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We construct an explicit renormalization-group transformation for Levin and Wen’s string-net models on a
hexagonal lattice. The transformation leaves invariant the ground-state “fixed-point” wave function of the
string-net condensed phase. Our construction also produces an exact representation of the wave function in
terms of the multiscale entanglement renormalization ansatz �MERA�. This sets the stage for efficient numeri-
cal simulations of string-net models using MERA algorithms. It also provides an explicit quantum circuit to
prepare the string-net ground-state wave function using a quantum computer.
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The fractional quantum Hall effect provides the first ex-
perimental evidence1 for the existence of topological phases
of quantum matter. It has motivated the study of topological
order and its characterization2 and has spurred considerable
theoretical efforts to find condensed-matter systems exhibit-
ing the relevant features, that is, topological ground-space
degeneracy and anyonic excitations. The interest in concrete
Hamiltonian models is manifold: they provide an important
testbed for theoretical concepts such as the topological en-
tanglement entropy3,4 and may serve as a guide to the experi-
mental search for evidence of their existence. Moreover, sys-
tems supporting anyons with computationally universal
braiding are a promising avenue for the realization of a quan-
tum computer.5,6

A fruitful approach to the realization of topological phases
is the study of model systems whose degrees of freedom are
geometric objects such as loops or the so-called string nets
�labeled trivalent graphs� embedded in a surface.7,8 To re-
spect the topology one attempts to find Hamiltonians whose
ground states are topologically invariant, i.e., assign equal
amplitudes to configurations that can be smoothly deformed
into each other. This invariance property is not sufficient to
uniquely fix a topological phase, however. To constrain the
system further it is assumed that the ground states are—as
representatives of a particular phase—fixed under a
renormalization-group �RG� flow and thus scale-invariant. A
corresponding Hamiltonian consisting of local terms can
then be constructed by expressing topological invariance and
the fixed-point property in terms of local constraints.9 Fol-
lowing this program, Levin and Wen8 have constructed an
exactly soluble fixed-point Hamiltonian that realizes, starting
from an �essentially arbitrary� modular tensor category, a
spin Hamiltonian corresponding to the associated doubled
�parity-time-symmetric� topological phase.

The postulated fix-point property of the ground space un-
der RG is a key ingredient of Levin and Wen’s construction
as it motivates the choice of the local constraints. However,
the outlined procedure does not provide an RG transforma-
tion; in fact the mere existence of an RG that fixes the

ground states is a priori unclear. Here we construct an ex-
plicit RG transformation for �2+1�-dimensional string-net
models with this property. This establishes that the fixed-
point wave functions and Hamiltonians of Ref. 8 are indeed
the infrared limit of string-net condensed phases and thus
confirms the validity of the heuristic reasoning underlying
Ref. 8.

The proposed RG transformation can be seen as an in-
stance of entanglement renormalization,10 that is, it proceeds
by locally eliminating part of the ground-state entanglement
before each coarse-graining step.11 Due to its structure based
on local transformation rules, our RG transformation con-
serves topological degrees of freedom. In fact, it maps the
ground space exactly into the ground space of the coarse-
grained system. These features are analogous to results ob-
tained in Ref. 12 for Kitaev’s toric code5 and its
generalizations.13 In particular, they give rise to an efficient
representation of the ground states as tensor networks �i.e., in
terms of the multi-scale entanglement renormalization ansatz
�MERA� �Ref. 10��. They also imply that our RG transfor-
mation is a reasonable choice of initial point for numerical
�variational� algorithms14 when studying, e.g., the stability of
topological phases under perturbations. Finally, our RG
transformation gives an explicit prescription for efficiently
preparing fixed-point wave functions or reading out topologi-
cal information using a quantum computer.

Following Ref. 8, let G be a trivalent graph embedded in a
surface S, so that the components of S \G are simply con-
nected �“plaquettes”�. The Hilbert space HG of a string-net
model is spanned by the different networks of labeled ori-
ented strings living on G’s edges. A standard basis for this
space is obtained by orienting G and associating to each edge
e a Hilbert space Ve�CN+1 with orthonormal basis ��i�e	i=0

N .
Here i determines the type and direction of string with i=0
corresponding to the absence of a string across edge e. For
each i, label i� corresponds to a string of the same type but
with the opposite direction; we set 0�=0. Then HG= �eVe.
The model is further characterized by branching rules, the
set of triples �i , j ,k	 of string types that are allowed to come
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together at a vertex, e.g., �i , i� ,0	 is always allowed. We
define the physical subspace HG

phys�HG as the span of all
string-net configurations that have an allowed triple at every
vertex.

Define a Hamiltonian HG acting on HG by

HG = − 

vertices v

Qv − 

plaquettes p

Bp. �1�

Here, for each vertex v, Qv is the projection onto the set of
allowed net edge triples at v. Thus the first term projects onto
HG

phys. The second term has a more complicated definition.
Let Fkln

ijm be an order-six tensor indexed by string types satis-
fying certain conditions roughly described as self-
consistency, unitarity, and compatibility with the branching
rules; see Appendixes A and B for full details. For each
plaquette p the plaquette operator Bp is a projection on the
edges bordering p controlled by the edges with one end point

on p. More precisely, Bp=
idiBp
i /
idi

2, where di=1 /Fii�0
ii�0 and

Bp
i acts on a simple plaquette p with r boundary edges as

Bi
p

∣∣∣∣∣
〉

=
∑

k1,...,kn

( r∏
ν=1

F
mνj∗ν jν−1

i∗kν−1k∗
ν

)∣∣∣∣∣
〉

�2�

identifying j0= jr and k0=kr. The plaquette and vertex opera-
tors commute and thus the ground space of HG is the space
simultaneously fixed by all these projections.

In Appendixes A and B we give a natural definition of Bp
i

for more general plaquettes; roughly Bp
i adds a loop of type i

around a puncture in the center of p followed by reduction to
the basis of HG. Equation �2� is a special case.

We now focus on the case where G is the honeycomb
lattice L. Our RG transformation is a map R :HL→HL̃,

where L̃ is a coarser hexagonal lattice that satisfies:
�i� The physical subspace HL

phys is mapped into HL̃
phys

.

�ii� Local operators on HL are mapped under conjugation
by R to local operators on HL̃.

Each plaquette p of L is either retained or eliminated by
renormalization. We can show that the form of the plaquette
part of the Hamiltonian is preserved under the map R in the
following sense:

�iii� If q is a retained plaquette of L and q̃ the correspond-

ing plaquette of L̃ then Bq �HL
0 =R†Bq̃R �HL

0 , where HL
0 �HL

phys

is the subspace simultaneously fixed by all Bp operators for
eliminated plaquettes p.

Furthermore,
�iv� the ground space of HL is mapped bijectively to the

ground space of HL̃.

The map R is defined by a sequence of F-moves, elemen-
tary trivalent graph transformations. As shown in Fig. 1
Fe�G� is a graph G� that is the same as G except with an edge
e reconnected in a way that corresponds to flipping an edge
in the dual graph. Using the tensor Fkln

ijm, Fe also defines a
linear transformation HG→HG� controlled by the labels
�ijkl� of the edges adjacent to e,

Fe

∣∣∣∣
〉

=
∑

n

F ijm

kln

∣∣∣∣
〉

�3�

in the standard string-net bases defined above. For each edge
e, Fe maps HG

phys isomorphically to HG�
phys and Fe �HG

phys can be
extended to a unitary on HG.

A second ingredient of R are transformations that reduce
the number of degrees of freedom by eliminating edges. Sup-
pose that after some F-moves, the resulting graph G contains
a “tadpole,” i.e., a subgraph of the form shown in Fig. 2
consisting of a self-loop around plaquette p and three other
edges. We associate with this tadpole the local operator
Zp :HG→HG�, where G� is obtained from G by deleting the
tadpole subgraph and replacing edges e3 and e4 with a single
edge e�,

Zp = ���e1
� �0�e2

� 

i

�i�e��ii�e3e4
� idG\�e1,. . .,e4	, �4�

where ���= 1
�
idi

2 
idi�i�. Observe that Zp
† is an isometry.

The map R from the lattice L into the coarser lattice L̃ is
now given by the sequence of F-moves indicated in Fig. 3
followed by eliminating the tadpoles using the Zp maps.

The properties of the map R rely on two basic claims
about the behavior of plaquette operators under F-moves and
the removal of tadpoles. We show that

Lemma 1. For every edge e and plaquette p,

FeBp = Bp�Fe, �5�

where p� corresponds to the plaquette p in the graph G�
=Fe�G�. Roughly speaking, F-moves “commute” with
plaquette operators.

FIG. 1. An F-move reconnecting an edge e of G. Plaquettes of G
and of G� are in one-to-one correspondence. FIG. 2. When G contains a tadpole around plaquette p �attached

to vertex v� and the state is in the range of Bp, it is a product state
with respect to the bipartition G \ �e1 ,e2	 : �e1 ,e2	 �Lemma 2�. In this
diagram, the ei are names for the directed edges and not string-net
labels.
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Lemma 1 implies that the plaquette part HG is mapped to
the plaquette part of HG� under conjugation by Fe. A similar
statement applies to the removal of a tadpole with head p
inside a plaquette q; this operation commutes with Bq pro-
vided we restrict to the subspace fixed by Bp.

Lemma 2. Consider a tadpole around plaquette p inside a
plaquette q as shown in Fig. 2 and let q� be the modified
plaquette after removal of the tadpole. Then Bp is a rank-one
projection,

Bp = ������e1
� �0��0�e2

� idG\�e1,e2	 �6�

with ��� defined as in Eq. �4� and

BqQvBp = Zp
†Bq�Zp. �7�

Every ground state ���G of HG is a product state

���G = Zp
†����G� = ���e1

� �0�e2
� 


i

�ii�e3e4
�i�e������G�

�8�

where ����G� is a ground state of HG�.
Lemmas 1 and 2 can in principle be verified directly from

the explicit expression �2� for the plaquette operators in
terms of standard basis vectors. A simpler proof is based on
the interpretation of Bp

i as adding a “virtual loop” to the
surface as explained in Ref. 8 �Appendix C�. The consistency
of this interpretation is guaranteed by Mac Lane’s coherence
theorem15 which shows that the required reductions yield the
same result independent of the sequence of local rules ap-
plied. In terms of this interpretation Lemma 1 is immediate
since the virtual loops are added in a region that is not af-
fected by F-moves. Similarly, Lemma 2 follows since the
operator Bp effectively removes a puncture in the surface
located at the center of p. We present these details and the
proofs in Appendixes A and B.

Let us now justify properties �i�–�iv� of R. It is easy to
check that both F-moves as well as the operators Zp preserve
the branching rule at every vertex; this proves �i�. Similarly,
�ii� immediately follows from the fact that R is made of local
operations. Statement �iii� is a direct consequence of Lem-
mas 1 and 2 since Eq. �7� implies Bq �HG

0 =Zp
†Bq�Zp �HG�

0 . For

property �iv�, note that the three rounds of F-moves in R are
unitaries. Therefore we only need to check that Zp, removing
a tadpole around p from a graph G, is a bijection from the
ground space of HG to the ground space of HG�. Again, this
directly follows from Lemma 2.16

Let us remark that Lemmas 1 and 2 generalize consider-
ably. In particular, property �iii� holds even if Bq is replaced
with the more general Wilson loop operators discussed in
Ref. 8 that can act nontrivially on the ground space. The
operator Zp

† is a special case of surgery between two surfaces,
one of which is the sphere in this case. A version of Lemma
2 holds for general surgery.

Every iteration of the RG transformation R reduces the
number of sites of the lattice L by one third. In the case that
L is embedded in the infinite plane the unique ground state
���L is a fixed point of R �by property �iv��. More interesting
are cases with a topological ground-space degeneracy, e.g., a
finite system on a torus.17 A ground state ���L of HL is
eventually reduced to a ground state ���top of an effective
Hamiltonian on a small number of edges; both the state and
the Hamiltonian encode the topological features of the origi-
nal state or model.

In the terminology of entanglement renormalization10 we
can think of R as being made of disentanglers
U :V�5→V�5 �e.g., the first round of F-moves� and isome-
tries W :V�6→V�3 �the remaining F- and Z-moves�. W re-
places a triangle with a single vertex. This pattern of opera-
tions has also been applied in the context of an RG
transformation for classical partition functions.18 By revers-
ing R we obtain an explicit logarithmic-depth quantum cir-
cuit C to prepare ���L from ���top using local gates.19 This is
a consequence of the recursive character of the RG transfor-
mation. It should be contrasted with Ref. 20 where it is
shown that the creation of a topologically ordered state takes
a time linear in the system size if it is based on local Hamil-
tonian evolution.

In summary, the RG transformation presented here pro-
vides both a theoretical foundation and a concrete tool for
the study of string-net condensation as a model for topologi-
cally ordered phases. Its simple description in terms of the
underlying tensor category translates into an efficient repre-
sentation of the ground states. This gives a theoretical indi-
cation of the suitability of appropriate numerical RG proce-
dures in the study of topologically ordered systems thereby
adding to the evidence for their remarkable precision.14

We thank Miguel Aguado, Lukasz Fidkowski, Alexei Ki-
taev, Greg Kuperberg, and John Preskill for helpful conver-
sations. R.K. and B.R. acknowledge support from NSF under
Grants No. CCF-0524828, No. PHY-0456720, and No. PHY-
0803371 and ARO under Grant No. W911NF-05-1-0294.
G.V. acknowledges support from Australian Research Coun-
cil under Grants No. FF0668731 and No. DP0878830.

F→ F→ F→ Z→

FIG. 3. The RG transformation R coarse-grains lattice L into L̃. Edges where F-moves are applied are marked by dots. Note that there
are many alternative sequences of moves that work equally well.
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APPENDIX A: BASIC DEFINITIONS FOR GENERAL
STRING-NET MODELS

We first review the properties that the tensor Fkln
ijm needs to

satisfy in order to define a string-net model. Start by encod-
ing the branching rules into a tensor �ijk, with �ijk=1 if string
types i, j, and k are allowed to come together at a vertex and
�ijk=0 otherwise. The branching rules are assumed to satisfy
�ij�0=�ij where �ij is the Kronecker delta. Assume that the F
tensor satisfies for all i , j , . . . ,s,

physicality: Fkln
ijm�ijm�klm� = Fkln

ijm�iln� jkn�, �A1�

pentagon identity: 

n=0

N

Fkpn
mlqFmns

jip�

Flkr
jsn = Fq�kr

jip�

Fmls
r�iq�

, �A2�

unitarity: �Fkln
ijm�� = Fk�l�n�

i�j�m�

, �A3�

tetrahedral symmetry: Fkln
ijm = Flkn�

jim = Fjin
lkm�

= Fk�nl
imj �dmdn

djdl
,

�A4�

normalization: Fj�jk
ii�0 =� dk

didj
�ijk, �A5�

where di
−1=Fii�0

ii�0�0. Then via Eqs. �1� and �2�, and

Qv =
∑
i,j,k

δijk

∣∣∣
v

i

j k

〉〈
v

i

j k

∣∣∣ , �A6�

the tensor Fkln
ijm gives rise to a Hamiltonian HL of a string-net

model on the honeycomb lattice L.8 To define HG for more
general trivalent graphs G, though, we need to extend defi-
nition �2� of the operators Bp

i to arbitrary plaquettes.
Recall that G is embedded in a surface S. Put a puncture in

the interior of each plaquette of G and let S� be the resulting
punctured surface. A smooth string net is an equivalence
class of directed trivalent graphs embedded in S� where the
edges carry string labels �cf. Ref. 8 �Appendix C� for the
case of the honeycomb lattice�. The equivalences consist of
isotopy, i.e., smooth deformations of the embedding in S�

�for example, crossing punctures is not allowed� and of re-
versing the direction of an edge labeled i while changing the
label to i�.

Any smooth string-net representative embedded in G�S�

can be associated with one of the basis vectors of HG=
�eVe in the natural way, assigning �0� for any edge not
crossed by the smooth string net. More generally, every
smooth string net on S� uniquely determines an element of
HG by applying some sequence of the following local sub-
stitution rules to obtain a linear combination of smooth string
nets in G:

i j
= 0i

i j

j

�A7�

i = di �A8�

i j
k

l = δij
i j

k

l
�A9�

mi

j k

l
=

∑

n

F ijm

kln n

i

j k

l

�A10�

Crucially, the element of HG obtained in this fashion is in-
dependent of which sequence of local rules was applied. This
self-consistency of the local rules is a special case of Mac
Lane’s coherence theorem15 �see also Ref. 21 �Appendix E��.

Now define Bp
i as adding a counterclockwise-oriented

loop with label i around the puncture in p followed by re-
duction back to the standard basis of HG. It is straightforward
to derive Eq. �2� from this more general definition �Example
2�. This completes the definition of HG for general trivalent
graphs G.

Example 1. A smooth string-net “bubble” with three in-
coming edges and no interior punctures can be simplified to
a trivalent vertex by, e.g., applying an F-move to the edge
labeled l using Eqs. �A10� and �A9� followed by applying an
F-move to the edge labeled m and simplifying with Eqs.
�A9�, �A8�, and �A5�,

i j

k

l

mn = F nil∗

jm∗k∗

i
j

k

k
mn

=

√
dmdn

dk

δijkF
nil∗

jm∗k∗ i
j

k

�A11�

Example 2. The operator Bp
i adds a loop of type i followed

by expanding the resulting smooth string net into a sum of
standard basis vectors. For example,

m1 m2

m3

j1

j2j3
+

i
=

∑
k1,k2,k3

3∏
ν=1

F i∗i0
jνj∗νkν

m1 m2

m3

j1 j1

j2

j2j3

j3

k1

k2k3

i i
i
+

=
∑

k1,k2,k3

( 3∏
ν=1

F
mνj∗ν jν−1

i∗kν−1k∗
ν

)
m1 m2

m3

k1

k2k3
+

Here in the first step we have applied three F-moves, and in
the second step we have applied Eq. �A11� three times and
simplified. The puncture in plaquette p is marked by �. Thus
we have derived Eq. �2� for the case that p has r=3 sides.

Remark. The derivation in Example 2 suggests a conve-
nient shorthand rule for determining the action of Bp

i . First
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draw a loop with label i going counterclockwise along the
boundary inside plaquette p. Then formally replace each T
junction as shown

i

a

b c
−→ F abc

i∗c′b′

a

b′ c′

Finally, identify primed variables at adjacent junction and
sum over the remaining primed variables. It is easy to check
that this rule computes Bp

i , although special care must be
taken to apply the rule to a plaquette with degenerate bound-
ary.

APPENDIX B: PROOFS OF LEMMAS 1 AND 2

Proof of Lemma 1. We claim that FeBp
i =Bp�

i Fe. Since Bp
i is

defined as adding a loop of type i followed by reduction to
the standard basis of the graph, this claim is equivalent to the
following diagram commuting:

 

. . .

 p

e

 

. . .

 
i

 

. . .

 

 

. . .

  

. . .

 
i

 

. . .

 

Fe Fe Fe

Add loop

of type i

Add loop

of type i

Reduce

to HG

Reduce

to HG′

To simplify the diagram, we have drawn only G and G�
=Fe�G� instead of writing superpositions of basis states.

Now the left half of this diagram commutes since e is
separated away from the puncture. The right half of the dia-
gram commutes by Mac Lane’s coherence theorem since the
two ways around it are different ways of reducing to HG�. �

Thus Lemma 1 is a nearly immediate corollary of Mac
Lane’s coherence theorem. This simple proof shows the use-
fulness of defining Bp

i using smooth string nets. A similar
argument shows that �Bp

i ,Bq
j �=0 for all plaquettes p and q

and all string-net types i and j as we asserted below Eq. �2�.
For the proof of Lemma 2 we first show the following

rule that applies to smooth string nets:
Lemma 3.

Bp +p
i

= Bp +

i

�B1�

Intuitively, Lemma 3 says that applying Bp effectively re-
moves from S� the puncture p by allowing strings to be car-
ried over it isotopically. The proof is by applying two
F-moves. Let D=�
kdk

2 be the “total quantum dimension.”

Proof. By definition of Bp

D2Bp +p
i

=
∑

j

djB
j
p +p

i

=
∑

j

dj +
j

i

=
∑
j,k

djF
i∗i0
j∗jk

i

i

+ jk

=
∑
j,k

√
djdk

di

δi∗jk

i

i

+ jk

We have made an F-move and used Eq. �A5�. Every
smooth string net depicted above represents the correspond-
ing element of HG; the use of Mac Lane’s theorem is im-
plicit. Now by symmetry,

∑
j,k

√
djdk

di

δi∗jk

i

i

+ jk =
∑

k

dk +k i

= D2Bp + i

Proof of Lemma 2. First, note that

Bp +p
j k

= Bp +p
j k

= δj0 Bp +p
k

= δj0dk Bp +p

= δj0

dk

D |Φ〉e1
⊗ |0〉e2 �B2�

where we have applied Lemma 3 and Eqs. �A8� and �A9�.
Equation �6� follows since Bp is a projection.

Now we can argue that Bq
i QvBp=Zp

†Bq�
i Zp from which Eq.

�7� follows. On the left-hand side we know from Eqs. �6� and
�B2�,

QvBp = ������e1
� �0��0�e2

� 

i

�ii��ii�e3e4

= DBp�0����e1
� �0��0�e2

� �†� ,

where �=
 j�j�e��j j�e3,e4
. Similarly, we have

Zp
†Bq�

i Zp = DBp�†Bq�
i

� � �0����e1
� �0��0�e2

.

Thus we need only verify that BpBq
i �†� � �00�e1e2

=Bp�00�e1e2
� �†Bq�

i � � �00�e1e2
. Indeed, letting redG �respec-

tively redG�� mean reducing the smooth string net to HG �re-
spectively HG��
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BpB
i
q(idG\{e3,e4} ⊗ ∆†∆)|00jj〉e1e2e3e4

= Bp
j

j 0
0

+p +q

i

= Bp redG j +p +q

i

= Bp|00〉e1e2
⊗ ∆† redG′ j +q′

i

= Bp

(|00〉e1e2
⊗ ∆†Bi

q′∆|jj〉e3e4

)

where the first and last equalities are by definition of Bq
i and Bq�

i , the second equality is by Lemma 2, and the third equality is
because the exact same sequence of steps can be used to reduce the pictured smooth string net to HG as can be used to reduce
it to HG�. Equation �8� now follows immediately. �
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