oxygen vacancies is given with respect to the applied
voltage. The variation in oxygen-vacancy density at the ac-
tive interface leads to a change in the SBH, consequently,
giving rise to a transient resistive switching relying on the
polarity of the applied voltage.
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